matlab_distillation_column
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Q2)
In the small-angle approximation, the motion of a simple pendulum is approximated by simple harmonic motion. String of length with gravitational acceleration g, mass M then acceleration.
Where I is the moment of inertia in this case . To solve this equation convert to two first order equations.
I=12 kgm2, M=3 kg, g=9.8 ms-2 solution set can get from following code.
M-files name is shown in top row
First m- file
%----------------Parameters.m--------------------------
% This is a M file for parameters of the equations
g=9.8;
I=12;
M=3;
%I=M*R*R
R=sqrt(I/M);
%---------------------END------------------------------
Second m- file
%------------pendulum.m--------------------------
%--Function for put equation into matlab---------
function dqdt=pendulum(t,y)
Parameters;
%here y is metrix y(1)=w ,and y(2)=angale
dqdt=[y(2);-M*g*R*sin(y(1))/I];
%------------END----------------------------------
Last m- file
%----------solution_pendulum.m-----------------------------
inital_condition=[pi/2,0];
time_span=[0 10];
[t,y]=ODE45(@pendulum,time_span,inital_condition);
subplot(2,1,1)
plot(t,y(:,1),'r')
xlabel('Time');
ylabel('Angle in radian');
title('Time vs Angle in radian')
grid on
subplot(2,1,2)
plot(t,y(:,2),'b')
xlabel('Time');
ylabel('Angle velocity');
title('Time vs Angle velocity')
grid on
%-----------------END--------------------------------------