对数函数课件ppt

合集下载

4.4 对数函数及其性质 课件【共13张PPT】

4.4 对数函数及其性质 课件【共13张PPT】

x
a)
是奇函数,
求f(x)<0的解集.
{x | 1 x 0}
巩固练习
5.已知 loga(3a-1)恒为正,求 a 的取值范围.
解:由题意知 loga(3a-1)>0=loga1. 当 a>1 时,y=logax 是增函数, ∴33aa--11>>10,, 解得 a>23,∴a>1; 当 0<a<1 时,y=logax 是减函数, ∴33aa--11<>10,, 解得13<a<23.∴13<a<23. 综上所述,a 的取值范围是13,32∪(1,+∞).
(2)若函数 f(x)的最小值为-4,求 a 的值.
解:(1)要使函数有意义,则有1x-+x3>>00,, 解得-3<x<1,所以函数的定义域为(-3,1).
(2)函数可化为:f(x)=loga(1-x)(x+3)=loga(-x2-2x+3) =loga[-(x+1)2+4],
因为-3<x<1,所以 0<-(x+1)2+4≤4.
[解] (1)由 loga12>1 得 loga12>logaa. ①当 a>1 时,有 a<21,此时无解; ②当 0<a<1 时,有12<a,从而12<a<1.∴a 的取值范围是12,1.
(2)∵函数 y=log0.7x 在(0,+∞)上为减函数,
2x>0, ∴由 log0.7(2x)<log0.7(x-1),得x-1>0,
则x1+ -1x> >00, , 即-1<x<1,所以 F(x)的定义域为{x|-1<x<1}. (2)F(x)=f(x)-g(x),其定义域为(-1,1),且 F(-x)=f(-x)-g(-x) =loga(-x+1)-loga(1+x)=-[loga(1+x)-loga(1-x)]=-F(x),所 以 F(x)是奇函数.

《对数函数及其性质》课件

《对数函数及其性质》课件

THANK YOU
对数函数的定义域和值域
理解对数函数的定义域和值域,并能够判断特定函数的定义域和值 域。
对数函数的单调性
理解对数函数的单调性,并能够判断特定函数的单调性。
进阶题目
01
02
03
复合对数函数
理解复合对数函数,并能 够求解复合对数函数的值 。
对数函数的图像
理解对数函数的图像,并 能够根据图像判断函数的 性质。
分析对数函数的值域和定义域。对于自然对数函数y=log(x) ,其值域为R;对于以a为底的对数函数y=log(x),其定义域 为(0, +∞)。对于复合对数函数y=log(u),其值域和定义域取 决于u的取值范围。
03
对数函数的应用
实际应用场景
金融计算
在复利、折旧等计算中 ,对数函数有广泛应用

《对数函数及其性质》ppt课件
• 对数函数的定义与性质 • 对数函数的图像与性质 • 对数函数的应用 • 对数函数与其他知识点的联系 • 习题与练习
01
对数函数的定义与性质
定义与表示
总结词
对数函数是一种特殊的函数,其 定义域为正实数集,值域为全体 实数集。常用对数函数以10为底 ,自然对数函数以e为底。
么以a为底N的对数等于b。
对数函数和指数函数在解决实际 问题中经常一起出现,例如在计 算复利、解决声学和光学问题时

对数函数与三角函数的联系
对数函数和三角函数在形式上有些相似,特别是在自然对数函数和正弦函数中。
在复数域中,对数函数和三角函数有更密切的联系,它们都可以用来表示复数的幂 。
在解决一些物理问题时,例如波动和振动问题,可能需要同时使用对数函数和三角 函数。

对数函数及其性质课件ppt

对数函数及其性质课件ppt

统计学
决策理论
在决策理论中,对数函数用于构建效 用函数,以评估不同选项的风险和收 益。
在统计学中,对数函数用于描述概率 分布,如泊松分布和二项分布。
05 练习与思考
基础练习题
01
02
03
04
基础练习题1
请计算以2为底9的对数。
基础练习题2
请计算以3为底8的对数。
基础练习题3
请计算以10为底7的对数奇函数也不是偶 函数。
周期性
• 无周期性:对数函数没有周期性,因为其图像不会重复出 现。
03 对数函数的运算性质
换底公式
总结词
换底公式是用来转换对数的底数的公 式,它对于解决对数问题非常有用。
详细描述
换底公式是log_b(a) = log_c(a) / log_c(b),其中a、b、c是正实数,且b 和c都不等于1。通过换底公式,我们可 以将对数函数转换为任意底数的对数函 数,从而简化计算过程。
图像绘制
对数函数的图像通常在直角坐标系 中绘制,随着底数$a$的取值不同, 图像的形状和位置也会有所变化。
单调性
单调递增
当底数$a > 1$时,对数函数是单调递增的,即随着$x$的增 大,$y$的值也增大。
单调递减
当$0 < a < 1$时,对数函数是单调递减的,即随着$x$的增 大,$y$的值减小。
对数函数的乘法性质
总结词
对数函数的乘法性质是指当两个对数 函数相乘时,其结果的对数等于两个 对数函数分别取对数后的积。
详细描述
对数函数的乘法性质公式为log_b(m) * log_b(n) = log_b(m * n),其中m 和n是正实数。这个性质在对数运算 中也非常有用,因为它可以简化对数 的计算过程。

对数函数的性质与图象ppt课件

对数函数的性质与图象ppt课件

D)
C. (1, 4)
D. (4, )
解析:令 t x2 3x 4 0 ,解得 x 4 或 x 1 .由于函数 t x 2 3x 4 在 (, 1)
上单调递减,在 (4, ) 上单调递增,且 y ln t 在 (0, ) 上单调递增,所以
2
> 0 ,即 ≠ 0,
在 GeoGebra 中,只要输入对数函数的表达式,就可以得到对应的图象,如图
所示是用 GeoGebra 作出的 ( ) = log2 , ( ) = log1 ,
ℎ( ) = log0.3 , ( ) = ln ,
2
( ) = lg 的图象,你能从中得出什么规律吗?
事实上 ,利用指 数运算和对 数运算的关 系,可以把 上述关系式 改写为
x log
1
1 5 730

2
示为 y log
y ,如果仍用 x 表示自变量,y 表示因变量,那么这一函数关系可以表
1
1 5 730

2
x ,其中自变量在真数的位置上,我们称这样的函数为对数函数.
.
根据以上信息可知,函数 y=log2x 的图
象都在 y 轴右侧,而且从左往右图象是逐渐
上升的. 通过描点,可以作出函数 y=log2x
的图象,如图所示.
下面我们来研究对数函数 y log 1 x 的性质与图象.
2
注意到 y log 1 x log 21 x log 2 x ,因此不难看出 y log 1 x 和 y log 2 x 之间
1
log2 a 2 ,即 2 log 2 a 2 ,解得 a 4 .故选 D.

高中数学《对数函数》课件(共14张PPT)

高中数学《对数函数》课件(共14张PPT)
底数的取值范围:底数a必须为正实数,且不能等于1。 输入值的范围:对数函数的输入值必须大于0且小于a的实数。 对数的运算顺序:对于多个对数的运算,应先将对数函数的自变量化简到最简形式,再计算对 数值。
谢谢大家
人教版高中数学必修五
五、对数函数的应用
对数函数在数学、物理、工程等领域中广泛应用,用于处理指数运算、比例运算、数值比较等 问题。 对数函数可以用于实现数据压缩和扩展,例如在声音信号处理中,可以使用对数函数将声音信 号的动态范围进行调整,以提高声音的质量和清晰度。 对数函数还可以用于计算复利、估算自然对数的值、求解方程组等问题。 在使用对数函数时,需要注意以下几点:
a>1: 当:x>1时, 图像在y轴上方; 当0<x<1时,图像在下方;
0<a<1:
当:x>1, 图像在y轴下方;
当 0<x<1, 图像在轴上方;
函数性质
定义域:x>0
值域: R 当x=1时,y=0。
增函数 减函数
a>1: 当x>1, 则 y>0, 当0<x<1, 则y<0; 0<a<1: 当:x>1, 则y<0 当0<x<1, 则y>0;
5. 函数值分布:a>1: 当:x>1时, 图像在y轴上方; 当0<x<1时,图像在y轴下方;
函数性质 定义域:x>0 值域: R 当x=1时,y=0。
增函数
a>1: 当x>1, 则 y>0, 当0<x<1, 则y<0;
0 a 1 y loga x
x 1
图像的特征 1.图像位于y轴右侧; 2. 图像在y轴的投影占满了整个y轴; 3. 过(1.0)点 4. 单调性: 0<a<1时,图像下降; 5. 函数值分布: 0<a<1: 当:x>1, 图像在y轴下方; 当 0<x<1, 图像在轴上方;

对数函数PPT课件

对数函数PPT课件

04 对数函数与其他函数的比 较
与指数函数的比较
指数函数和对数函数是互为反函数, 它们的图像关于直线y=x对称。
当a>1时,指数函数和对数函数都是 增函数,但它们的增长速度不同,对 数函数的增长速度更慢。
指数函数y=a^x(a>0且a≠1)的图 像总是经过点(0,1),而对数函数 y=log_a x(a>0且a≠1)的图像则 总是经过点(1,0)。
对数函数和三角函数的应用领域也不同。对数函数主要用于解决与对数运算相关的问题,如 对数的换底公式、对数的运算性质等;而三角函数则主要用于解决与三角形的边角关系、周 期性等问题相关的问题。
05 对数函数的学习方法与技 巧
学习方法
1 2 3
理解对数函数的定义
首先需要理解对数函数的基本定义,包括对数函 数的定义域、值域以及其变化规律。
对数函数ppt课件
目录
• 对数函数的定义与性质 • 对数函数的运算性质 • 对数函数的应用 • 对数函数与其他函数的比较 • 对数函数的学习方法与技巧
01 对数函数的定义与性质
定义
自然对数
以e为底的对数,记作lnx,其中e是自然对数的底数,约等于 2.71828。
常用对数
以10为底的对数,记作lgx。
当0<a<1时,指数函数和对数函数都 是减函数,但它们的下降速度也不同, 对数函数的下降速度更快。
与幂函数的比较
幂函数y=x^n(n为实数)的图像在 第一象限和第三象限都存在,而对数 函数y=log_a x(a>0且a≠1)的图像 只存在于第一象限。
幂函数的增长速度与指数和对数函数 不同,当n>0时,幂函数的增长速度 比对数函数更快;当n<0时,幂函数 的增长速度比对数函数更慢。

对数函数PPT课件

对数函数PPT课件


2
2.作出下列函数的图像并判断它们在 (0,) 内的单调性.
(1) y log3 x ;
(2) y log1 x .
3
智利的复活节岛上矗立着600多尊巨人石像,石像一般高7—10米, 重达30—90吨,都是由整块的暗红色火成岩雕凿而成的.美国科学家在 科考中使用的是“放射性碳年代鉴定法”进行考察与研究。
2
演示
1.函数图像都在 y 轴的 ,
2.函数图像都经过点

3.函数 y log2 x 的图像自左至右呈
函数 y log1 x 的图像自左至右呈
2
趋势; 趋势.
整体建构 理论升华
对数函数 y loga x a<0且a 1 具有下列性质:
1 函数的定义域是 (0, ) .值域为, ;
2
函数图像经过点(1,0);
. .
运用知识 强化练习
练习4.4.1
1.选择题
(1)若函数 y loga x 的图像经过点 2, 1 ,则底 a =( ).

A 2 B −2
C1 2
D 1 2
(2) 下列对数函数在区间(0,+ )内为减函数的是( ).
A y lg x B y log1 x C y ln x D y log2 x
设该物质最初的质量为 1,衰变 x 年后,该物质残留一半,则
0.84x 1 , 2
于是
x
log
0.84
1 2
≈4(年).
即该物质的半衰期为 4 年.
巩固知识 典型例题
例 碳-14的半衰期为5730年,古董市场有一幅达·芬奇的 绘画,测得其碳-14的含量为原来的94.1%,根据这个信息, 请你从时间上判断这幅画是不是赝品.

对数函数及其性质ppt

对数函数及其性质ppt
符号
常用对数函数记作f(x) = lgₐx,以10 为底;自然对数函数记作f(x) = lnₐx, 以e为底。源自对数函数的性质定义域
对数函数的定义域为(0, +∞),这是因为对数函数的底数必须大于0且不等于1。
值域
对数函数的值域为R,即所有实数。
单调性
当a > 1时,对数函数是增函数;当0 < a < 1时,对数函数是减函数。
对数函数的除法性质
总结词
对数函数的除法性质是指当两个对数相除时,其结果等于将被除数的底数取倒数后再取对数。
详细描述
对数函数的除法性质可以表示为log_b(m) / log_b(n) = log_b(1/n) / log_b(1/m) = log_b(m/n),其中 m和n是正实数,且n不等于1。这个性质在对数运算中也非常重要,因为它简化了多个对数项的除法运算。
对数函数,我们可以更好地理解放射性物质在环境中的行为和影响。
THANKS
感谢观看
对数函数及其性质
• 对数函数的定义与性质 • 对数函数的运算性质 • 对数函数的应用 • 对数函数与其他函数的比较 • 对数函数在实际问题中的应用案例
01
对数函数的定义与性质
定义与符号
定义
对数函数是指数函数的反函数,记作 f(x) = logₐx (a > 0, a ≠ 1),其定义 域为(0, +∞)。
对数运算法则
对数函数具有对数运算法则,包括换底公式、对数乘法公式、对数除法公式等。
对数函数的图象
01
图像形状
对数函数的图像通常为单调递增或递减的曲线,随着x的增大而无限接
近y轴。
02
图像特点
对数函数的图像具有垂直渐近线,即x=1和x=0。此外,当a>1时,图

4.4 对数函数(教学课件)——高中数学人教A版(2019)必修第一册(共38张PPT)

4.4 对数函数(教学课件)——高中数学人教A版(2019)必修第一册(共38张PPT)

解:
(1)根据对数的运算性质,有
pH
lg[H
]
lg[H
] 1
lg
1 [H
]
.在
(0,
)
上,随着
[H
]
的增大,
1 [H
]
减小,相应地,
lg
1 [H
]
也减小,即
pH
减小.所以,随着[H
]

增大,pH 减小,即溶液中氢离子的浓度越大,溶液的酸性就越强.
(2)当[H] 10 7 时, pH lg10 7 7 .所以,纯净水的 pH 是 7.
对数函数的图像和性质
0 a 1
a 1
图象
定义域 值域
单调性 过定点
(0, )
R
减函数
增函数
过定点 (1,0) ,即 x 1 时, y 0
例 3 比较下列各题中两个值的大小: (1) log2 3.4 , log2 8.5 ; (2) log0.3 1.8 , log0.3 2.7 ; (3) loga 5.1 , loga 5.9 (a 0 ,且 a 1) .
例 2 假设某地初始物价为 1,每年以5% 的增长率递增,经过 t 年后的物价为 w .
(1)该地的物价经过几年后会翻一番? (2)填写下表,并根据表中的数据,说明该地物价的变化规律.
物价 w
1 2 3 4 5 6 7 8 9 10
年数 t
0
解:
(1)由题意可知,经过 t 年后物价 w 为 w (1 5%)t ,即 w 1.05t (t [0, )) .由对
4.4 对数函数
学习目标
1.了解对数函数的概念 2.了解对数函数的单调性和特殊点 3.了解指数函数和对数函数互为反函数

对数函数ppt课件

对数函数ppt课件
金融计算
对数函数在金融领域中常用于计 算复利、折现等,以及对股票价
格的分析和预测。
物理学
在物理学中,对数函数经常用于描 述声学、光学、电磁学等领域的现 象,例如声压级、分贝的计算,以 及光谱分析等。
化学
在化学中,对数函数用于描述化学 反应速率、pH值、电离常数等,帮 助科学家更好地理解和预测化学反 应过程。
总结词
对数函数的除法性质是指当一个对数除以另一个对数时,其结果等于前一个对数 的底数除以后一个对数的底数。
详细描述
如果log_b(m) / log_b(n) = log_n(m)。例如,log_2(4) / log_2(2) = log_2(2) = 1。
05
CHAPTER
对数函数与其他函数的关系
值域
对数函数的值域为R,即所有实数。
换底公式
log_bx=c/d=log_a(b^c)/log_a(b^d), 其中b>0且b≠1,a>0且a≠1。
单调性
当底数a>1时,函数在(0, +∞)上单调递 增;当0<a<1时,函数在(0, +∞)上单调 递减。
对数函数与指数函数的关系
对数函数和指数函数 互为反函数,即如果 y=log_ax(a>0且 a≠1),则x=a^y。
函数转化为反三角函数或反之来解决。
THANKS
谢谢
对数函数和指数函数 的性质有许多相似之 处,如单调性、奇偶 性等。
对数函数和指数函数 的图像关于直线y=x 对称。
02
CHAPTER
对数函数的图像与性质
对数函数的图像
图像形状
对数函数的图像在坐标系 中呈现出先减后增的单调 性,随着x的增大,y的值 先减小后增大。

第6讲 对数与对数函数 课件(共82张PPT)

第6讲 对数与对数函数  课件(共82张PPT)

解析 由 alog34=2 可得 log34a=2,所以 4a=9,所以 4-a=19,故选 B.
解析 答案
2.已知 a>0,a≠1,函数 y=ax 与 y=loga(-x)的图象可能是( )
解析 若 a>1,则 y=ax 是增函数,y=loga(-x)是减函数;若 0<a<1, 则 y=ax 是减函数,y=loga(-x)是增函数,故选 B.
且 a≠1)互为反函数,它们的图象关于直线 10 ___y_=__x___对称.
1.对数的性质(a>0 且 a≠1) (1)loga1=0;(2)logaa=1;(3)alogaN=N. 2.换底公式及其推论 (1)logab=llooggccba(a,c 均大于 0 且不等于 1,b>0); (2)logab·logba=1,即 logab=log1ba(a,b 均大于 0 且不等于 1); (3)logambn=mn logab; (4)logab·logbc·logcd=logad.
增区间.
∵当 x∈(4,+∞)时,函数 t=x2-2x-8 为增函数,
∴函数 f(x)的单调递增区间为(4,+∞).故选 D.
解析 答案
6.计算:log23×log34+( 3)log34=________. 答案 4 解析 log23×log34+( 3)log34 =llgg 32×2llgg32+3 log34=2+3log32=2+2=4.
8 5
<lg152·lg
3+lg 2
82=
lg
3+lg 2lg 5
82=llgg
22452<1,∴a<b.由
b=log85,得
8b=5,由
55<84,得
85b
<84,∴5b<4,可得 b<45.由 c=log138,得 13c=8,由 134<85,得 134<135c,

对数课件(共18张PPT)

对数课件(共18张PPT)
数学
基础模块(上册)
第四章 指数函数 与对数函数
4.2.1 对数
人民教育出版社
第四章 指数函数与对数函数 4.2.1 对数
学习目标
知识目标 能力目标
理解对数的概念,熟练进行指数式与对数式的互化,掌握对数的性质与运算 法则,能够使用计算器求解对数值
学生运用分组探讨、合作学习,掌握对数与对数函数图象和性质,学会利用 计算器求对数的值,提高学生的数学运算能力
设经过b次分裂,可以列出等式: 2b=4096.
这是个已知底数和幂的值求指数的问题. 一般地,若ab=N(a>0,且a≠1,N>0),则称幂指
数b是以a为底N的对数.例如: 因为42=16,所以2是以4为底16的对数; 因为43=64,所以3是以4为底64的对数;
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
实质上,上述对数式,不过是指数式的另一种表达 形式而已.
例如:
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
34=81 与4=log381 这两个式子表达的是同一关系.
拓展延伸 对数恒等式
我们来推导对数恒等式。 因为ab=N,根据对数的定义得b=logaN,于是得到 下面的对数恒等式:
aloga N N . 例如,2log2 32 32,10log10100 100 .
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?

对数函数的图像及性质ppt课件

对数函数的图像及性质ppt课件
“同正异负”
> ① log35.1 0 < ③log20.8 0
< ② log0.12
0
> ④log0.20.6 0
思考:4、解对数不等式
log a f (x) log a g(x)
1.a 1
f (x) 0 g(x) 0 f (x) g(x)
2.0 a 1
f (x) 0 g(x) 0 f (x) g(x)
y log 2 x和y log 1 x 的图象。
作图步骤: ①列表, 2
②描点, ③用平滑曲线连接。
x…
列 表
y
y
log 2
log 1
x
x
… …
2
y

2

1 11
42
0 12

-1
线
-2
1/4 1/2 1
-2 -1 0 2 10
y=log2x
34
x
y=log1/2x
24 …
1 2… -1 -2 …
y
logc x logd x
loga x logb x
o
x
0< c< d < 1< a < b
三.对数函数的图性质:
函数
y = log a x ( a>0 且 a≠1 )
底数
a>1
y
0<a<1
y
图象
o
1
x
1
o
x
定义域 值域 奇偶性 定点 单调性 函数值 符号
(0,+∞)
R 非奇非偶函数 ( 1 , 0 ) 即 x = 1 时,y = 0 在 ( 0 , + ∞ ) 上是增函数 在 ( 0 , + ∞ ) 上是减函数

对数函数课件(共19张PPT)

对数函数课件(共19张PPT)
即约经过4年,该放射性物质的剩留量是原来的一 半.
在②式中,对应任意一个“剩留量y”,都可求出 唯一的“经过的年数x",如果以“剩留量”作为自变量, 则依函数的定义,“经过的年数”与“剩留量”之间具 有函数关系.
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
情感目标 通过本节课学习,使学生,提升学生数学的直观想象、数学抽象、数学运算、 数学建模的核心素养
创设情境,生成问题 在在活初初动中中1,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
通常我们用x表示自变量,用y表示因变量,于是上 述的函数关系,可表示为
x=log0.84y· 一般地,函数
y=logax(a>0,且a≠1,x>0). 称为对数函数.
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
一般地,对数函数 y=logax(a>0,且a≠1)
具有下列性质: (1)定义域是(0,+∞),值域是R; (2)当x=1时,y=0,即函数的图象都经过点(1,0); (3)在其定义域内,当a>1时这个函数是增函数,
数学
基础模块(上册)
第四章 指数函数 与对数函数
4.2.4 对数函数
人民教育出版社
第四章 指数函数与对数函数 4.2.4 对数函数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.(2012·潍坊模拟)设函数f(x)=
log 1 -x,
2
x<0,
若f(a)>f(-a),则实数a的取值范围是
()
A.(-1,0)∪(0,1)
B.(-∞,-1)∪(1,+∞)
C.(-1,0)∪(1,+∞)
D.(-∞,-1)∪(0,1)
解析:由题意可得alo>g02,a>-log2a 或 a<lo0g,12 -a>log2-a, ) 解之可得a>1或-1<a<0.
C.是奇函数,在区间(0,+∞)上单调递减
D.是奇函数,在区间(0,+∞)上单调递增
解析:y=lg|x|是偶函数,由图象知在(-∞,0)上单调递减, 在(0,+∞)上单调递增. 答案:B
4.(2011·江苏高考)函数f(x)=log5(2x+1)的单调增区间
是________.
解析:由题意知,函数f(x)=log5(2x+1)的定义域为{x|x>-
log43.6,则
()
A.a>b>c
B.a>c>b
C.b>a>c
D.c>a>b
[自主解答] a=log23.6=log43.62=log412.96,y= log4x(x>0)是单调增函数,而3.2<3.6<12.96,∴a> c>b. [答案] B
若例4的a,b,c变为a= log 1 3.6,b= log 1 3.2,c= log 1 3.6,试判断
在(0,+∞)上为 增函数 在(0,+∞)上为 减函数
五、反函数 指数函数y=ax(a>0且a≠1)与对数函数 y=logax(a>0
且a≠1)互为反函数,它们的图象关于直线 y=x对称.
1.(教材习题改编)2log510+log50.25=
A.0
B.1
()
C.2
D.4
解析:2log510+log后悟道] 研究指数函数和对数函数的性质时,首先要明确函 数的定义域,其次底数a与1的大小关系还要分清楚,在 不明确时,要进行分类讨论,分类时,要遵循分类的原 则:一是分类的对象确定,标准统一;二是不重复,不 遗漏;三是能不分类的要尽量避免或尽量推迟,决不无 原则地讨论.
()
A.a<b<c
B.c<b<a
C.b<a<c
D.b<c<a
[自主解答] a=log 1 12=log32,b=log 1 23=log332,c=log343,函
3
3
数y=log3x在(0,+∞)上是增函数,43<32<2,即c<b<a.
[答案] B
[巧练模拟]—————(课堂突破保分题,分分必保!)
log525=2. 答案:C
2.函数y=loga(3x-2)(a>0,a≠1)的图象经过定点A,则A
点坐标是
()
A.0,23 C.(1,0)
B.23,0 D.(0,1)
解析:代入验证. 答案:C
3.函数y=lg|x|
()
A.是偶函数,在区间(-∞,0)上单调递增
B.是偶函数,在区间(-∞,0)上单调递减
)
A. 10
B.10
C.20
D.100
[自主解答] a=log2m,b=log5m,代入已知得logm2+logm5=2, 即logm10=2,所以m= 10.
[答案] A
[巧练模拟]——————(课堂突破保分题,分分必保!)
1.(2012·福州质检)化简:lgl2g+50l-g5l-g4l0g8=________. 解析:原式=lgl2g×548005=llgg5454=1.
3.(2011·湖州二模)函数f(x)=log2x2的图象的大致形状是( )
解析:由于f(x)=log2x2=2log2|x|,所以函数的定义域 是(-∞,0)∪(0,+∞),且当x>0时,f(x)=2log2x在(0, +∞)上单调递增,又因为函数是偶函数,所以函数图 象关于y轴对称. 答案: D
22=f-12=f12.
又∵f(x)在[0,2]上递减,∴f-12=f12>f(1)>f(2),
即c>a>b.
答案:D
[冲关锦囊] 对数式的化简与求值的常用思路 (1)先利用幂的运算把底数或真数进行变形,化成分数 指数幂的形式,使幂的底数最简,然后正用对数运 算法则化简合并. (2)先将对数式化为同底数对数的和、差、倍数运算, 然后逆用对数的运算法则,转化为同底对数真数 的积、商、幂再运算.
2
4
4
a,b,c的大小.
解:a= log 1 3.6= log 1 3.62= log 1 12.96,y= log 1 x是单调递减函数,
2
4
4
4
而3.2<3.6<12.96,∴b>c>a.
[例5] (2011·重庆高考)设a=log 1 12,b=log 1 23,c=log343,则
3
3
a,b,c的大小关系是
[例3] (2012·绍兴调研)函数y=ln(1-x)的图象大致为( )
[自主解答] 由1-x>0,知x<1,排除选项A、B;设t=1 -x(x<1),因为t=1-x为减函数,而y=ln t为增函数, 所以y=ln(1-x)为减函数. [答案] C
[巧练模拟]———————(课堂突破保分题,分分必保!)
答案: 1
2.(2012·嘉兴一中质检)已知偶函数 f(x)在[0,2]上递减,试比较
a=f(1),b=f
log
1 2
14,c=flog2
22大小
A.a>b>c
B.a>c>b
()
C.b>a>c
D.c>a>b
解析:log 1 14=log 1 122=2,
2
2
log2
22=log22
1 2
=-12,flog2
或与其他知识交汇以解答题的形式出现.
一、对数的定义
一般地,如果ax=N(a>0,且a≠1),那么数x叫做以a为 底N的对数,记作x= logaN ,其中a叫做对数的底数 ,N叫 做 真数 .
二、对数的性质
1.loga1= 0 ,logaa= 1 . 2.aloga N = N ,loga a N = N . 3. 负数 和 零 没有对数.
[考题范例]
(2011·烟台二模)已知lg a+lg b=0,则函数f(x)=ax与函
数g(x)=-logbx的图象可能是
()
[巧妙运用] 由题知,a=1b,则f(x)=1bx=b-x,g(x)=-logbx, 当0<b<1时,f(x)单调递增,g(x)单调递增; 当b>1时,f(x)单调递减,g(x)单调递减.
答案:C
[冲关锦囊] 1.比较对数值大小时若底数相同,构造相应的对数函
数,利用单调性求解;若底数不同,可以找中间量, 也可以用换底公式化成同底的对数再比较. 2.利用对数函数的性质,求与对数函数有关的复合函 数的值域和单调性问题,必须弄清三方面的问题, 一是定义域,所有问题都必须在定义域内讨论;二 是底数与1的大小关系;三是复合函数的构成,即它 是由哪些基本初等函数复合而成的.
四、对数函数的定义、图象与性质
定义
函数y=logax(a>0,且a≠1)叫做对数函数
a>1
0<a<1
图 象
定义域:(0,+∞)
值域:R
当x=1时,y=0,即过定点(1,0)
性 当0<x<1时,
质 y∈(-∞,0) ; 当x>1时,y∈(0,+∞)
当0<x<1时, y∈(0,+∞) ; 当x>1时,y∈(-∞,0) ;
5.(2011·张店一模)设 a>1,函数 f(x)=logax 在区间[a,2a]上的
最大值与最小值之差为12,则 a 等于
()
A. 2
B.2
C.2 2
D.4
解析:∵a>1, ∴f(x)=logax在[a,2a]上为增函数, ∴loga2a-logaa=12,解得a=4.
答案: D
log2x, x>0,
对数函数
[备考方向要明了] 考什么
1.理解对数的概念及其运算性质,会用换底公式将一般 对数转化为自然对数或常用对数;了解对数在简化运 算中的作用.
2.理解对数函数的概念,能解决与对数函数性质有关的 问题.
怎么考
1.高考考查的热点是对数式的运算和对数函数的图象、性 质的综合应用,同时考查分类讨论、数形结合、函数与方 程思想. 2.常以选择题、填空题的形式考查对数函数的图象、性质,
[精析考题]
[例2] (2011·安徽高考)若点(a,b)在y=lg x图象上,a≠1,则
下列点也在此图象上的是
()
A.1a,b
B.(10a,1-b)
C.1a0,b+1
D.(a2,2b)
[自主解答] 当x=a2时,y=lg a2=2lg a=2b,所以 点(a2,2b)在函数y=lg x的图象上. [答案] D
4.(2012·杭州月考)已知函数f(x)=ln x,g(x)=lg x,h(x)=
log3x,直线y=a(a<0)与这三个函数的交点的横坐标分
别是x1,x2,x3,则x1,x2,x3的大小关系是
()
A.x2<x3<x1
B.x1<x3<x2
C.x1<x2<x3
D.x3<x2<x1
解析:分别作出三个函数的图象,如图所示: 由图可知,x2<x3<x1.
1 2
},
所以该函数的单调增区间为(-12,+∞). 答案:(-12,+∞)
相关文档
最新文档