解析几何中的定点和定值问题

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何中的定点定值问题

考纲解读:定点定值问题是解析几何解答题的考查重点。此类问题定中有动,动中有定,并且常与轨迹问题,曲线系问题等相结合,深入考查直线的圆,圆锥曲线,直线和圆锥曲线位置关系等相关知识。考查数形结合,分类讨论,化归与转化,函数和方程等数学思想方法。 一、

定点问题

解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。

例1、已知A 、B 是抛物线y 2

=2p x (p >0)上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和

β,当α、β变化且α+β=

4

π

时,证明直线AB 恒过定点,并求出该定点的坐标。

例2.已知椭圆C :22

221(0)x y a b a b

+=>>的离心率为3,以原点为圆心,

椭圆的短半轴长为半径的圆与直线20x y -+=相切.⑴求椭圆C 的方程;

⑵设(4,0)P ,M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值围;⑶在⑵的条件下,证明直线ME 与x 轴相交于定点.

【针对性练习1】 在直角坐标系xOy 中,点M 到点()13,0F -,(

)

2

3,0F 的距离之和是4,点M 的轨

迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . ⑴求轨迹C 的方程;⑵当0AP AQ ⋅=时,求k 与b 的关系,并证明直线l 过定点.

【针对性练习2】在平面直角坐标系xoy 中,如图,已知椭圆15

92

2=+y x 的左、右顶点为A 、B ,右焦点为F 。设过点T (m t ,)的直线TA 、TB 与椭圆分别交于点M ),(11y x 、

),(22y x N ,其中m>0,0,021<>y y 。

(1)设动点P 满足42

2

=-PB PF ,求点P 的轨迹; (2)设3

1

,221=

=x x ,求点T 的坐标; (3)设9=t ,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关)。

A

B

y

O

x

【针对性练习3】已知椭圆C 中心在原点,焦点在x 轴上,焦距为2,短轴长为23.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :()0y kx m k =+≠与椭圆交于不同的两点M N 、(M N 、不是椭圆的左、右顶点),且以MN 为直径的圆经过椭圆的右顶点A .求证:直线l 过定点,并求出定点的坐标.

例3、已知椭圆的焦点在x 轴上,它的一个顶点恰好是抛物线2

4x y =的焦点,离心率5

e =,过椭圆的右焦点F 作与坐标轴不垂直的直线l ,交椭圆于A 、B 两点。(I )求椭圆的标准方程; (Ⅱ)设点(,0)M m 是线段OF 上的一个动点,且()MA MB AB +⊥,求m 的取值围; (Ⅲ)设点C 是点A 关于x 轴的对称点,在x 轴上是否存在一个定点N ,使得C 、B 、N

三点共线?若存在,求出定点N 的坐标,若不存在,请说明理由。

二、 定值问题

在解析几何中,有些几何量与参数无关,这就构成了定值问题,解决这类问题时,要善于运用辩证的观点去思考分析,在动点的“变”中寻求定值的“不变”性,一种思路是进行一般计算推理求出其结果,选定一个适合该题设的参变量,用题中已知量和参变量表示题中所涉及的定义,方程,几何性质,再用韦达定理,点差法等导出所求定值关系所需要的表达式,并将其代入定值关系式,化简整理求出结果,;另一种思路是通过考查极端位置,探索出“定值”是多少,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,揭开神秘的面纱,这样可将盲目的探索问题转化为有方向有目标的一般性证明题,从而找到解决问题的突破口,将该问题涉及的几何形式转化为代数形式或三角形式,证明该式是恒定的。同时有许多定值问题,通过特殊探索法不但能够确定出定值,还可以为我们提供解题的线索。如果试题是客观题形式出现,特珠化方法往往比较奏效。

例4、已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点的直线交椭圆于A 、B 两点,)1,3(-=+a OB OA 与共线。

(1)求椭圆的离心率; (2)设M 为椭圆上任意一点,且),(R OB OA OM ∈+=μλμλ,证明2

2μλ+为定值。

例5、已知,椭圆C 过点A 3(1,)2

,两个焦点为(-1,0),(1,0)。(1)求椭圆C 的方程;

(2)E,F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值。

将第二问的结论进行如下推广:

结论 1.过椭圆2

22

2

1(0,0)x y a b

a b 上任一点00(,)A x y 任意作两条斜率互为相反数的直线交椭圆于

E 、

F 两点,则直线EF 的斜率为定值20

20

b x a y (常数)。

结论 2.过双曲线2

22

2

1(0,0)x y a b

a b 上任一点00(,)A x y 任意作两条斜率互为相反数的直线交椭圆

于E 、F 两点,则直线EF 的斜率为定值

20

2

b x a y (常数)。 结论3.过抛物线2

2(0)y

px p

上任一点00(,)A x y 任意作两条斜率互为相反数的直线交椭圆于E 、F 两

点,则直线EF 的斜率为定值

p

y (常数)。

例6、已知椭圆的中心在原点,焦点F 在y 轴的非负半轴上,点F 到短轴端点的距离是4,椭圆上的点到焦点F 距离的最大值是6.(Ⅰ)求椭圆的标准方程和离心率e ;

(Ⅱ)若F '为焦点F 关于直线32y =

的对称点,动点M 满足MF e MF ||='||

,问是否存在一个定点A ,使M 到点A 的距离为定值?若存在,求出点A 的坐标及此定值;若不存在,请说明理由.

例7、已知抛物线C 的顶点在坐标原点,焦点在x 轴上,P(2,0)为定点. (Ⅰ)若点P 为抛物线的焦点,求抛物线C 的方程;

(Ⅱ)若动圆M 过点P ,且圆心M 在抛物线C 上运动,点A 、B 是圆M 与y 轴的两交点,试推断是否存在一条抛物线C ,使|AB|为定值?若存在,求这个定值;若不存在,说明理由.

8、已知椭圆E 的中心在原点,焦点在x

1,离心率为

e =E 的方程;(Ⅱ)过点()1,0作直线交E 于P 、Q 两点,试问:在x 轴上是否存在一个定点M ,MP MQ ⋅为定值?若存在,求出这个定点M 的坐标;若不存在,请说明理由﹒

三、 定直线问题

例9、设椭圆22

22:1(0)x y C a b

a b

+=>>

过点M ,且焦点为1(F (Ⅰ)求椭圆C 的方程;

(Ⅱ)当过点(4,1)P 的动直线l 与椭圆C 相交与两不同点,A B 时,在线段AB 上取点Q ,满足

AP QB AQ PB =

,证明:点Q 总在某定直线上

例10、已知椭圆C 的离心率e =

,长轴的左右端点分别为()1A 2,0-,()2A 2,0。(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线x my 1=+与椭圆C 交于P 、Q 两点,直线1A P 与2A Q 交于点S 。试问:当m 变化时,点S 是否恒在一条定直线上?若是,请写出这条直线方程,并证明你的结论;若不是,请说明理由。

相关文档
最新文档