同步整流中DC-DC模块电源

合集下载

dcdc电源模块原理

dcdc电源模块原理

dcdc电源模块原理
DC-DC电源模块是一种电子设备,用于将来自直流电源(如
电池或太阳能电池)的电压转换为不同电压级别的直流电源。

它通常由输入电路、控制电路和输出电路组成。

输入电路负责接收来自直流电源的电压,并进行滤波和稳压处理,以确保输入电压的稳定性和可靠性。

它通常包括输入电容和输入电压限制电路,用于防止输入电压超过模块的额定电压范围。

控制电路对输入电压进行监测和调节,以产生所需的输出电压。

它通常包括一个反馈回路,用于测量输出电压,并与设定值进行比较,从而控制输出电压的稳定性和精确性。

控制电路还可能包括一个PWM(脉冲宽度调制)调节器,用于调节开关器
件的导通时间,以实现输出电压的调节。

输出电路将控制电路产生的电压通过变压器和整流电路转换为所需的输出电压。

变压器用于将电压转换为所需的电平,而整流电路用于将交流转换为直流,并通过输出电容进行滤波,以消除输出电压的纹波和噪声。

DC-DC电源模块的工作原理是通过输入电路对输入电压进行
处理,控制电路对输出电压进行调节,以产生所需的稳定输出电压。

它具有高效率、可靠性高、输出电压稳定等优点,广泛应用于电子设备、通信设备、工业控制等领域。

dcdc同步整流降压电路 频率

dcdc同步整流降压电路 频率

dcdc同步整流降压电路频率DC/DC同步整流降压电路是一种非常常见的电路配置,被广泛应用于电源管理领域。

它具有高效率、低功耗、稳定性好等优点。

本文将介绍这种电路的工作原理、主要特点、频率选择以及一些相关参考内容。

首先,我们来了解一下DC/DC同步整流降压电路的工作原理。

该电路由两个关键部分组成:一个降压开关电路和一个同步整流电路。

降压开关电路将输入电压转换为高频正弦波,然后经过同步整流电路进行滤波,并输出稳定的降压电压。

其中,开关电路可使用MOSFET、BJT等器件,而同步整流电路通常由二极管和低压降压MOSFET组成。

DC/DC同步整流降压电路的主要特点如下:1. 高效率:同步整流电路可以减小开关损耗,使得整个电路的效率得到提升,通常可达到90%以上。

2. 低功耗:由于采用高频开关,导致开关过程非常快速,因此整个电路的功耗较低。

3. 稳定性好:采用负载反馈控制技术,可以实现输出电压的稳定控制,保证电路的稳定工作状态。

4. 小体积:相对于传统的线性降压电路,DC/DC同步整流降压电路体积更小,适用于一些有空间限制的应用场景。

频率选择对DC/DC同步整流降压电路的性能有着重要影响。

通常情况下,常见的频率选择范围是几十kHz到几百kHz。

较高的开关频率可以降低电感和电容元件的尺寸,从而减小整个电路的体积。

然而,较高的开关频率也会增加开关损耗,影响电路的效率。

因此,在选择频率时需要综合考虑电路效率和体积的平衡。

关于DC/DC同步整流降压电路的相关参考内容,下面列举了一些经典的技术资料和论文:1. 《Switching Power Supply Design》(作者:Abraham I. Pressman 等):这本经典的参考书介绍了开关电源设计的基本原理和实际应用。

2. 《High-Frequency Switching Power Supplies》(作者:George C. Hua 等):这本书对高频开关电源的设计和调试进行了深入的介绍,适合于有一定基础的读者。

DC-DC模块串并联应用及其电源保护技术

DC-DC模块串并联应用及其电源保护技术

DC-DC妯″潡涓插苟鑱斿簲鐢ㄥ強鍏剁數婧愪繚鎶ゆ妧鏈?1銆佸墠瑷€銆€銆€瀵瑰綋浠婃柊鍨嬬殑DC-DCDC-DC鐩存祦鍙樻崲妯″潡鍙槸鍦ㄢ€斾釜CMOS鑺墖涓婂氨鍙泦鎴愪簡楂橀鍔熺巼MOSFET銆丳WM鎺у埗鍣ㄣ€佹晠闅滀繚鎶ゅ強鍏跺畠鎺у埗鐢佃矾,鏈夋晥鍦拌妭绾︿簡鎴愭湰.鍏舵€ц兘鍖呮嫭鐭矾鍙婂紑鐜繚鎶ゃ€佸彲缂栫▼鐨勯檺娴佺偣銆佽緭鍏ョ數鍘嬭緭鍏ョ數鍘嬫瑺/杩囧帇杩囧帇淇濇姢銆佽繜婊炵儹鍏虫柇銆佽蒋鍚姩銆佸弽棣堣ˉ鍋垮強閬ユ帶寮€/鍏虫満.涓庝紶缁熺殑鍒嗙珛璁捐鐩告瘮,璇witch鑺墖鍙妭鐪?0澶氫釜澶栧洿鍏冧欢,鏋佸ぇ鍦拌妭鐪佷簡鐢佃矾鏉跨┖闂村強鎴愭湰.瀹炵幇浜嗕綋绉皬銆侀噸閲忚交銆佷綆鎴愭湰銆侀珮鏁堢巼銆佽兘閫傚悎鍚勭搴旂敤鐨凞C-DC鐢垫簮杞崲璁捐.鑰岄殢鐫€鍚勭被宸ユ帶涓庝究鎼鸿澶囧彂灞曞彉鍖栦笌闇€姹?瀵圭數婧愬姛鐜囩殑瑕佹眰涔熷澶?鑰孌C-DC妯″潡涓插苟鑱斿簲鐢ㄦ槸鏈€浣抽€夋嫨,浼撮殢鐨勬槸鍒版ā鍧楃數婧愬埌鐨勪繚鎶ゅ姛鑳戒篃鏄惧緱鏍煎閲嶈,涓烘鏈枃灏嗗鍏跺簲鐢ㄤ笌瀹炰緥涓庢妧鏈綔鐮旇.聽銆€銆€2銆丏C-DC妯″潡鐨勪覆骞惰仈搴旂敤聽銆€銆€2.1澶氳矾杈撳嚭妯″潡鏄父鐢ㄧ殑閫夋嫨聽銆€銆€澶氳矾杈撳嚭鐨勬ā鍧楀湪閫夋嫨鍜屽簲鐢ㄦ椂瑕佷簡瑙e悇璺緭鍑轰箣闂寸殑浜や簰璋冭妭鐗规€?澶氳矾杈撳嚭鐨勬ā鍧楁湁鍑犵.鍏朵竴,鍚勮矾閮芥槸绋冲帇鐨勪笖鍚勮矾鍧囧彲浠绘剰鍔犺浇,鍏剁壒鎬ф渶濂?鍏朵簩,涓昏矾杈撳嚭绋冲帇,鍏跺畠鍚勮矾璺熼殢,浠樿矾鐨勮礋杞借皟鏁寸巼杈冨樊涓斾笌涓昏矾璐熻浇鏈夊緢澶у叧绯?濡傛灉涓昏矾杞借交鏃?浠樿矾鍔犺浇鏃跺彲鑳借緭鍑虹數鍘嬭緭鍑虹數鍘嬩細寰堜綆;鍏朵笁,涓嶅垎涓汇€佷粯璺?鍚勮矾鐨勫姞杞界壒鎬х浉鍚屼笖閮戒笉鏄緢濂?浣嗗悇璺彲闅忔剰鍔犺浇,濡傛灉鍏朵腑涓€璺┖鎴栬浇寰堣交鏃跺叾杈撳嚭鐢靛帇浼氭瘮鍏跺畠鍚勮矾閮介珮,鍔犺浇鏈€閲嶇殑杈撳嚭鐢靛帇鏈€浣?褰撶劧棣栬鐨勬槸搴斾粩缁嗛槄璇绘妧鏈墜鍐?聽銆€銆€2.2 DC-DC妯″潡涓茶仈搴旂敤聽銆€銆€鐢垫簮妯″潡鐨勮緭鍑虹數鍘嬬殑涓茶仈浣跨敤鏄彲鑳界殑,鏈€澶氳兘涓茶仈鍑犲彴杩愯瑕佺湅鍏蜂綋鐨勫瀷鍙峰拰搴旂敤.涓轰簡鑾峰緱楂樿緭鍑虹數鍘?涓や釜妯″潡鐨勪覆鑱旇繍琛?姣忎釜妯″潡鐨勮緭鍑哄苟鑱斾簡涓€涓弽鍚戜簩鏋佺,瀹冭兘浣垮弽鍚戠數鍘嬫梺璺?鍦ㄤ笂鐢靛惎鍔ㄦ椂涓嶄細鐢变簬鍚姩鏃堕棿涓嶅悓鑰岀浉浜掑奖鍝?姝や簩鏋佺搴旈€夎倴鐗瑰熀浜屾瀬绠?鍏跺弽鍘嬪簲澶т簬鎬昏緭鍑虹數鍘?鐢垫祦搴斿ぇ浜庝袱鍊嶉瀹氳緭鍑虹數娴?聽銆€銆€涓鸿幏寰楅珮杈撳嚭鐢靛帇,鍚屼竴妯″潡鐨勫弻璺緭鍑虹殑涓茶仈.濡傛灉涓茶仈杩愯鏃朵娇鐢ㄦā鍧楃殑姝h礋杈撳嚭,涓旀鐢垫簮渚х殑璐熻浇鍜岃礋鐢垫簮渚х殑璐熻浇瀹屽叏鍒嗙,鍒欏氨涓嶉渶鍔犱笂杩颁簩鏋佺,濡傚浘 3.姝ゅ簲鐢ㄧ被浼肩粍鎴愭璐熺數婧愮郴缁?鍦ㄤ覆鑱斿簲鐢ㄦ椂瑕佷娇涓ゆā鍧楃殑鎬ц兘灏介噺鍖归厤,鐗瑰埆鏄笂鐢靛惎鍔ㄧ壒鎬у拰涓€浜涗繚鎶ょ壒鎬?寤鸿灏介噺浣跨敤鍚屼竴鍨嬪彿鐨勬ā鍧?聽銆€銆€2.3 DC-DC妯″潡骞惰仈浣跨敤聽銆€銆€鐢垫簮妯″潡鐨勫苟鑱旀湁涓ゆ柟闈㈢殑浣滅敤,涓€鏄鍔犺緭鍑哄姛鐜?浜屾槸澧炲姞鐢垫簮绯荤粺鐨勫彲闈犳€?澧炲姞杈撳嚭鍔熺巼鐨勪娇鐢?涓€鑸儏鍐典笅鏄崟涓ā鍧楃殑杈撳嚭鍔熺巼涓嶈兘婊¤冻瑕佹眰,鍥犳闇€瑕佷袱涓垨澶氫釜妯″潡骞惰仈,杩欐牱灏辫姹傚悇妯″潡涔嬮棿鐨勫潎娴佽濂?杩欑鍧囨祦涓嶈兘鍗曢潬杈撳嚭绔苟鑱旀垨鎶婅緭鍑虹數鍘嬭皟涓轰竴鑷村疄鐜?鍥犱负妯″潡鐨勮緭鍑洪樆鎶椼€佹俯婕傜瓑閮戒笉鐩稿悓,浼氫娇璐熻浇涓嶅潎琛?杩欑骞惰仈闇€瑕佹ā鍧楀叿鏈夋椤瑰姛鑳芥墠鑳藉疄鐜?濡侭CT鍏徃鐨?00W鍜?00W甯C绔瓙鍜孋S绔瓙鐨勬ā鍧?鏈塒C绔瓙鐨勫彲鐩存帴骞惰仈,PC绔繛鍦ㄤ竴璧?鏈塁S绔瓙鐨勬ā鍧楅渶澶栧姞骞惰仈鍧囨祦鐢佃矾.浣跨敤鑰呭湪浣跨敤鏃堕』娉ㄦ剰,杈撳嚭鐢佃矾褰㈠紡涓鸿嚜椹卞悓姝ユ暣娴佺數璺殑,杈撳嚭绔笉鑳界洿鎺ュ苟鑱?聽銆€銆€涓轰簡澧炲姞鐢垫簮绯荤粺鍙潬鎬х殑骞惰仈,鎴戜滑绉颁箣涓虹儹澶囦唤浣跨敤,鎴栧啑浣欏苟鑱?濡傚浘 4.姝ょ骞惰仈鐨勮姹傛槸,姣忎竴涓ā鍧楅兘鍙崟鐙彁渚?00%鐨勮礋杞界數娴? 鍥犳骞惰仈浣跨敤鏃朵笉瀛樺湪鍧囨祦鐨勮姹?涓よ€呴兘鍦ㄦ彁渚涚數娴?鐩镐簰涔嬮棿浜掍负鐑浠?聽銆€銆€2.3.1鏂板瀷DC-DC妯″潡鐨勫苟鑱旇緭鍑哄簲鐢ㄤ妇渚嬄?銆€銆€涓烘浠ョ編鍥絍icor鍏徃鐨?00V杈撳叆绯诲垪楂樺瘑搴C-DC涓姛鐜囧井鍨嬫ā鍧椾负鍏稿瀷渚嬩綔搴旂敤璇存槑.聽銆€銆€*鐗瑰緛聽銆€銆€璇?00V杈撳叆绯诲垪楂樺瘑搴C-DC妯″潡鏈?绉嶄腑鍔熺巼绾х殑鍨嬪彿,鍏朵腑涓や釜50W妯″潡鐨勮緭鍑虹數鍘嬩负3.3V鍙?V;75W妯″潡鐨勮緭鍑虹數鍘嬪垎鍒负12V銆?5V銆?4V銆?8V鍙?8V妯″潡.寰堥€傚悎绂荤嚎鍔熺巼绯荤粺銆佸伐涓氬強娴佺▼鎺у埗銆佸垎甯冨紡鐢垫簮銆佸尰鐤椼€佽嚜鍔ㄦ祴璇曡澶囥€侀€氳銆佸浗闃插強鑸┖鑸ぉ绛夊簲鐢?聽銆€銆€杩欎簺300V杈撳叆寰瀷妯″潡鍨嬪彿涓哄姛鐜囪緝浣庣殑搴旂敤鎻愪緵浜嗗叿鎴愭湰鐩婄殑瑙e喅鏂规.杩欎簺杞崲鍣ㄧ殑鏍囩О鍊兼槸300V,杈撳叆鑼冨洿浠?80V 鑷?75V,鍔熺巼瀵嗗害杈?0W/in3,鏁堢巼杈?0%.妯″潡鍧囩鍚圧oHS瑙勬牸,浜у搧闈㈢Н57.9 x 36.8 x 12.7mm鍙婂熀鏉夸笂楂樺害涓?0.9mm.聽銆€銆€*骞惰仈杈撳嚭搴旂敤璁捐瑕佺偣聽銆€銆€Vicor鍏ㄥ瀷銆佸皬鍨嬪拰寰瀷妯″潡鍙互骞惰仈澶氬彧鍚岃鏍艰浆鎹㈠櫒妯″潡,浠ユ墿澶ц緭鍑哄姛鐜?瀹冧滑浠ラ樀鍒楀唴鐨勬ā鍧椾互骞惰仈淇″彿鏉ヤ簰鐩镐紶閫掕鎭?浠ゅ悇妯″潡鐨勫紑鍏抽鐜囧悓姝?杈捐嚦鍧囨祦.鍦ㄥ苟鑱旈樀鍒楀唴,浼氱敤PR寮曡剼鐨勫姛鑳?鍙璁镐竴涓ā鍧楀彉涓洪┍鍔ㄥ櫒,鍏朵綑妯″潡鑷姩鍙樹负鍊嶅鍣?杩炴帴PR鑴氬簲璋ㄦ厧閫傚綋.濡傞渶瑕佸苟鑱斿洓涓垨浠ヤ笂鐨勮浆鎹㈠櫒,鎴栭樀鍒楅渶瑕佸閿欙箲鍐椾綑,鍙娇鐢╒icor鐨?PR鍙樺帇鍣?鎶奡C寮曡剼杩炲埌鎰熷簲鑴氫究鍙妸妯″潡璁惧畾涓哄€嶅鍣?杩欏湪闇€瑕佸搴﹁皟鑺傜殑搴旂敤鐗瑰埆閫傚悎,鍙渶寰皟椹卞姩鍣ㄦā鍧?渚垮彲璋冮珮鎴栬皟浣庢暣涓樀鍒楃殑鐢靛帇.鍦ㄥ啑浣欓樀鍒椾腑鎵€鏈夌數鎰熷簲鑴氬繀椤昏繛鎺ュ埌杈撳嚭浜屾瀬绠?闃存瀬)鐨勫叡閫氱偣.聽銆€銆€2.3.2骞惰仈杈撳嚭鍦ㄧ數鍔ㄦ苯杞︿笌鐩村崌椋炴満妯℃嫙椋炶鍣ㄦ樉绀哄睆涓婄殑搴旂敤聽銆€銆€*鐢ㄤ簬鐢靛姩姹借溅聽銆€銆€杩欎釜椤圭洰鏄苟鑱斾袱鍙狣C-DC妯″潡,缁勬垚鍧囨祦鍜岀數姹犲厖鐢靛櫒鐢佃矾,浠庨珮鍘嬭搫鐢垫睜鍙栫數,杞帇涓?2V涓篠mart Car渚涚數.杩欑數鍔ㄦ苯杞﹀苟闈炵數姘旀补鍙戝姩鏈洪┍鍔?瀹冩槸閫忚繃涓€绫绘斁缃湪杞﹀帰鍦版澘涓婄粷缂樼鍐呯殑316Vdc鐢垫睜,缁忚繃绮惧瘑鐨勭數瀛愬彂鍔ㄦ満椹卞姩鐢靛姩姹借溅.绠€鑰岃█涔?Vicor妯″潡鐢ㄤ綔鍥烘€佸彂鐢?铏界劧杞︿笂宸叉湁涓€涓?2V鍏呯數姹?渚涘簲鏈€楂樺姛鐜囧拰绱ф€ュ悗澶囩數婧?鑰屼袱绫籚icor妯″潡鍒欑敤浣滀负杞﹀唴鐓ф槑銆佹寚绀虹伅銆佹尅椋庣幓鐠冩按鎷斻€佹爣鏉夸华鍙婅溅鍐呴煶鍝嶅ū涔愯澶囦緵鐢?浠ヤ繚璇?2V鐢垫尝涓嶄細杩囧姵,寤堕暱鐢垫睜瀵垮懡.聽銆€銆€*鐢ㄤ簬鐩村崌椋炴満妯℃嫙椋炶鍣ㄦ樉绀哄睆聽銆€銆€浠跨湡椋炶鍣ㄦ槸璁粌椋炶鍛樼殑閲嶈浠櫒,瀹冨彲甯姪椋炶鍛樹綋楠屾渶鎺ヨ繎鐪熷疄椋炶鐨勬儏鍐?杩欎釜瀹㈡埛鐨勪富瑕佷笟鍔¤璁$敓浜ч珮瑙e儚鏄剧ず绯荤粺,搴旂敤鑼冨洿鍖呮嫭浠跨湡鍣ㄣ€佹寚鎸ヤ笌鎺у埗鍙婅櫄鎷熺幇瀹炵瓑绯荤粺.鏄剧ず浠熀鏈殑鐗瑰緛鏄珮瑙e儚銆佸骞胯閲庛€佷寒搴﹀拰鑹插僵瀵规瘮閫備腑,浠ユ弧瓒虫渶涓ユ牸鐨勯琛屾ā鎷熻缁?濡傝缁冮琛屽憳鐧婚檰鍙婅捣椋?澶嶆潅鐨勬垬鏂?濡傜┖瀵圭┖鍙婄┖瀵瑰湴.聽銆€銆€3銆丏C-DC妯″潡鐢垫簮鐨勪繚鎶ゆ妧鏈?銆€銆€3.1杈撳叆杩囨瑺鍘嬫瑺鍘嬩繚鎶ぢ?銆€銆€涓轰簡闃叉鐢垫簮妯″潡鐨勮緭鍏ョ數鍘嬪湪瓒呭嚭姝e父鑼冨洿鏃舵崯鍧忔ā鍧?妯″潡缁濆ぇ澶氭暟鍏锋湁杈撳叆杩囨瑺鍘嬩繚鎶?澶у姛鐜囩數婧愮殑杈撳叆娆犲帇淇濇姢灏ゅ叾閲嶈.杩欐槸鐢变簬鐢垫簮妯″潡鐨勬晥鐜囧熀鏈笂鏄亽瀹?鍦ㄦ亽瀹氳礋杞界殑鏉′欢涓?鏁堢巼闅忚緭鍏ョ數鍘嬪彧鏈夊緢灏忓彉鍖?,闅忕潃杈撳叆鐢靛帇鐨勯檷浣庤緭鍏ョ數娴佸澶?濡傛灉杈撳叆渚涚數鐢垫簮鐨勭數鍘嬪缓绔嬫椂闂存瘮杈冮暱,鍦ㄦā鍧楁病鏈夋瑺鍘嬩繚鎶ょ殑鏉′欢涓嬩細浣挎ā鍧楄緭鍑虹數鍘嬬殑寤虹珛鏃堕棿杈冮暱,姝ゆ椂闂翠笌杈撳叆鐢靛帇寤虹珛鏃堕棿鏈夊叧,杩欐牱浼氫娇鐢ㄦ埛鐢佃矾鍦ㄤ笂鐢垫椂宸ヤ綔鍦ㄥ紓甯哥姸鎬?鏈夊彲鑳戒細寮曡捣鏁呴殰鎴栫儳姣佺敤鎴风數璺?鑰屼笖鍦ㄨ繖绉嶇姸鎬佺殑鎯呭喌涓嬫ā鍧楃殑杈撳叆鐢垫祦杈冨ぇ銆佽緭鍏ョ數鍘嬪緢浣?寰堝鏄撴崯鍧忕數婧愭ā鍧?聽銆€銆€濡傛灉鐢垫簮妯″潡鍏峰娆犲帇淇濇姢鍔熻兘,鏃犺杈撳叆鐢靛帇濡備綍寤虹珛,鍙湁鍦ㄨ緭鍏ョ數鍘嬭揪鍒颁竴瀹氬€兼椂鐢垫簮妯″潡鎵嶅惎鍔ㄥ伐浣?淇濊瘉杈撳嚭鐢靛帇鐨勫缓绔嬫椂闂翠笉鍙?鐢变簬娆犲帇淇濇姢鏈夊洖宸帶鍒?淇濊瘉浜嗗湪寮€鍚拰鍏抽棴鏃剁殑绋冲畾鍜屽彲闈?鍗充娇杈撳叆绔紩绾胯繃闀跨嚎鍘嬮檷杩囧ぇ,浣跨數婧愬湪涓婄數鍜屾帀鐢靛紩璧疯緭鍏ョ數鍘嬪湪娆犲帇鐐归檮杩戠殑璺岃惤鍜屼笂鍗?涔熶笉浼氫娇杈撳嚭浜х敓寮傚父.娆犲帇淇濇姢鐨勫洖宸帶鍒舵槸淇濊瘉杈撳叆寮€鍚數鍘嬮珮浜庡叧闂數鍘?涓€鑸儏鍐靛紑鍚數鍘嬮珮浜庡叧闂數鍘?.5Vdc--2Vdc宸﹀彸,杩欎笌鍏蜂綋鍨嬪彿鏈夊叧.聽銆€銆€3.2 杈撳嚭闄愭祦鍜岀煭璺繚鎶ぢ?銆€銆€鐢垫簮妯″潡閮藉叿澶囪緭鍑洪檺娴佸拰鐭矾淇濇姢鍔熻兘,褰撹緭鍑虹煭璺垨杩囪浇鐘舵€佹秷闄ゅ悗,杈撳嚭鍙互鑷姩鎭㈠姝e父.杈撳嚭杩囨祦鐐规槸妯″潡鍐呴儴璁惧畾鐨?浣跨敤鑰呬笉鑳戒粠澶栭儴鏀瑰彉.鐢ㄦ埛椤绘敞鎰忓湪杩囩儹鐨勬潯浠朵笅,濡傛灉闀挎湡宸ヤ綔鍦ㄨ繃杞芥垨鐭矾鐘舵€佷笅,鐢垫簮妯″潡鏈夊彲鑳芥崯鍧?杩欏彇鍐充簬妯″潡鐨勫3娓╁拰鏁g儹鏉′欢鍙婂瀷鍙?灏ゅ叾瀵规病鏈夎繃娓╀繚鎶ょ殑鐢垫簮妯″潡.聽銆€銆€杈撳嚭鐭矾鍜岃繃杞芥椂鐢垫簮妯″潡鐨勫姛鑰楁槸鍐冲畾鍏惰兘鍚﹂暱鏈熷伐浣滀簬姝ょ鐘舵€佺殑涓昏鏉′欢.杈撳嚭鐭矾鏃剁粷澶у鏁板瀷鍙风殑鐢垫簮妯″潡宸ヤ綔鍦ㄩ棿姝囨ā寮?杈撳叆鐨勫钩鍧囧姛鑰楀緢浣?杈撳嚭杩囪浇鏃剁數婧愭ā鍧楀伐浣滃湪闄愭祦鏂瑰紡,涓€鑸潯浠朵笅闄愭祦淇濇姢鐐瑰湪120%鏍囩О杈撳嚭鐢垫祦闄勮繎,姝ゆ椂鐨勮緭鍑哄姛鐜囨渶澶?妯″潡鐨勫姛鑰椾篃寰堝ぇ,搴旀敞鎰忛伩鍏嶉暱鏈熷伐浣滀簬姝ょ姸鎬?杈撳嚭闄愭祦淇濇姢鐐圭殑鐢垫祦鍊间細闅忚緭鍏ョ數鍘嬭€屾湁浜涘彉鍖?涓€鑸儏鍐典笅浼氶殢杈撳叆鐢靛帇闄嶄綆鑰屽噺灏?闅忚緭鍏ョ數鍘嬪崌楂樿€屽澶?涓嶅悓绯诲垪鐨勫瀷鍙蜂骇鍝佷細鏈夊樊寮?鍦ㄤ娇鐢ㄦ椂椤绘敞鎰?聽銆€銆€3.3鍏充簬杈撳嚭杩囧帇淇濇姢聽銆€銆€鐢垫簮妯″潡鐨勮緭鍑鸿繃鍘嬩繚鎶ら噰鐢ㄤ簡涓€涓嫭绔嬬殑鍙嶉鐜矾,涓€鑸殑淇濇姢鍊兼槸鍦ㄦ爣绉拌緭鍑虹數鍘嬬殑120%鑷?40%.褰撹繃鍘嬫娴嬬數璺彂鐜拌緭鍑虹鏈夎繃鍘?瀹冪粰杈撳叆渚у彂鍑轰俊鍙蜂娇妯″潡鍏抽棴杈撳嚭.浣嗗畠涓嶆槸閿佸瓨鐘舵€佷笉闇€澶栭儴澶嶄綅,妯″潡鍦ㄧ煭鏆傜殑鍏抽棴杈撳嚭涔嬪悗鍐嶉噸鏂板惎鍔?杈撳嚭鐢靛帇鍦ㄥ師杈圭殑杞惎鍔ㄦ帶鍒朵笅閲嶆柊寤虹珛.濡傛灉杩囧帇鏄閮ㄤ骇鐢熺殑骞跺凡娑堝け,妯″潡灏嗘甯歌繍琛屽鏋滆繃鍘嬫潯浠惰繕鎸佺画,妯″潡灏嗗啀娆″叧闂緭鍑哄苟閲嶆柊鍚姩,杩欐牱灏嗙淮鎸佸湪鍏抽棴鍜屽惎鍔ㄧ殑閲嶅鐘舵€?濡傛灉瑕佹眰杈撳嚭鐢靛帇鐨勬尝鍔ㄨ緝灏?涓嶅厑璁镐笂杩版儏鍐?寤鸿鍦ㄥ閮ㄥ姞涓€涓數鍘嬬洃娴?閫氳繃妯″潡鐨勯仴鎺х(Rem)鏉ュ叧闂緭鍑?鍦ㄥぇ澶氭暟鐨勫簲鐢ㄦ儏鍐典笅浣跨敤鑰呴兘鍦ㄨ緭鍑哄姞浜嗕竴瀹氬閲忕殑鐢靛,妯″潡鐨勫叧闂笌寮€鍚笉浼氬湪杈撳嚭寮曡捣澶ぇ鐨勫彉鍖?杈撳嚭鐢靛帇鍩烘湰涓婄淮鎸佸湪杩囧帇闂ㄩ檺闄勮繎.聽銆€銆€灏忓姛鐜囩殑鐢垫簮妯″潡澶у鏁板湪杈撳嚭绔苟鑱旂ǔ鍘嬨€佸惛鏀朵簩鏋佺涔嬬被鐨勪繚鎶ゅ櫒浠?鍑虹幇杩囧帇鏃朵簩鏋佺鍙互鍚告敹閮ㄥ垎鑳介噺.濡傛灉杩囧帇缁存寔鏃堕棿杩囬暱,浣夸簩鏋佺鏃犳硶鍚告敹,鍒欎簩鏋佺琚嚮绌跨煭璺?浣胯緭鍑虹數鍘嬪彉寰楀緢浣?姝ょ淇濇姢鏄互妯″潡鐨勬崯鍧忎负浠d环鏉ヤ繚鎶ょ敤鎴疯澶囩殑.杈撳嚭杩囧帇淇濇姢闂ㄩ檺鍊兼槸妯″潡鍐呴儴璁惧畾鐨?涓嶈兘鐢═rim绔敼鍙?聽銆€銆€3.4娓╁害淇濇姢聽銆€銆€鍔熺巼涓?0W浠ヤ笂鐨勯摑鍩烘澘缁撴瀯鐢垫簮妯″潡涓€鑸兘鏈夊唴閮ㄨ繃娓╀繚鎶ゅ姛鑳?褰撳熀鏉挎俯搴﹁揪鍒?00鈩?110鈩冩椂妯″潡灏嗗叧闂緭鍑?褰撳熀鏉挎俯搴﹂檷鍥炴甯歌寖鍥存垨95鈩冧互涓嬫椂妯″潡灏嗚嚜鍔ㄦ仮澶嶆甯歌緭鍑?鑰屼笉闇€瑕佷汉宸ュ浣?聽銆€銆€4銆佸叧浜庣數婧愭ā鍧楃殑鏁g儹聽銆€銆€鐢垫簮妯″潡鍦ㄥ伐浣滄椂鍐呴儴灏嗕骇鐢熺儹閲?浼氫娇澹虫俯涓婂崌,鍥犳濡備綍淇濊瘉澹虫俯鍦ㄥ厑璁哥殑鑼冨洿鍐呭苟浣垮叾娓╁崌灏藉彲鑳戒綆鏄彁楂樺叾鍙潬鎬х殑鍏抽敭,妯″潡鏁g儹涓昏閫氳繃鑷劧瀵规祦銆佸己鍒堕鍐枫€佸畨瑁呮暎鐑櫒鐨勬柟娉?鎴栧叾涓嚑绉嶇殑缁勫悎.瀵瑰皬鍔熺巼鐨勬ā鍧?璁捐鏃朵富瑕佽€冭檻鑷劧鏁g儹,鍔熺巼鍩烘湰涓婃槸40W浠ヤ笅.鍦ㄤ娇鐢ㄦ椂涓昏鑰冭檻鍏跺畨瑁呯幆澧?浣垮叾鍛ㄥ洿鏈夊娴佺殑绌洪棿,浣跨敤鍔熺巼鏈変竴瀹氱殑闄嶉,骞跺湪瀹為檯鐨勬渶楂樼幆澧冩俯搴︿笅鐩戞祴澹虫俯.瀵?0W浠ヤ笂鎴栨湁鏁g儹鍣ㄥ畨瑁呭瓟鐨勬ā鍧?蹇呴』鑰冭檻寮哄埗椋庡喎鎴栧畨瑁呮暎鐑櫒鏁g儹.鍩烘湰鏂规硶鏄?鍏堟牴鎹晥鐜囬棬璁$畻鍑烘ā鍧楃殑鑰楁暎鍔熺巼Pd=Pout/畏-Pout,閫氳繃鏈€楂樺3娓㏕c鍜岃姹傜殑宸ヤ綔鐜娓╁害Ta,绠楀嚭澶栧3鍒扮幆澧冪殑鐑樆=(Tc-Ta)/pd,鏍规嵁绠楀嚭鐨勭儹闃婚€夋嫨鍚堥€傜殑鏁g儹鍣ㄦ垨椋庨€?鐒跺悗鏍规嵁鏁g儹鍣ㄤ笌妯″潡澶栧3鐨勫鐑潗鏂?蹇呴』鎶婂澹宠嚦鏁g儹鍣ㄧ殑鐑樆涔熻€冭檻杩涘幓.璁$畻鍙槸鑰冭檻鏁g儹鐨勭涓€姝?鐢变簬鍙椾紬澶氬洜绱犵殑褰卞搷,鍦ㄩ€夊畾鏁g儹鍣ㄤ笌椋庨€熷悗蹇呴』瀵瑰澹虫俯搴﹁繘琛岄獙璇?浠ヤ究杩涗竴姝ョ殑淇.聽銆€銆€5銆佸叧浜庣數纾佸吋瀹孤?銆€銆€鍑犱箮鎵€鏈夌殑鐢垫簮妯″潡鍐呴儴閮芥湁涓屽瀷婊ゆ尝鍣?浣嗙敱浜庝綋绉殑闄愬埗鍏舵护娉㈡晥鏋滄瘮杈冩湁闄?鍑犱箮鎵€鏈夊搧鐗屽瀷鍙风殑鐢垫簮妯″潡鍦ㄩ€氳繃鐢电鍏煎娴嬭瘯鏃堕兘闇€瑕佸鍔犵數瀹广€佹护娉㈠櫒鎴栬缃?杩欎篃鏄疐CC鍜孋ISPR鏍囧噯鎵€鍏佽鐨?聽銆€銆€鐢垫簮妯″潡鐨勫共鎵颁富瑕佹湁浼犲骞叉壈鍜岃緪灏勫共鎵?浼犲骞叉壈鍗虫湁鍏辨ā鍣0,鍙堟湁宸ā鍣0,涓昏閫氳繃鐢垫簮绾夸紶瀵?鍙互閫氳繃鍏辨ā婊ゆ尝鍣ㄥ拰涓屽瀷婊ゆ尝鍣ㄦ潵鎶戝埗,鍏蜂綋瑙佸浘14鍜屽浘15璇存槑.聽銆€銆€6銆佺粨鏉熻聽。

dcdc电源模块

dcdc电源模块

dcdc电源模块什么是dcdc电源模块?DC-DC电源模块是一种电源转换模块,用于将直流电压转换为不同的直流电压。

DC-DC电源模块具有高效率、稳定性好、体积小等优点,被广泛应用于电子设备和通信领域。

dcdc电源模块的工作原理DC-DC电源模块通过脉宽调制(PWM)技术来实现电压的转换。

其基本工作原理是通过将输入直流电压经过一系列的电路元件和控制器进行调节和转换,从而得到所需的输出直流电压。

具体来说,DC-DC电源模块一般包括输入电源电压测量、滤波电路、脉宽调制电路、功率开关和输出滤波电路等组成部分。

首先,输入直流电压经过输入测量电路进行电压测量,并经过滤波电路进行滤波,以确保输入电压的稳定性。

然后,通过脉宽调制电路,输入电压经过转换和调节得到高频脉冲信号,控制功率开关的导通时间,从而实现输出电压的调节。

最后,经过输出滤波电路对输出电压进行平滑处理,使其变为稳定、纯净的直流电压,供给电子设备使用。

dcdc电源模块的应用领域DC-DC电源模块在电子设备和通信领域有着广泛的应用。

以下是一些常见的应用领域:1. 电子设备•移动设备:如手机、平板电脑等移动终端设备,由于其功耗要求低电压高稳定性,DC-DC电源模块能够满足其电源需求。

•电脑硬件:如电源模块、显卡、主板等,DC-DC电源模块在这些设备中提供稳定的电源供给。

•消费电子:如音响、摄像机、游戏机等消费电子产品,DC-DC电源模块用于保证其正常工作和性能。

2. 通信设备•无线通信:如基站、无线路由器等,DC-DC电源模块为这些设备提供稳定的电源供给,保证通信的可靠性和稳定性。

•电信设备:如光纤传输设备、交换机等,DC-DC电源模块用于为这些设备提供稳定的电源。

3. 汽车电子•车载娱乐系统:包括音响、导航系统等,DC-DC电源模块在车载娱乐系统中提供电源支持。

•车载通信系统:如蓝牙、GPS等,DC-DC电源模块用于为车载通信设备提供稳定的电源。

dcdc电源模块的优势DC-DC电源模块相比传统的线性电源具有以下优势:1.高效率:DC-DC电源模块能够通过电压转换技术实现高效率的能量转换,减少能量的损耗和浪费。

电源设计之 DC/DC 工作原理及芯片详解-设计应用

电源设计之 DC/DC 工作原理及芯片详解-设计应用

电源设计之DC/DC 工作原理及芯片详解-设计应用DC/DC电源指直流转换为直流的电源,从这个定义上看,LDO(低压差线性稳压器)芯片也应该属于DC/DC电源,但一般只将直流变换到直流,且这种转换是通过开关方式实现的电源称为DC/DC电源。

一、工作原理要理解DC/DC的工作原理,首先得了解一个定律和开关电源的三种基本拓扑(不要以为开关电源的基本拓扑很难,你继续往下看)。

1、电感电压伏秒平衡定律一个功率变换器,当输入、负载和控制均为固定值时的工作状态,在开关电源中,被称为稳态。

稳态下,功率变换器中的电感满足电感电压伏秒平衡定律:对于已工作在稳态的DC/DC功率变换器,有源开关导通时加在滤波电感上的正向伏秒一定等于有源开关截止时加在该电感上的反向伏秒。

是不是觉得有点难理解,接着往下看其公式推导过程。

伏秒平衡方程推算过程:电感的基本方程为:V(t)=L*dI(t)/dt,即电感两端的电压等于电感感值乘以通过电感的电流随时间的变化率。

根据上述方程,可得dI(t)=1/L∫V(t)dt,对于稳态的一个功率变换器,其应保证在一个周期内电感中的能量充放相等,反映在V-t图中即表示在一个周期内其面积之和为0,所以得出电感电压伏秒平衡定律。

此处可参考:DC/DC电源详解第8页(如果此处还无法理解,可先阅读下面开关电源三种基本拓扑的工作原理)。

扩展资料:1、当一个电感突然加上一个电压时,其中的电流逐渐增加,并且电感量越大,其电流增加越慢;2、当一个电感上的电流突然中断,会在电感两端产生一个瞬间高压,并且电感量越大该电压越高;3、电容的基本方程为:I(t)=dV(t)/(C*dt),当一电流流经电容时,电容两端电压逐渐增加,并且电容量越大电压增加越慢;2、开关电源三种基本拓扑2.1、BUCK降压型图1 BUCK型基本拓扑简化工作原理图图2 电感V-t特性图BUCK降压型基本拓扑原理如图1所示,其电感L1的V-t特性图如图2。

方案分享 一种同步整流式DC

方案分享 一种同步整流式DC

方案分享一种同步整流式DC作为一种比较常见的电源管理配件,工程师们平时所用到的DC-DC变换器种类繁多,不同的电源变换器在工作应用方面也有各自的长处。

在今天的方案分享中,我们将会为工程师们分享一种同步整流式DC-DC变换器的设计,希望能够通过本文的介绍,对大家的新产品研发工作有所帮助。

 在本次的方案分享中,我们所设计的电源变换器为正激、隔离式结构,其本身的输出功率为16.5W。

这种电源变换器采用单片开关式稳压器DPA424R,其本身的直流输入电压范围是36~75V,输出电压为3.3V,输出电流为5A。

这一电源转换器主要采用400kHz同步整流技术,大大降低了整流器的损耗。

当直流输入电压为48V时,电源效率η=87%。

变换器具有完善的保护功能,包括过电压欠电压保护,输出过载保护,开环故障检测,过热保护,自动重启动功能、能限制峰值电流和峰值电压以避免输出过冲。

 在本方案中,这种同步整流是DC-DC电源变换器的主电路图如下图图1所示。

可以看出,在这一主电路系统中,由DPA424R构成的16.5W同步整流系统。

与分立元器件构成的电源变换器相比,可大大简化电路设计。

由C1、L1和C2构成输入端的电磁干扰(EMI)滤波器,可滤除由电网引入的电磁干扰。

 在这种同步整流式变换器的主电路结构中,我们可以看到,电阻R1在该电路系统中主要被用来设定欠电压值UUV及过电压值UOV,因此,当其取值为R1=619kΩ时,则欠电压值UUV=619kΩ×50μA+2.35V=33.3V,而过电压值UOV=619kΩ×135μA+2.5V=86.0V。

当输入电压过高时,则R1还能线性地减小最大占空比,防止磁饱和。

电阻R3为极限电流设定电阻,取R3=11.1kΩ时,所设定的漏极极限电流为1.5A。

电路中的稳压管VDZ1。

同步整流讲义

同步整流讲义

计算出MOS的VGS电压后,再回忆一下自驱同步整流的原理图,整流管的 VGS就是续流管的VDS,续流管的VGS就是整流管的VDS,这样,我们就 确认了MOS的VDS电压了 下一步我们要计算MOS所需的电流了
在计算电感时,我们已经知道电感的纹波电流是4.2A左右,所以,流过电感 的峰值电流为:
流过整流MOS的有效值电流为:
根据公式,我们计算一下钳位电容大小
可以看出,跟我们经验取值还是有些偏差的,一 般我的经验值都在100nF~220nF左右,所以, 这个电容的大小是可以调节的了,调节的范 围还是比较高的,但最终是要满足主MOS的 电压应力和综合动态等因素了
第八步:确认初级MOS
前面在计算其它过程中,已经算出了VDS电压,变压器的有效值电流,我们在选 择是,要综合考虑MOS高温下工作,电流值是会减少的.选择电流太大的 MOS,Qg也相对会比较大,并且成本也会比较高,各个因素综合考虑,选择一 个比较合适的MOS.这次设计,我们选择了一个6.7A,150V的MOS,它的Qg是 35nC,Rds(on)是41mR. 计算一下MOS的损耗: 开通损耗: 前面讲达,我们主开关管是能实现软关断的,开通是否软开关,跟负载情况有关, 相对来说,把开通损耗算一下就可以,在整个负载段,我们按经验在40%负载 情况出现最大开能损耗,我们计算如下:器总损耗估算:
再估算一下环境温度为40度时的温度(热阻厂家有给出)
第七步:有源钳位电路 首先确认关键点电压
计算时我们先忽略漏感的影响,那么,根据变压器的伏秒值平衡 简化一下:
这个公式一看,其实就是BOOST电路的升压公式,所以这种LOW-SIDE钳 位模式也可以理解成升压钳位模式 主MOS的VDS压降:Vds=VCL 复位电压: 换算一下

kis-3r33s同步整流

kis-3r33s同步整流

- DC-DC电源模块内部主要由MP2307DN单片同步降压稳压器构成。

该器件集成可调MOSFET,能够提供3A的持续负载电流超过了广泛的输入电压4.75V至23V ,MP2307DN电流模式控制提供快速瞬态响应和逐周期电流限制。

一种可调软启动可防止浪涌电流开通和关断模式时,MP2307DN电源电流低于1μA 。

该电源模块用途广泛,能用于LED,车载MP3、MP4等领域。

现在低价出售,仅MP2307DN也不止这个价,数量有限,欲购从速。

尺寸21mm*21mm*7mm。

用法简单,有电压输入和电压输出,外接可调电阻还可做成可调电源。

改装后的外围配套电路如下:
修改方法如下:。

DC TO DC模块电源的选择与应用:应用篇

DC TO DC模块电源的选择与应用:应用篇

DC TO DC模块电源的选择与应用:应用篇应用负载要求设法降低模块电源的温升输出电压的调节遥控开/关电路输入保护电路输出保护电路开关噪声与电磁干扰的抑制极轻载使用一般模块电源有最小负载限制,各厂家有所不同,普遍为10%左右,因为负载太轻时储能元件续流困难会发生电流不连续,从而导致输出电压不稳定,这是由电源本身的工作原理决定的。

但是如果用户的确有轻载甚至空载使用的情况怎么办呢,最方便有效的方法是加一定的假负载,约为输出功率的2%左右,可以由模块厂商出厂前预置,也可以由用户在模块外安装适当电阻作为负载。

值得注意的是如果选择前者,模块效率会有所降低。

但是有的电路拓扑却没有最小负载限制。

(同步整流的技术,在这种电路拓扑结构下工作是没有最小负载要求的,可以在零负载到满负载下得到稳定的输出,只是输出的纹波和噪声会高一点。

)设法降低模块电源的温升模块内部器件的工作温度的高低直接影响模块电源的寿命,器件温度越低模块寿命越长。

在一定的工作条件下,模块电源的损耗是一定的,但是可以通过改善模块电源的散热条件来降低其温升,从而大大延长其使用寿命。

比如:50W以上的模块电源必须安装散热器,散热器的表面积越大越有利于散热,且散热器的安装方向应尽量有利于空气的自然对流,功率在150W以上除安装散热器以外还可以加装扇强制风冷。

此外在环境温度较高或空气流通条件较差的地方模块须降额使用以减小功耗从而降低温升,延长使用寿命。

输出电压的调节产品中有TRIM或ADJ输出管脚的产品,可以通过电阻或电位器对输出电压进行一定范围内的调节。

对TRIM输出管脚,将电位器的中心与TRIM相连,在所有+S,-S管脚的模块中,其他两端分别接+S,-S,没有+S,-S时将两端分别接到相应主路的输出正负极(+S接+Vin,-S 接-Vin)上,调节电位器即可。

电位器的阻值一般选用5~10K比较合适。

一般微调范围为+10%。

如图1所示。

对ADJ输出管脚,分为输入边调节(如SMP系列15W)与输出边调节(如WS 系列15W)。

同步整流技术DC-DC模块电源

同步整流技术DC-DC模块电源

同步整流技术DC-DC模块电源
1、概述
2、基本同步整流电路
如图1 所示电路,其副边为基本同步整流电路,关键波形见图2。

当原边主
开关管Q1 开通时,通过变压器T1 向副边传输能量,副边工作在整流状态,此时SR1 的Vgs 电压为变压器副边绕组电压,极性为正,SR2 的Vgs 电压为零,因而SR1 导通,SR2 关断;当原边主开关管Q1 关断时,变压器T1 原边绕组的励磁电流和负载电流流经C1,C1 上的电压开始上升,当C1 电压升至Vin 时,原边绕组中的负载电流下降为0,在励磁电流的作用下原边励磁电感Lm 与电
容C1 进行谐振,谐振电压Vr 为正弦波,谐振周期Tr=2π√LmC2,谐振电压Vr 加到变压器T1 的原边绕组上使T1 磁复位,同时,副边也进入到续
流状态,此时SR1 的Vgs 电压为0,SR2 的Vgs 电压为变压器副边绕组电压,电压波形为正弦波,极性为正,因而SR1 关断,SR2 导通;这样的工作状态会
周期性重复
3、基本同步整流电路的问题
3.1、续流管的驱动
如图2 中SR2 的Vgs 波形,由于驱动SR2 的是正弦波谐振电压,受主开关的占空比和谐振参数的影响,电压波形变化较大,驱动效果也不理想,模块效
率较低。

3.2、输出并联
将两个采用基本同步整流电路的DC-DC 模块电源输出并联将会产生很多问题,其中的一个严重问题就是电流反灌。

下面通过一个简单的例子说明电流反。

一种基于同步整流技术的降压DCDC转换器设计

一种基于同步整流技术的降压DCDC转换器设计
30.陈敏.吴金采用ZVS条件控制的DC-DC同步整流技术[期刊论文]-电子器件 2004(3)
31.Toru Ogawa.Shingo Hatanaka.Kenji Taniguchi An On-Chip High-Efficiency DC-DC Converter with a Compact Timing Edge Control Circuit
27.Alou P.Cohos J.A Uceda.Rascon M Roascon M Influence of windings coupling in low-voltage DC/DC converters with single winding self-driven synchronous rectification 2000
4.期刊论文李国厚.冯启高.LI Guo-hou.Feng Qi-gao电荷泵DC-DC转换器及其应用-河南职技师院学报
2000,28(2)
介绍了电荷泵DC-DC转换器的一般结构、工作原理及性能特点。详细讨论了利用DC-DC转换器进行电源系统设计的方法并给出了应用实例。这类电源系统可广泛应用于对电源的体积及效率有较高要求的便携式仪器仪表和测控系统中。
18.Middebrook RD Small-signal Modeling of Pulse-width Modulated Switched-mode Power Converters
1988(04)
19.张占松.蔡宣三开关电源的原理与设计 1998
20.Tang W.Lee F C.Ridley R B Small-signal Modeling of average Current-mode Cotrol.Power Electronics 1993(02)

DC模块电源的特点

DC模块电源的特点

DC模块电源的特点DC(直流)模块电源是一种将交流电转换为直流电供给电子设备使用的电源装置。

与传统的线性电源相比,DC模块电源具有以下几个特点:1.高效率:DC模块电源采用开关电源技术,能够利用交流电高效地生成稳定的直流电。

相比传统的线性电源,DC模块电源的转换效率更高,在低负载和高负载情况下都能保持较高的效率。

这不仅可以减少能源的浪费,还能减小供电装置本身的功耗,提升设备工作效率。

2.小型化:DC模块电源采用集成电路和先进的功率转换技术,使得整个电源装置的尺寸更小,体积更小。

这样可以大大方便电源的安装和布线,可以更容易地嵌入到电子设备中。

3.适用范围广:DC模块电源可以根据不同的负载要求和工作环境进行调整和配置。

可以提供不同的输出电压和电流,适用于各种不同的设备和应用领域。

可以为计算机、通讯设备、家用电器、工控设备等提供稳定可靠的直流电源。

4.稳定性好:DC模块电源具有较高的输出稳定性,能够在不同的载荷范围内提供相对稳定的电压和电流。

这对于需要稳定输出的电子设备尤为重要,可以避免因电压波动导致设备故障或损坏。

5.较低的电磁干扰:DC模块电源在进行电力转换过程中,采用了一系列的滤波和隔离措施,能够有效减少电磁干扰的产生。

这对于对电磁环境敏感的设备和系统来说尤为重要,可以保证其正常的工作和数据传输。

6.多重保护机制:DC模块电源内置多种保护措施,能够及时检测和响应电源输出异常情况,保护负载和电源模块本身的安全。

常见的保护机制包括过载保护、过压保护、过流保护、短路保护等。

这可以有效避免电源输出出现故障和设备损坏的情况。

7.可靠性高:DC模块电源采用优质的元器件和工艺,具有较高的可靠性和稳定性。

一般来说,DC模块电源具有较长的寿命和较低的故障率,可以满足设备长时间、稳定、可靠的工作需求。

总之,DC模块电源作为一种高效、小型、稳定的直流电源装置,广泛应用于各个领域的电子设备中。

它不仅能够提供可靠的电源供应,还能够提升设备的工作效率,减少能源的浪费。

反激同步整流

反激同步整流

一种反激同步整流DC-DC变换器设计摘 要: 对反激同步整流在低压小电流DC-DC变换器中的应用进行了研究,介绍了主电路工作原理,几种驱动方式及其优缺点,选择出适合于自驱动同步整流的反激电路拓扑,并通过样机试验,验证了该电路的实用性。

引 言:低压大电流DC-DC模块电源一直占模块电源市场需求的一半左右,对其相关技术的研究有着重要的应用价值。

模块电源的高效率是各厂家产品的亮点,也是业界追逐的重要目标之一。

同步整流可有效减少整流损耗,与适当的电路拓扑结合,可得到低成本的高效率变换器。

本文针对36V-75V输入,3.3V/15A 输出的二次电源模块,在分析同步整流技术的基础上,根据同步整流的特点,选择出适合于自驱动同步整流的反激电路拓扑,进行了详细的电路分析和试验。

反激同步整流基本的反激电路结构如图1。

其工作原理:主MOSFET Q1导通时,进行电能储存,这时可把变压器看成一个电感,原边绕组电流Ip 上升斜率由dIp/dt=Vs/Lp决定,磁芯不饱和,则Ip 线性增加;磁芯内的磁感应强度将从Br增加到工作峰值Bm;Q1关断时,原边电流将降到零,副边整流管开通,感生电流将出现在副边;按功率恒定原则,副边安匝值与原边安匝值相等。

在稳态时,开关导通期间,变压器内磁通增量△Φ应等于反激期间内的磁通变化量,即:△Φ=VsTon / Np=Vs'Toff / Ns从此式可见,如果磁通增量相等的工作点稳定建立时,变压器原边绕组每匝的伏-秒值必然等于副边每匝绕组的伏-秒值。

反激变换器的拓扑实际就是一个BUCK-BOOST组合的变换器拓扑的应用,而且如果副边采用同步整流,电路总是工作于CCM的模式下,其电压增益M=Vo/Vs=K·D/(1-D)(K为原副边匝数比)用PMOSFET和MOSFET替代图1中的萧特基二极管,可以实现同步整流的4种电路结构如图2和图3 反激电路的开关电压波形见图4,是标准的矩形波,非常适合同步整流驱动。

一文告诉你DC-DC直流电源如何选择拓扑电路

一文告诉你DC-DC直流电源如何选择拓扑电路

较为常见的模块电源分为AC-DC与DC-DC两种。

本文将对DC-DC模块电源进行梳理,为大家分析出哪种拓扑电路更加容易实现,且性能更佳。

此处说的DC-DC模块电源,应该指的是工业、轨道交通、通信、军事上用的嵌入式模块电源,这类电源追求的是高可靠性、高功率密度、高效率,就目前而言,对成本虽有要求,但远没有常规的AC-DC那么敏感。

且为了达到高性能,一般不会像AC-DC那样,DC-DC模块电源在设计时,为方便设计的灵活性,不太用集成度高的IC。

一般而言,流行于市面上的DC-DC模块电源(隔离型),功率等级基本在1kw以内(功率再大一点的,可通过多模块并联均流实现),输入电压范围从2.5V到650V 不等,输出电压则从1V到60V不等,而模块在设计时,对拓扑的选择主要从这三方面考虑了:输入、输出、功率等级。

Royer(自激推挽)一般用于低输入电压的场合(如2.5V,5V),且功率不大(如2W以内),另外Royer 是非稳压的,若需要稳压,则需要在模块里面加入线性稳压线路;常规反激(包括IC控制的反激和RCC)用于模块电源中的常规反激,一般功率不超过50W,输入电压覆盖9V到1000V,均有模块产品出现;同步整流技术是反激变换器设计中的一个难点,也是专利壁垒比较多的一个点,市场上的小功率DC-DC模块大多用这种拓扑;至于RCC,最大的优点是便宜,但它对器件的一致性要求太高,而且还是变频的,并不太适合用来制造高性能模块电源,早年的模块电源有人用过,现在用的人越来越少了。

有源钳位反激/有源钳位正反激有源钳位反激是有源钳位技术与常规反激变换器结合的产物,开关管应力低,效率高,EMI特性好是它的优点,但技术复杂,同步整流也不好搞定,所以尽管它的优点很多,但市场上用这种拓扑做产品的并不多见;至于有源钳位正反激技术,比有源钳位反激技术更复杂,正反激最大的优点就是输出纹波小,尤其是0.5duty时理论纹波为零,可在一些高性能DC-DC模块电源中见到这种拓扑;有源钳位正激,最开始是vicor的专利拓扑,2003年专利到期,经过十几年的发展,可以说是模块电源里最著名也是最成熟的一个拓扑了,常用于50W---200W 功率等级,输入电压不超过100V的场合,几乎每一家做模块的企业都会用到这种拓扑,输出电压从1V到15V均有。

矿产

矿产

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

矿产

矿产

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档