雷达故障检测与分析

雷达故障检测与分析
雷达故障检测与分析

雷达故障检测与分析

摘要:本文对航海雷达在使用过程中基本上可能会出现的故障逐步进行分析,并提出可能会发生故障的地方,以便于使用者和维修人员参考。

关键词:雷达故障分析

雷达作为航海人员的眼睛,它的主要作用是探测前方情况,一旦它发生任何故障,驾驶人员就会象盲人一样迷失方向,甚至还会导致船舶碰撞事故的发生。航海雷达的故障根据表现形式可分为显性和隐性,显性的故障是指能够根据肉眼或听觉就能直接判断的,比如无视频输出、指示灯熄灭等,隐性的故障一般情况下凭视觉或听觉器官无法察觉的故障,比如接收性能下降、发射机性能下降等。雷达故障存在多样性,所以应根据不同故障的表现形式采取不同的方法去探测并维修。

1雷达隐性故障检测和分析

对雷达的隐性故障的检测的最好的方法就是利用本雷达发射信号通过某些装置让自身接收,然后再对该信号进行放大处理,最后在显示屏幕上显示出对应的图象,根据图形的尺寸变化进行比较,就可以判断雷达性能的变化。现采用总性能监视器来检测整个辐射系统和接收机系统的性能。该监视器进行监视性能时,在雷达周围尽量没有物标出现的情况下,效果会比较好。

浅谈倒车雷达工作原理及常见故障分析

浅谈倒车雷达工作原理及常见故障分析 [摘要]本文简要的分析了超声波倒车雷达的原理,并对常见故障现象进行分析。[关键词]倒车雷达、工作原理,超声波,故障分析 引言 倒车雷达又称泊车辅助系统,一般由超声波传感器(俗称探头)、控制器和显示器等部分组成,现在市场上的倒车雷达大多采用超声波测距原理,驾驶者在倒车时,启动倒车雷达,在控制器的控制下,由装置于车尾保险杠上的探头发送超声波,遇到障碍物,产生回波信号,传感器接收到回波信号后经控制器进行数据处理,判断出障碍物的位置,由显示器显示距离并发出警示信号,得到及时警示,从而使驾驶者倒车时做到心中有数,使倒车变得更轻松,预防事故的发生,保障行车安全. 一、工作原理 倒车雷达由超声波传感器(俗称探头),控制器和显示器(或蜂鸣器)等部分组成.倒车雷达一般采用超声波测距原理,在控制器的控制下由传感器发射超声波信号,当遇到障碍时,产生回波信号,传感器接收到回波信号后经控制器进行数据处理,判断出障碍物的位置,由显示器显示距离并发出其他警示信号.从而达到安全泊车的目地.

二、超声波工作原理: 利用超声传感器产生的超声波对车后发射,如在一定范围内碰到物体,就有一反射波返回发射源(超声传感器的表面),主机利用发射波和反射波之间的延迟时间和声波速度就能测得距离。 [超声波信号发射] 当汽车处于倒车状态时,倒车雷达开始启动,控制器控制探头发射超声波信号后,再检测超声波的回波信号.超声波的发射是由控制器发射一串脉冲信号,经放大电路放大后,通过探头发射出去. [超声波的接收] 当超声波发射完成后,控制器立即检测是否有经障碍物反射回来的超声波信号,通过主机上的滤波电路,并计算发射的时间,利用S=T*V/2就可以得出障碍物距离。 三、倒车雷达工作原理框图 MCU通过预定的程序设计,控制相应电子模拟开关驱动发射电路,使超声波传感器工作。超声波回波信号通过专有的接收滤波放大电路进行处理后,由MCU的IO口对其进行检

雷达液位计常见故障及其处理方法.doc

雷达液位计常见故障及其处理方法 雷达液位计常见故障及其处理 近年来,雷达液位计以其液位测量死区小、连续测量精度高、受介质特性影响小、测量范围大、耐高温高压能力强和采用非接触式测量方式等优点,在化工行业得到广泛的推广和应用。 由于被测对象比较复杂,受高温高压高腐蚀,还有泡沫、搅拌、蒸汽等诸多原因的严重破坏,雷达液位计频繁出现故障,仪表维护量大,严重影响了生产装置。因此,了解雷达液位计日常故障问题及其处理方法,就变得很有必要。下面,仪控君就为大家整理了雷达液位计的故障问题处理方法,希望能对大家有所帮助。 雷达液位计常见故障之检查供电是否正常 如果生产现场发现雷达液位计在液位升到一定值后变化非常缓慢,应该立即检查雷达液位计的供电情况是否正常,相关工作人员也要在日常的维护中,详细检查雷达液位计的通电情况,通电后有无正常输出。液位变化缓慢或者根本没有变化,需要在第一时间检查设备的保险丝是否烧坏,如果并无电流输出,则基本可以判断是仪表出现问题,应视情况更换或者维修。此外,应该在仪表安装调试的环节加强管理,防止仪表参数设置不准确而影响生产。相关工作人员也需要加强日常的维护工作,定期的进行停运检修,从而保证雷达液位计仪表的正常运行。 雷达液位计常见故障之检查通讯设备是否正常 一旦发现通讯设备不正常,可以通过安装雷达调试软件,读取雷达的组态数据,监控雷达传感器的状态。主要检查雷达传感器能够准确的判断反射回波与假回波的区别,反射波的强度是否达到预定的标准,如果上述测试没有问题,则需要检查其他的电子元件,如果判断出雷达液位计的通讯单元出现损坏,则需要视情况更换元件,从而保证雷达液位计的通讯正常。相关工作人员在日常的维护工作中,也应该加强对雷达液位计的通讯情况的

现代雷达信号处理技术及发展趋势..

现代雷达信号处理技术及发展趋势 摘要:自二战以来,雷达就广泛应用于地对空、空中搜索、空中拦截、敌我识别等领域,后又发展了脉冲多普勒信号处理、结合计算机的自动火控系统、多目标探测与跟踪等新的雷达体制。随着科技的不断进步,雷达技术也在不断发展,现代雷达已经具备了多种功能,如反隐身、反干扰、反辐射、反低空突防等能力,尤其是在复杂的工作环境中提取目标信息的能力不断得到加强。例如,利用雷达系统中的信号处理技术对接收数据进行处理不仅可以实现高精度的目标定位与跟踪, 还能够在目标识别和目标成像、电子对抗、制导等功能方面进行拓展, 实现综合业务的一体化。 一、雷达的起源及应用 雷达,是英文Radar的音译,源于radio detection and ranging的缩写,意思为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。雷达是利用电磁波探测目标的电子设备。雷达发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。雷达最为一种重要的电磁传感器,在国防和国民经济中应用广泛,最大特点是全天时、全天候工作。雷达由天线、发射机、接收机、信号处理机、终端显示等部分组成。 雷达的出现,是由于二战期间当时英国和德国交战时,英国急需一种能探测空中金属物体的雷达(技术)能在反空袭战中帮助搜寻德国飞机。二战期间,雷达就已经出现了地对空、空对地(搜索)轰炸、空对空(截击)火控、敌我识别功能的雷达技术。二战以后,雷达发展了单脉冲角度跟踪、脉冲多普勒信号处理、合成孔径和脉冲压缩的高分辨率、结合敌我识别的组合系统、结合计算机的自动火控系统、地形回避和地形跟随、无源或有源的相位阵列、频率捷变、多目标探测与跟踪等新的雷达体制。后来随着微电子等各个领域科学进步,雷达技术的不断发展,其内涵和研究内容都在不断地拓展。雷达的探测手段已经由从前的只有雷达一种探测器发展到了红外光、紫外光、激光以及其他光学探测手段融合协作。

雷达故障检测与诊断技术探讨

雷达故障检测与诊断技术探讨 随着科技的不断发展,雷达在气象领域应用越来越广泛。本文主要根据雷达运行实际,首先介绍了常见的雷达故障检测方法,并重点探究了雷达故障检测与诊断技术,以供相关人士参考。 标签:雷达故障;故障检测;故障诊断 引言 近年来,随着科技的迅猛发展,雷达开始在气象学领域得到广泛的应用。气象雷达对强降雨、雷暴、冰雹、台风等天气系统进行探测的重要工具之一[1]。为了获得准确、完整、可靠的天气实况,就要确保雷达的稳定运行。一旦发生雷达故障,要及时进行排除。随着雷达设备的不断更新换代,其自动化以及智能化水平也得到快速提高,给雷达维护保障工作也带来了极大压力。虽说我国的故障诊断研究起步较晚,但近几年来取得了较大的突破,推动了雷达保障业务的发展。本文主要对常见的雷达故障检测与诊断技术进行分析,为今后更高效地排除雷达故障,提升雷达保障水平提供指导。 1雷达故障检测方法 雷达属于精密性仪器,大部分雷达装置主要由天线、馈线、电源、发射机、信号处理机、接收机等部分构成。雷达检测比较繁琐。通常情况下,雷达检测方法包含2类:同步检测与异步检测。同步检测主要指的是以雷达实际工况为重要参考开展的实时故障检测;异步检测指的是不以雷达的工况为参考,不分检测时间的故障检测。在雷达检测过程中,必须根据不同状况采取针对性的检测方式。下面结合雷达装置实际情况来阐述这同步检测与异步检测2类检测方式。 1.1同步检测 在雷达设备的特定功能结构中,检测设备将检测信号发送到雷达设备。设备接收到反馈信号后,将通过雷达设备的各个模块以检查其工作条件。性能检测是从实际应用的角度出发,通常通过同步检测来实现。在此过程中,能够发现每个模块的输入和输出之间具备了映射关系。但是,由于目标信号的随机性导致每个模块的输入强度的随机性,因此模块在输出端的反射也会呈无序状态。如果在输入过程中注重分析几组常规信号、数据亦或信息之间是否存在冲突,则可以找出故障出现区域。尤其需要注意的是,在雷达工作期间无法进行相应的测试。输入测试信号或测试数据有2种特定方法。一种是强制触发检测。这种检测方法为被动检测的类别。它的特点是依赖手动触发检测。检测数据是从要检查的模块的输入端中输入的,模块的输出端具有相应的监视特性。该方法可以检测雷达信号处理器的多个模块,但是仅限于较短的雷达检测时间要求。此类检测方法的缺点是在实践中,如果数据流比较长,在会对检测工作带来不利影响。所以,在具体实施过程中,应压缩相关数据流以使数据流变短,之后获得相应的特征码,经过分

雷达故障分析

波导开关和波导管导致的雷达故障分析 作者:万海焰杨祝平 进入夏季,雷雨频发,气象雷达作为飞机自备的气象导航设备,对于飞行员饶飞雷雨区、保障飞行安全的重要性不言而喻,其作为飞行员的眼睛的作用非常突出,本文从实际例子出发,简述波导开关和波导管导致的气象雷达故障,文章结尾提出维修建议,仅做参考。 一、故障现象: 机组空中反映右气象雷达故障,空中选择右侧雷达时无雷达图像,该机前一航班已反映该故障,并在北京更换右雷达收发机,且测试正常。 二、故障处理过程 地面在CMC上测试右侧气象雷达通过,但选择气象位测试右侧雷达却无雷达图像,判断波导电门故障,更换电门后测试雷达图像正常。这不禁让人疑惑,为什么CMC上测试能通过,而实际上右侧气象雷达失效,下面就雷达系统原理简要作一分析。同时此次飞机故障还发现了从波导开关出来的第一段公共波导管裂开损伤,已经穿透波导管,如下图所示,因无波导管备件,临时修复执飞两个航班正常,后因波导管在振动情况下裂开程度加大,导致了波导在波导管里传输时射频能量损失,出现波形失真,当损失足够大时,就会导致发射的雷达射频波能量很少,从而接收的雷达回波经过二次损失也会很弱,进而导致无雷达图像情况的出现,这也是在平时维护过程中应极力避免的,因为每次拆装波导开关都需要拆装该波导管。

三、故障原理分析 747-400飞机的雷达系统是一个相对独立的系统,其输入信号有惯性基准组件IRU、大气数据计算机ADC、无线电高度表RA、EGPWS 和TCAS等,其中,左和中IRU给左雷达收发机提供稳定信号,右和中IRU给右雷达收发机提供天线稳定信号;ADC提供空速、地速和偏流角以计算风切变;RA提供高度信号以自动启动前位风切变;EGPWS、TCAS和WXR三者的警告有相互级别不同的抑制作用。 747-400飞机的雷达系统由雷达收发机、雷达控制面板、EFIS控制面板“WXR”开关、波导管、波导开关、雷达罩、天线和天线驱动组件组成。 因为本次故障现象中,左侧气象雷达使用正常,这就排除了两部雷达收发机收发回路公共部分故障的可能性了,即波导管公共部分(波导开关出来至天线部分)、天线和天线驱动组件均无故障。故障的可能性集中在雷达收发机、控制面板、波导开关和下图的从波导开关至右侧雷达收发机之间的雷达反馈波导”R/T FEEDER W A VEGUIDE”,通过串件或地面CMC测试都可以排除雷达收发机、控制面板的故障可能性。下面重点分析下波导电门。

雷达液位计的原理选型常见故障及解决方法

雷达液位计的原理选型常见故障及解决方法 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

雷达液位计的原理、特点、安装、维护及常见故障1.雷达液位计的测量原理 雷达液位计采用发射--反射--接收的工作模式。雷达液位计的天线发射出电磁波,这些波经被测对象表面反射后,再被天线接收,电磁波从发射到接收的时间与到液面的距离成正比,关系式如下: D=CT/2 式中 D——雷达液位计到液面的距离 C——光速 T——电磁波运行时间 雷达液位计记录脉冲波经历的时间,而电磁波的传输速度为常数,则可算出液面到雷达天线的距离,从而知道液面的液位。 在实际运用中,雷达液位计有两种方式即调频连续波式和脉冲波式。采用调频连续波技术的液位计,功耗大,须采用四线制,电子电路复杂。而采用雷达脉冲波技术的液位计,功耗低,可用二线制的24V DC供电,容易实现本质安全,精确度高,适用范围更广。 VEGAPULS雷达液位计采用脉冲微波技术,其天线系统发射出频率为、持续时间为的脉冲波束,接着暂停278ns,在脉冲发射暂停期间,天线系统将作为接收器,接收反射波,同时进行回波图像数据处理,给出指示和电信号。

2.雷达液位计的特点 (1)雷达液位计采用一体化设计,无可动部件,不存在机械磨损,使用寿命长。 (2)雷达液位计测量时发出的电磁波能够穿过真空,不需要传输媒介,具有不受大气、蒸气、槽内挥发雾影响的特点,能用于挥发的介质如粗苯的液位测量。(3)雷达液位计几乎能用于所有液体的液位测量。电磁波在液位表面反射时,信号会衰减,当信号衰减过小时,会导致雷达液位计无法测到足够的电磁波信号。导电介质能很好地反射电磁波,对VEGAPULS雷达液位计,甚至微导电的物质也能够反射足够的电磁波。介电常数大于的非导电介质(空气的介电常数为也能够保证足够的反射波,介电常数越大,反射信号越强。在实际应用中,几乎所有的介质都能反射足够的反射波。 (4)采用非接触式测量,不受槽内液体的密度、浓度等物理特性的影响。 (5)测量范围大,最大的测量范围可达0~35m,可用于高温、高压的液位测量。 (6)天线等关键部件采用高质量的材料,抗腐蚀能力强,能适应腐蚀性很强的环境。 (7)功能丰富,具有虚假波的学习功能。输入液面的实际液位,软件能自动地标识出液面到天线的虚假回波,排除这些波的干扰。 (8)参数设定方便,可用液位计上的简易操作键进行设定,也可用HART协议的手操器或装有VEGA Visual Operating软件的 PC机在远程或直接接在液位计的通信端进行设定,十分方便。

雷达信号处理和数据处理

脉冲压缩雷达的仿真脉冲压缩雷达与匹配滤波的MATLAB仿真 姓名:-------- 学号:---------- 2014-10-28 西安电子科技大学

一、 雷达工作原理 雷达,是英文Radar 的音译,源于radio detection and ranging 的缩写,原意为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。利用电磁波探测目标的电子设备。发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform ),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 但是因为普通脉冲在雷达作用距离与距离分辨率上存在自我矛盾,为了解决这个矛盾,我们采用脉冲压缩技术,即使用线性调频信号。 二、 线性调频(LFM )信号 脉冲压缩雷达能同时提高雷达的作用距离和距离分辨率。这种体制采用宽脉冲发射以提高发射的平均功率,保证足够大的作用距离;而接受时采用相应的脉冲压缩算法获得窄脉冲,以提高距离分辨率,较好的解决雷达作用距离与距离分辨率之间的矛盾。 脉冲压缩雷达最常见的调制信号是线性调频(Linear Frequency Modulation )信号,接收时采用匹配滤波器(Matched Filter )压缩脉冲。 LFM 信号的数学表达式: (2.1) 其中c f 为载波频率,()t rect T 为矩形信号: (2.2)

故障树分析方法在脉冲雷达故障检测中的应用

电子设计工程 Electronic Design Engineering 第21卷 Vol.21 第3期No.32013年2月Feb.2013 故障树分析方法在脉冲雷达故障检测中的应用 姜来春 (解放军91550部队辽宁大连116023) 摘要:故障树分析方法是一种实用的故障分析方法,文章通过对某单脉冲雷达建立故障树模型,进行定性、定量分析计算。利用构建故障树来进行无线电测量设备故障诊断分析,不仅可以方便推理机构寻找潜在故障或进行故障诊断,而且可以进一步预测未来系统故障发生的概率,便于测量设备故障的检测与定位。关键词:脉冲雷达;故障树分析;故障诊断;重要度中图分类号:TN954 文献标识码:A 文章编号:1674-6236(2013)03-0027-03 Fault tree analysis method in the application of pulse radar fault detection JIANG Lai -chun (PLA Unit of 91550,Dalian 116023,China ) Abstract:Fault Tree Analysis is a practical fault analysis methods ,this paper establishes a single -pulse radar of fault tree model ,which does qualitative and quantitative https://www.360docs.net/doc/b34628025.html,ing to building fault tree analysis to radio measuring equipment fault diagnosis analysis ,not only it is convenient for inference engine looking for potential fault or fault diagnosis ,but also which predicts the future system fault probability ,and which conveniently detects and locates the measuring equipment failure. Key words:monopulse radar ;fault tree analysis ;fault diagnosis ;importance 收稿日期:2012-09-21 稿件编号:201209161 作者简介:姜来春(1965—),男,辽宁大连人,硕士,高级工程师。研究方向:无线电测量。 测控装备技术保障的特点是测控装各地域上比较分散、专业技术支持人员少而集中,而装备技术保障的水平直接影响测控任务的圆满完成。近年来复杂系统的故障诊断技术越来越受到重视,故障诊断技术[1]已成为一个十分活跃的研究领域,提出了基于故障字典、故障树分析、模糊逻辑、神经网、专家系统、故障预测等理论的故障诊断方法。随着电子技术的发展,对故障诊断问题有必要重点研究,必须把以往的经验提升到理论高度,同时在坚实的理论基础上,系统地发展和完善一套严谨的现代化电子设备故障诊断方法,并结合先进的计算机数据处理技术,实现电子电路故障诊断的自动检测、定位及故障预测。 1故障树分析方法 故障树分析[2]是一种主要的系统可靠性和可用性预测方 法,广泛的应用于工程实践中。它是在系统设计过程中,通过对可能造成系统失效的各种因素(例如硬件、软件、环境、人为等因素)进行分析,画出逻辑框图(即故障树),从而确定系统失效原因的各种可能组合方式及其发生概率,以计算系统失效概率,并采取相应的纠正措施,以提高系统可靠性、安全性的一种设计分析方法和评估方法。 将系统级的故障现象(称为顶事件)与最基本的故障原因(称为底事件)之间的内在关系表示成树形的网络图,各层事件之间通过“与”、“或”、“非”、“异或”等逻辑运算关系相关联。基于故障树模型可以对系统进行定性和定量的分析,故障诊断则是一个从观测到的顶层故障现象出发、逐步向下演绎,最终找出对应的底层故障原因的过程。它把系统故障与组成系统的部件故障联系在一起,并有层次地分别描述出系统在实效的进程中,各种中间事件的相互关系。故障树模型是描述诊断对象结构、功能和关系的一种定性因果模型,它体现了故障传播的层次性和子节点(即下层故障源)与父节点(即上层故障现象)之间的因果关系。 图1 故障树示意图 Fig.1Fault tree diagram

雷达信号处理基本流程

基本雷达信号处理流程 一、脉冲压缩 窄带(或某些中等带宽)的匹配滤波: 相关处理,用FFT 数字化执行,即快速卷积处理,可以在基带实现(脉冲压缩) 快速卷积,频域的匹配滤波 脉宽越小,带宽越宽,距离分辨率越高 ; 脉宽越大,带宽越窄,雷达能量越小,探测距离越近; D=BT (时宽带宽积); 脉压流程: 频域:回波谱和参考函数共轭相乘 时域:相关 即输入信号的FFT 乘上参考信号FFT 的共轭再逆FFT ; Sc=ifft(fft(Sb).*conj(fft(S))); FFT 输入信号 共轭相乘逆FFT 参考信号的FFT 匹配滤波器 输出 Task1 f0=10e9;%载频tp=10e-6;%脉冲宽度B=10e6;%信号带宽fs=100e6;%采样率 R0=3000;%目标初始距离N=4096;c=3e8;tau=2*R0/c;beita=B/tp;t=(0:N-1)/fs; Sb=rectpuls(t-tp/2-tau,tp).*exp(j*pi*beita*(t-tp/2-tau).^2).*exp(-2j*pi*f0*tau);%回波信号 1000 2000 3000 4000 5000 6000 7000 -1-0.8-0.6-0.4-0.200.20.40.60.81 1000 2000 3000 4000 5000 6000 7000 -1-0.8-0.6-0.4-0.200.20.40.60.81 012345678910 x 10 7 20 40 60 80 100 120

S=rectpuls(t-tp/2,tp).*exp(i*pi*beita*(t-tp/2).^2);%发射信号(参考信号) 0.5 1 1.5 2 2.5 3 3.5 4 4.5x 10 -5 -1-0.8-0.6-0.4-0.200.20.40.60.81 0.5 1 1.5 2 2.5 3 3.5 4 4.5x 10 -5 -1-0.8-0.6-0.4-0.200.20.40.60.81 012345678910x 10 7 20 40 60 80 100 120 So=ifft(fft(Sb).*conj(fft(S)));%脉压 figure(7); plot(t*c/2,db(abs(So)/max(So)))%归一化dB grid on 01000200030004000500060007000 -400 -350-300-250-200-150-100-500

雷达故障自动检测系统

雷达故障自动检测系统 李更祥 (中国航天科工集团公司二院23所,北京 100854) 摘要:本文介绍了雷达故障自动检测系统设计。对雷达故障自动检测系统提出了总体设计任务和目标、构成、功能、性能、技术指标。对雷达自动检测系统硬件设计、软件需求分析、软件概要设计、详细设计的具体内容做了较详细的设计说明和要求。 关键词:雷达;计算机;自动检测;故障 1 引言 随着武器装备的现代化、电子产品的高科技化和复杂化,计算机硬件、软件及信息综合处理的快速化,这些特点在现代雷达技术中的应用非常突出,现代战争实际上就是高科技综合技术的对抗战,谁拥有快速反应、能持续保持战斗力的武器装备,谁就占有取得战争胜利的主动权。雷达综合保障体系的一切工作是为了提高雷达平均无故障工作时间。雷达故障自动检测系统是为了对雷达快速、准确、隔离故障到可更换单元(LRU),以便快速维修,达到降低雷达修复时间的目的,先进的军用雷达都具备完善的故障自动检测系统,该系统对提高雷达的总体性能、可靠性、可使用性、可维修性具有极其重要作用。 2 总体要求 雷达故障自动检测系统是采用现代计算机软件、硬件技术,现代电子测量和控制技术、测量仪器与仪器总线以及信息综合处理等技术,通过系统硬件的组成和软件的集成构成一个雷达故障自动检测系统,通过该系统对雷达信号的测量与采集,实现对雷达一系列电气参数的自动测量、分析、处理,快速、准确、完成故障隔离到LRU等功能。2.1 技术指标 系统自动测试内容的主要技术指标应包括对雷达电气参数的测量精度,对雷达系统、组合、可更换单元的故障检测率、隔离率、隔离深度、虚警率以及检测时间等。 主要技术指标如下: a.测试时间:实时测试时间服从雷达测试周期的时间调度要求,战前功能测试时间应小于3min,維修或维护测试时间应小于5min; b.虚警率: 对系统、组合、可更换单元的总虚警率应小于3%;系统应具有分析是雷达故障还是检测设备发生故障的能力; c.故障检测率:按设计要求,测试系统对分雷达系统机柜、组合级的故障检测率应达到100%,对各组合级可更换单元的故障检测率应达到95%以上; d.故障隔离深度:故障隔离深度为雷达系统的可更换单元;

20种液位计工作原理及常见故障分析

2017-12-03给排水处理技术与应用 本文通过对常用20种液位计工作原理的解读,从各液位计安装使用及注意事项的分析,来判断液位计可能出现的故障现象以及如何来处理,让仪表人系统的了解液位计,从而为遇到工况能够在选择液位计上,做出准确的判断提供依据。 常见液位计种类 1、磁翻板液位计 2、浮球液位计 3、钢带液位计 4、雷达物位计 5、磁致伸缩液位计 6、射频导纳液位计 7、音叉物位计 8、玻璃板/玻璃管液位计 9、静压式液位计 10、压力液位变送器 11、电容式液位计 12、智能电浮筒液位计 13、浮标液位计 14、浮筒液位变送器 15、电接点液位计 16、磁敏双色电子液位计 17、外测液位计 18、静压式液位计 19、超声波液位计 20、差压式液位计(双法兰液位计) 常用液位计的工作原理 1、磁翻板液位计

磁翻板液位计:又叫磁浮子液位计,磁翻柱液位计。 原理:连通器原理,根据浮力原理和磁性耦合作用研发而成,当被测容器中的液位升降时,浮子内的永久磁钢通过磁耦合传递到磁翻柱指示面板,使红白翻柱翻转180°,当液位上升时翻柱由白色转为红色,当液位下降时翻柱由红色转为白色,面板上红白交界处为容器内液位的实际高度,从而实现液位显示。 2、浮球液位计 浮球液位计结构主要基于浮力和静磁场原理设计生产的。带有磁体的浮球(简称浮球)在被测介质中的位置受浮力作用影响:液位的变化导致磁性浮子位置的变化。浮球中的磁体和传感器(磁簧开关)作用,使串连入电路的元件(如定值电阻)的数量发生变化,进而使仪表电路系统的电学量发生改变。也就是使磁性浮子位置的变化引起电学量的变化。通过检测电学量的变化来反映容器内液位的情况。 3、钢带液位计 它是利用力学平衡原理设计制作的。当液位改变时,原有的力学平衡在浮子受浮力的扰动下,将通过钢带的移动达到新的平衡。液位检测装置(浮子)根据液位的情况带动钢带移动,位移传动系统通过钢带的移动策动传动销转动,进而作用于计数器来显示液位的情况。 4、雷达液位计 雷达液位计是基于时间行程原理的测量仪表,雷达波以光速运行,运行时间可以通过电子部件被转换成物位信号。探头发出高频脉冲并沿缆式探头传播,当脉冲遇到物料表面时反射回来被仪表内的接收器接收,并将距离信号转化为物位信号。 5、磁致伸缩液位计 磁致伸缩液位计的传感器工作时,传感器的电路部分将在波导丝上激励出脉冲电流,该电流沿波导丝传播时会在波导丝的周围产生脉冲电流磁场。在磁致伸缩液位计的传感器测杆外配有一浮子,此浮子可以沿测杆随液位的变化而上下移动。在浮子内部有一组永久磁环。当脉冲电流磁场与浮子产生的磁环磁场相遇时,浮子周围的磁场发生改变从而使得由磁致伸缩材料做成的波导丝在浮子所在的位置产生一个扭转波脉冲,这个脉冲以固定的速度沿波导丝传回并由检出机构检出。

雷达信号处理

雷达信号处理技术与系统设计 第一章绪论 1.1 论文的背景及其意义 近年来,随着电子器件技术与计算机技术的迅速发展,各种雷达信号处理技术的理论与应用研究成为一大热门领域。 雷达信号的动目标检测(MAD)是利用动目标、地杂波、箔条和气象干扰在频谱上的差别,抑制来自建筑物、山、树、海和雨之类的固定或低速杂波信号。区分运动目标和杂波的基础是它们在运动速度上的差别,运动速度不同会引起回波信号频率产生的多普勒频移不相等,这就可以从频率上区分不同速度目标的回波。固定杂波的中心频率位于零频,很容易设计滤波器将其消除。但对于运动杂波,由于其多普勒频移未知,不能像消除固定杂波那样很容易地设计滤波器,其抑制就变得困难了从本质上来讲,雷达信号的检测问题就是对某一坐标位置上目标信号“有”或“无”的判断问题。最初,这一任务由雷达操作员根据雷达屏幕上的目标回波信号进行人工判断来完成。后来,出现了自动检测技术,一开始为固定或半固定门限检测,这种体制下当干扰和杂波功率水平增加几分贝,虚警概率将急剧增加,以至于显示器画面饱和或数据处理过载,这时即使信噪比很大,也不能作出正确的判断。为克服这些问题进而发展了自适应恒虚警(Constant FalseAlarm Rate,CFAR)检测。CFAR 检测使得雷达在多变的背景信号中能够维持虚警概率的相对稳定,这种虚警概率的稳定性对于大多数的雷达,如搜索警戒雷达、跟踪雷达、火控雷达等。

第二章 雷达信号数字脉冲压缩技术 2.1 引言 雷达脉冲压缩器的设计实际上就是匹配滤波器的设计。根据脉冲压缩系统实 现时的器件不同,通常脉冲压缩的实现方法分为两类,一类是用模拟器件实现的 模拟方式,另一类是数字方式实现的,主要采用数字器件实现。 脉冲压缩处理时必须解决降低距离旁瓣的问题,否则强信号脉冲压缩的旁瓣 会掩盖或干扰附近的弱信号的反射回波。这种情况在实际工作中是不允许的。采 用加权的方法可以降低旁瓣,理论设计旁瓣可以达到小于-40dB 的量级。但用模拟技术实现时实际结果与理论值相差很大,而用数字技术实现时实际输出的距离旁瓣与理论值非常接近。数字脉压以其许多独特的优点正在或已经替代模拟器件进行脉冲压缩处理。 2.2 数字脉压实现方法 用数字技术实现脉冲压缩可采用时域方法或频域方法。至于采用哪种方法。 要根据具体情况而定,一般而言,对于大时宽带宽积信号,用频域脉压较好;对 于小时宽带宽积信号,用时域脉压较好。 2.2.1 时域卷积法实现数字脉压 时域脉冲压缩的过程是通过对接收信号)(t s 与匹配滤波器脉冲响应)(t h 求卷积的方法实现的。根据匹配滤波理论,)()(0*t t s t h -=,即匹配滤波器是输入信号的共轭镜像,并有响应的时移0t 。 用数字方法实现时,输入信号为)(n s ,起匹配滤波器为)(n h ,即匹配滤波器的输出为输入离散信号)(n s 与其匹配滤波器)(n h 的卷积

激光雷达在军事中的应用讲解

激光雷达在军事中的应用 作者 摘要:本文简要介绍激光雷达的特点、激光雷达探测的基本物理原理及其在军事领域的应用现状. 关键词:激光雷达;探测;军事应用 1.引言 激光雷达是现代激光技术与传统雷达技术相结合的产物,它像传统的微波雷达一样,由雷达向目标发射波束,然后接收目标反射回来的信号,并将其与发射信号对比,获得目标的距离、速度以及姿态等参数.但是它又不同于传统的微波雷达,它发射的不是微波束,而是激光束,使激光雷达具有不同于普通微波雷达的特点. 根据激光器的不同,激光雷达可工作在红外光谱、可见光谱和紫外光谱的波段上.相对于工作在米波至毫米波波段的微波雷达而言,激光雷达的工作波长短,是微波雷达的万分之一到千分之一,根据光学仪器的分辨率与波长成反比的原理,利用激光雷达可以获得极高的角分辨率和距离分辨率,通常角分辨率不低于0.1mrad ,距离分辨率可达0.1m , 利用多普勒效应 可以获得10m / s 以内的速度分辨率.这些指标是一般微波雷达难以达到的,因此激光雷达可获得比微波雷达清晰得多的目标图像。 激光束的方向性好、能量集中,在 20km 外,其光束也只有茶杯口大小,因而敌方难以截获,而且激光束的抗电磁干扰能力强,难以受到敌方有源干扰的影响.由于各种地物回波影响,因而在低空存在微波雷达无法探测的盲区.而对于激光雷达,只有被激光照射的目标才能产生反射,不存在低空地物回波的影响,所以激光雷达的低空探测性能好. 激光雷达体积小、重量轻,有的整套激光雷达系统的重量仅几十千克.例如为了适应海军陆战队的需要,美国桑迪亚国家实验室和伯恩斯公司都提出了手持激光雷达的设计方案.相对于重达数吨、乃至数十吨的微波雷达而言,激光雷达的机动性能显然要好得多. 任何事物都是一分为二的,激光雷达也有自身的缺陷.激光光束窄、方向性好,虽然表现出能量集中的优点,但不宜用作战场监视雷达搜索大空域.而且激光的传输受环境影响大,尤其是在雨、雪、雾的天气,激光在传输过程中的衰减更大.当然,激光在大气层外传输时不易衰减,有其得天独厚的优势.经过几十年的努力,科学家们趋利避害,已研制出多种类型的军用激光雷达. 2. 用干战场侦察的激光雷达 众所周知,普通的成像技术(如电视摄像、航空摄影及红外成像等)获得的场景图像都是反映被摄区域辐射强度几何分布的图像,而激光雷达可以通过采集方位角一俯冲角一距离一速度一强度等三维数据,再将这些数据以图像的形式显示出来,从而可产生极高分辨率的辐射强度几何图像、距离图像、速度图像等,因而它提供了普通成像技术所不能提供的信息.例如美国桑迪亚国家实验库研制的一种激光雷达,激光器功率为120MW ,显示屏幕的像素为64 X 64 元,视场内物体的图像可显示在屏幕上,每秒钟更新4 次,并用不同颜色和灰度显示物体的相对距离.这种激光雷达能对运动的装甲车辆产生实时图像,图像分辨率足以识别车辆型号. 美国雷西昂公司研制的ILR100 型砷化稼激光雷达,可安装在高性能飞机和无人机上,当飞机在120m~460m 高空飞行

雷达故障检修方法分析

雷达故障检修方法分析 [摘要]本文介绍了气象台站检修雷达所需的工具、测量仪器、配件、相关技术资料及维修人员水平等必要条件,重点分析了检修雷达故障的基本原则、观察故障现象及检修的常用方法,为基层台站机务员维修雷达提供一些参考。 【关键词】雷达故障;检修;方法分析;基本原则 检修雷达是一项综合性很强的技术工作,它不仅仅是一门雷达技术,还涉及到数字电子、微机软件、机械力学、自动控制技术、计算机及网络等领域。要想顺利完成维护保障任务,台站需具备一些基本良好性能的测量仪器、易损性器材、各种维修工具。具备雷达的图纸、技术说明书、使用说明书及相关资料(包括电路原理图,机械结构图,元件位置图,线缆连接图等),以便随时查用。维修人员一定要必须熟练掌握维修技术,掌握电子基础理论、雷达的基础知识。了解该雷达各个部分的功用、组成、结构、主要性能。掌握雷达的原理框图、基本工作过程和信号流程。熟悉雷达的性能参数和电路中一些主要工作点参数,熟悉测试仪表的性能、使用方法和测试方法。掌握元器件的好坏的鉴别方法、代用原则和替换方法; 1.检修故障的基本原则 检修工作通常由观察故障现象开始,通过询问值班员了解故障发生的经过、现象,再仔细观察和作外部检查,通过对雷达各分机的显示、指示和测量等装置全面观察,查看报警信息,结合工作原理,对照信号流程和各部分电路的作用,经认真分析和逻辑判断,就能得知哪部分电路工作正常,哪部分电路工作不正常,从而确定故障产生的原因和可能的故障部位。 要全面弄清故障现象,必须做好研究工作,通常除了向值班人员了解故障发生前后的情况外,还应运用直觉法,扳动相关开关,调节有关旋钮来观察故障现象的变化,以便更充分、更准确地了解故障的全面情况。在检修过程中,要注意以下几条原则: 1.1 由大部位到小部位 确定故障部位时,应首先根据已掌握的故障现象,按照雷达组成框图,先把故障的可能范围由整个雷达缩小到某个系统(或分机),再由系统(或分机)缩小到某一支路(或某块电路插板),再由某一支路缩小到某一级,最后由某一级缩小到具体的故障点(元件或导线等)。即按“系统→支路→级→点”的次序逐步孤立、缩小范围来进行。 1.2 由简到繁、由易到难、由外到内部

最新 连续波雷达及信号处理技术初探-精品

连续波雷达及信号处理技术初探 摘要:连续波雷达,主要就是连续发生电磁波的雷达,可以根据不同发射信号的形式,将其划分成为非调制单频与调频两种类型。在连续波雷达系统实际应用的过程中,应当科学使用信号处理技术开展相关处理工作,在实际观测的过程中,解决收发开关中存在的问题,保证雷达信号接收与发射工作效果。关键词:连续波雷达;信号处理技术;应用措施在使用信号处理技术对连续波雷达进行控制的过程中,应当建立多元化的管理机制,明确各方面工作要求,创新信号处理工作形式,保证能够提升信号处理技术的应用水平,创建专门的管理机制。一、连续波雷达定义与特征分析对于连续波雷达而言,主要是针对电磁波进行连续的发射,根据发射信号形式将其划分成为非调制单频与调频两种类型。在1924年的时候,英国就开始通过连续波课调频测距相关分析,对电离层开展观测工作。且在第二次世界大战的过程中,已经使用连续波雷达开展飞机观测与地面观测工作。然而,在实际使用的过程中,经常会出现收发隔离的现象,难以保证工作效果,因此,使用收发开关对此类问题进行了解决。当前,在使用连续波雷达的过程中,已经能够通过同一天线开展信号接收与发射工作,产生良好的工作效果。在使用连续波雷达发射机设备的过程中,不需要高压的支持,也不会出现打火的现象,能够利用多元化的方式开展信号调制工作,有利于提升信号的发射效率,增强雷达处理效果,因此,在相同体积、重量的雷达设备中,连续波雷达受到广泛关注与重视,应用于世界的各个国家。同时,连续波雷达的体积很小,重量很轻,馈线的损耗最低,使用流程简单,与其他雷达相较可以得知,连续波雷达在接收机方面,所使用的宽带脉冲较窄,有利于抵抗杂波问题,提升电磁干扰的抵抗能力。在应用连续波雷达对距离与速度进行测量的过程中,其测量准确性较高,不会受到其他因素的干扰。对于连续波雷达而言,其特点主要表现为以下几点: (一)发射机的运行功率较低连续波雷达的发射机运行功率很低,有利于应用在侦查工作中。一般情况下,在使用侦查接收机的过程中,可以利用连续波雷达对其进行处理,提升工作效率,加快侦查速度,保证瞬时频率符合相关规定。同时,在使用连续波雷达的过程中,还要使用伪随机码调相方式对其进行处理,减少外界带来的干扰,做好反侦察工作,保证可以符合实际发展需求。(二)接收机的宽带很窄连续波雷达在实际运行的过程中,接收机的宽带很窄,在杂波环境中,能够实行检测工作,提升自身抗干扰能力。且在电磁干扰的环境中,可以提升自身的抗干扰性能,满足实际处理需求[1]。(三)对小目标进行检测连续波雷达设备的使用,可以提升发射机的功率,增加收发天线的收益,且可以减少噪音问题,在一定程度上,能够减少微波损耗问题,更好的对隐身目标进行检测,合理开展雷达探测等工作,提升相关信号的处理效果,满足实际发展需求。二、连续波雷达的相关工作园林分析连续波雷达的运行,需要明确实际工作原理,通常情况下,雷达发射线性三角调频的相关连续性信号,那么,雷达设备的载频就在f0的数值之上,在此过程中,可以将调频宽带设置成为A,将调频间隔设置成为C。在对信号频率与时间进行计算的过程中,应当明确相关原理,创新管理工作形式,对具有代表性的内容进行合理分析,保证可以提升自身分析工作效果。在信号处理工作中,应当重点关注发射信号与目标回波信号,通过合理的计算方式,创建多

CINRADSB雷达故障诊断分析及处理

CINRAD/SB雷达故障诊断分析及处理 1引言 新一代多普勒天气雷达(CINRAD/SB)(简称SB)由北京敏视达公司和南京十四所共同生产,它能够定量探测降雨回波强度、平均径向速度、速度谱宽等信息。其探测到的回波信息能为雷暴、暴雨等强对流天气的中小尺度结构特征分析提供重要依据,是目前其他大气探测手段无法取代的重要探测工具。目前,万州雷达已经在渝东北地区强对流天气短时临近预报业务中发挥了不可替代的作用。 万州新一代多普勒天气雷达自2009年2月16日投入试运行后,极大提高了对三峡库区流域降水定量估测及暴雨、风雹等灾害性天气的监测预警能力,成为保障三峡库区蓄水安全、防灾减灾的重要工具。本文主要结合万州雷达运行情况,将常见故障进行分析、总结,为雷达机务员处理常见故障提供参考,以便提高雷达保障技能。 2新一代多普勒天气雷达概述 常规天气雷达的探测原理是利用云雨目标物对雷达所发射电磁波的散射回波来测定其空间位置、强弱分布和垂直结构等。新一代多普勒天气雷达除能起到常规天气雷达的作用外,还利用物理学上的多普勒效应来测定降水粒子的径向运动速度,推断降水云体的移动速度、风场结构特征、垂直气流速度等。它可以有效地监测暴雨、冰雹、龙卷等灾害性天气的发生、发展;同时还具有良好的定量测量回波强度的性能,可以定量估测大范围降水;多普勒天气雷达除实时提供各种图像信息外,还可提供对多种灾害性天气的自动识别和追踪产品。 3雷达故障诊断分析及处理 3.1发射机部分 3.1.1发射机无法工作,调制器无高压输出。 发射机无法工作,调制器无高压输出,与厂家技术员沟通后判断为调制器高压组件问题。通过人工线整形后的脉冲电压为4400V,但此组件无高压输出。从调制器内部电路开始检测,用示波器测试人工线采样电压无波形显示,拆开调制器组件,按照电路流程逐步检测,发现调制器内扼流圈焊接断裂,重新焊接扼流线圈,发射机恢复正常。 3.1.2 发射机不能工作,报灯丝电源故障。 经过多次故障复位处理,故障仍然存在,仔细检查发射机控制面板的所有指示灯工作状态,发现除灯丝电流故障灯以外的其他指示灯全正确,初步确认为灯丝电源故障,紧接着开始检查灯丝电流的保险管,发现灯丝电流保险管其中一个熔断,及时更换新的保险丝,雷达开机,仍然报灯丝电源故障;与厂家技术人员取得联系后,结合厂家技术员的指导,开始逐级检查,测试灯丝电流保险管全是通路;查看灯丝电源的控制主板,发现主板异常,有被烧坏痕迹,更换灯丝电源主板后,发射机恢复正常工作。

浅谈倒车雷达工作原理及常见故障分析-(1)

浅谈倒车雷达工作原理及常见故障分析-(1)

浅谈倒车雷达工作原理及常见故障分析 [摘要]本文简要的分析了超声波倒车雷达的原理,并对常见故障现象进行分析。 [关键词]倒车雷达、工作原理,超声波,故障分析 引言 倒车雷达又称泊车辅助系统,一般由超声波传感器(俗称探头)、控制器和显示器等部分组成,现在市场上的倒车雷达大多采用超声波测距原理,驾驶者在倒车时,启动倒车雷达,在控制器的控制下,由装置于车尾保险杠上的探头发送超声波,遇到障碍物,产生回波信号,传感器接收到回波信号后经控制器进行数据处理,判断出障碍物的位置,由显示器显示距离并发出警示信号,得到及时警示,从而使驾驶者倒车时做到心中有数,使倒车变得更轻松,预防事故的发生,保障行车安全. 一、工作原理 倒车雷达由超声波传感器(俗称探头),控制器和显示器(或蜂鸣器)等部分组成.倒车雷达

一般采用超声波测距原理,在控制器的控制下由传感器发射超声波信号,当遇到障碍时,产生回波信号,传感器接收到回波信号后经控制器进行数据处理,判断出障碍物的位置,由显示器显示距离并发出其他警示信号.从而达到安全泊车的目地. 二、超声波工作原理: 利用超声传感器产生的超声波对车后发射,如在一定范围内碰到物体,就有一反射波返回发射源(超声传感器的表面),主机利用发射波和反射波之间的延迟时间和声波速度就能测得距

离。 [超声波信号发射] 当汽车处于倒车状态时,倒车雷达开始启动,控制器控制探头发射超声波信号后,再检测超声波的回波信号.超声波的发射是由控制器发射一串脉冲信号,经放大电路放大后,通过探头发射出去. [超声波的接收] 当超声波发射完成后,控制器立即检测是否有经障碍物反射回来的超声波信号,通过主机上的滤波电路,并计算发射的时间,利用S=T*V/2就可以得出障碍物距离。

相关文档
最新文档