第3课时 二次根式的性质PPT教学课件
合集下载
2.7 二次根式(第3课时)北师大版数学八年级上册教学课件
(2)
12 3 1 3
1 解:(1) 10
10
4 (2) 3
3
(3) 10
1.化简:
(1) 3 3 75
(3) 2 12 48
(5)
3 2 23
随堂练习
(2) (4)
12 1 2
2 50 32 9
解:(1)-2 3
(2)2 3- 2
2
(3) 0
(4) 4 2 (5) 5 6
3
6
随堂练习
第二章实数
7.二次根式(3)
学习目标
1 .巩固对二次根式的四则混合运算的掌握; 2 .学会应用整式的运算法则进行二次根式的运算.
复习巩固
1 .同类项定义①:所含字母相同,②相同字母次数相同
2 .化简8: 2 =2
1;8 3 2=
;
12
32 4 2=
2; 2 =
.
探究新知
同类二次根式 一个二次根式,化简为最简二次根式后,如果被开方 数相同,称它们为同类二次根式.
(1) (2 3 2)(3 6 2)
(2) 3 2(2 12 4 1 3 48)
8
解: (1) 16 2 4 6
(2)48 6 6
随堂练习
4 .问题解决 如图所示,图中小正方形的边长为1,试求图中梯形的面积, 你有哪些方法,与同伴交流. (1)直接求法.
(2)间接求法.
随堂练习
(1)直接求法.
探究新知
二次根式的加减运算 二次根式加减运算步骤: (1)把各个二次根式化成最简二次根式; (2)把各个同类二次根式合并(系数相加减).
二次根式的加减运算
计算: ①
48
3;② 5
二次根式的ppt课件
将二次根式化简成最简二 次根式,即根号内不含能 开方的因数或因式。
变形技巧
根据题目要求,对二次根 式进行变形,如平方差公 式、完全平方公式等。
估算方法
利用二次根式的性质进行 估算,比较大小,求取值 范围等。
易错点提醒
忽略二次根式的非负性。 运算顺序不正确。
变形过程中出错。
感谢您的观看
THANKS
总结词
有理化因式
详细描述
有理化因式是指将一个二次根式化简为最 简二次根式,其关键是将根号下的被开方 数分解为两个互为有理数乘积的因式。
方法
例子
选择与原二次根式相乘后,能够使得根号 内被开方数= sqrt(-7) = sqrt(7)
二次根式是指根号内含有 变量的表达式,其一般形 式为$\sqrt{a}$,其中$a$ 是非负数。
二次根式的性质
二次根式具有非负性,即 $\sqrt{a} \geq 0$,当且 仅当$a=0$时等号成立。
二次根式的运算
二次根式可以与有理数进 行四则运算,运算顺序先 乘方再乘除,最后加减。
方法总结
化简方法
表达式与符号
表达式
二次根式可以表示为$\sqrt{a}$(其 中a是非负数)及其变体,如 $\sqrt[3]{a}$等。
符号
$\sqrt{}$是二次根式的符号,表示求 某个数的平方根。
运算顺序与规则
运算顺序
二次根式的运算顺序与其他数学运算符相同,先乘方再乘除,最后加减。
规则总结
二次根式可以进行加减运算、乘除运算、幂运算等,运算结果需满足二次根式 的限制条件。
05
二次根式的综合例题
代数例题
总结词
二次根式的代数例题主要涉及完全平方公式 、平方差公式以及多项式展开等知识点。
变形技巧
根据题目要求,对二次根 式进行变形,如平方差公 式、完全平方公式等。
估算方法
利用二次根式的性质进行 估算,比较大小,求取值 范围等。
易错点提醒
忽略二次根式的非负性。 运算顺序不正确。
变形过程中出错。
感谢您的观看
THANKS
总结词
有理化因式
详细描述
有理化因式是指将一个二次根式化简为最 简二次根式,其关键是将根号下的被开方 数分解为两个互为有理数乘积的因式。
方法
例子
选择与原二次根式相乘后,能够使得根号 内被开方数= sqrt(-7) = sqrt(7)
二次根式是指根号内含有 变量的表达式,其一般形 式为$\sqrt{a}$,其中$a$ 是非负数。
二次根式的性质
二次根式具有非负性,即 $\sqrt{a} \geq 0$,当且 仅当$a=0$时等号成立。
二次根式的运算
二次根式可以与有理数进 行四则运算,运算顺序先 乘方再乘除,最后加减。
方法总结
化简方法
表达式与符号
表达式
二次根式可以表示为$\sqrt{a}$(其 中a是非负数)及其变体,如 $\sqrt[3]{a}$等。
符号
$\sqrt{}$是二次根式的符号,表示求 某个数的平方根。
运算顺序与规则
运算顺序
二次根式的运算顺序与其他数学运算符相同,先乘方再乘除,最后加减。
规则总结
二次根式可以进行加减运算、乘除运算、幂运算等,运算结果需满足二次根式 的限制条件。
05
二次根式的综合例题
代数例题
总结词
二次根式的代数例题主要涉及完全平方公式 、平方差公式以及多项式展开等知识点。
《二次根式课件》公开课课件
二次根式的历史与文化背景
01
二次根式的起源
二次根式最初起源于古希腊数学家毕达哥拉斯学派,他们研究了直角三
角形的边长关系,发现了直角三角形的勾股定理。
02 03
二次根式的发展历程
随着数学的发展,二次根式在各个历史时期都得到了广泛的应用和研究 。特别是在文艺复兴时期,数学家们开始系统地研究二次根式的性质和 运算方法。
二次根式的性质
总结词
二次根式具有非负性、算术平方根的单调性、算术平方根的取值范围等性质。
详细描述
二次根式的被开方数是非负数,因此二次根式本身也是非负数。此外,算术平 方根具有单调性,即随着被开方数的增大,其平方根也单调增大。最后,算术 平方根的取值范围是非负实数。
二次根式的化简
总结词
化简二次根式的方法包括因式分解、配方法、直接开平方法 和分母有理化等。
二次根式在代数式变形中的应用
总结词
简化表达式
详细描述
二次根式在代数式变形中有着重要的应用,它可以简化复杂的代数表达式。通过利用二 次根式的性质和运算法则,可以将复杂的代数表达式化简为更简单的形式,方便后续的
运算和分析。
二次根式在代数式变形中的应用
总结词:因式分解
详细描述:在代数式变形中,二次根式还可以用于因式分解 。通过提取公因式和利用二次根式的性质,可以将多项式进 行因式分解,从而更好地理解和分析代数式的结构。
详细描述
化简二次根式是数学中常见的代数运算之一。通过因式分解 或配方法,将二次根式化为最简形式。如果被开方数是多项 式,则可以使用直接开平方法或分母有理化进行化简。化简 后的二次根式更易于计算和运用。02 二次 Nhomakorabea式的运算
二次根式的加减法
二次根式课件ppt
计算过程。
பைடு நூலகம்
03
二次根式的应用
求解实际问题
求解最优化问题
二次根式可以用于求解最优化问题, 例如在投资组合、生产计划等领域, 通过二次根式求解最优解,以实现最 大利润或最小成本。
求解面积和体积问题
二次根式可以用于求解一些几何图形 的面积和体积,例如在计算矩形、三 角形、球体等的面积和体积时,可以 使用二次根式进行计算。
有界性
当$a \geq 0$时,$\sqrt{a} \leq \sqrt{a + b}$($b > 0$)。
正定性
当$a > b > 0$时,$\sqrt{a} > \sqrt{b}$。
05
二次根式的综合题
与方程有关的综合题
总结词
二次根式与方程的结合,涉及解方程、方程的根、根的判别式等。
详细描述
01
02
03
性质1
二次根式被开方数必须是 非负数,否则无意义。
性质2
二次根式的被开方数中不 能含有分母,否则不能化 简。
性质3
二次根式的被开方数中不 能含有能开得尽方的因数 或因式,否则也不能化简 。
二次根式的运算
加减运算
同类二次根式可以合并, 不同类二次根式不能合并 。
乘除运算
二次根式相乘除时,只需 将被除式与除式同时平方 再约分即可。
乘法法则
$(a\sqrt{b}) \times (c\sqrt{d}) = ac\sqrt{bd}$($a,b,c,d \geq 0$)。
除法法则
$\frac{(a\sqrt{b})}{(c\sqrt{d})} = \frac{a}{c}\sqrt{\frac{b}{d}}$($a,b,c,d \geq 0$,$bd \neq 0$)。
பைடு நூலகம்
03
二次根式的应用
求解实际问题
求解最优化问题
二次根式可以用于求解最优化问题, 例如在投资组合、生产计划等领域, 通过二次根式求解最优解,以实现最 大利润或最小成本。
求解面积和体积问题
二次根式可以用于求解一些几何图形 的面积和体积,例如在计算矩形、三 角形、球体等的面积和体积时,可以 使用二次根式进行计算。
有界性
当$a \geq 0$时,$\sqrt{a} \leq \sqrt{a + b}$($b > 0$)。
正定性
当$a > b > 0$时,$\sqrt{a} > \sqrt{b}$。
05
二次根式的综合题
与方程有关的综合题
总结词
二次根式与方程的结合,涉及解方程、方程的根、根的判别式等。
详细描述
01
02
03
性质1
二次根式被开方数必须是 非负数,否则无意义。
性质2
二次根式的被开方数中不 能含有分母,否则不能化 简。
性质3
二次根式的被开方数中不 能含有能开得尽方的因数 或因式,否则也不能化简 。
二次根式的运算
加减运算
同类二次根式可以合并, 不同类二次根式不能合并 。
乘除运算
二次根式相乘除时,只需 将被除式与除式同时平方 再约分即可。
乘法法则
$(a\sqrt{b}) \times (c\sqrt{d}) = ac\sqrt{bd}$($a,b,c,d \geq 0$)。
除法法则
$\frac{(a\sqrt{b})}{(c\sqrt{d})} = \frac{a}{c}\sqrt{\frac{b}{d}}$($a,b,c,d \geq 0$,$bd \neq 0$)。
二次根式ppt课件
02
二次根式的化简与求值
化简二次根式的方法
因式分解法
将被开方数进行因式分解,提取 完全平方数。例如,√(24) = √(4×6) = 2√6。
分母有理化
当分母含有二次根式时,通过与其 共轭式相乘使分母变为有理数。例 如,1/(√3 + 1) = (√3 - 1)/[(√3 + 1)(√3 - 1)] = (√3 - 1)/2。
计算$(sqrt{3} + sqrt{2})(sqrt{3} - sqrt{2})$。
利用平方差公式进行计算,即 $(sqrt{3} + sqrt{2})(sqrt{3} sqrt{2}) = (sqrt{3})^2 (sqrt{2})^2 = 3 - 2 = 1$。
04
二次根式在方程中的应用
二次根式与一元二次方程的关系
二次根式ppt课件
目录
• 二次根式基本概念与性质 • 二次根式的化简与求值 • 二次根式的运算与变形 • 二次根式在方程中的应用 • 二次根式在不等式中的应用 • 二次根式在函数中的应用
01
二次根式基本概念与性质
二次根式的定义
01
02
03geq 0$)的式子叫做二次根式 。
二次根式的变形技巧
分母有理化
利用平方差公式将分母化为有理 数,同时保持分子的形式不变。
提取公因式
将多项式中相同的部分提取出来 ,简化计算过程。
完全平方公式
将某些二次根式化为完全平方的 形式,便于进行开方运算。
典型例题解析
例题1
解析
例题2
解析
计算$sqrt{8} + sqrt{18}$。
先将$sqrt{8}$和$sqrt{18}$化 为最简二次根式,即$sqrt{8} = 2sqrt{2}$,$sqrt{18} = 3sqrt{2}$,然后根据同类二次 根式的加法法则进行计算,即 $2sqrt{2} + 3sqrt{2} = 5sqrt{2}$。
22.1第三课时二次根式的性质PPT课件
在别人的演说中思考,在自己的故事里成长
Thinking In Other People‘S Speeches,Growing Up In Your Own Story
讲师:XXXXXX XX年XX月XX日
华东师大版《数学 ·九年级(上)》
第22章 二次根式 §22.1 二次根式
第三课时 二次根式的性质
备用知识 1.平方根的意义、性质。
2.算术平方根的意义、性质 3.绝对值的意义、性质 4.二次根式的意义
回顾
1、形如
二次根式的概念
(a≥0)的式子叫做二次根式。
2、二次根式 a 有意义的条件:a≥0。
探究
2 2 2
2
4 4
2
17 17
1 3
2
1
3
2 0 0
2是2的算术平方根,根据算 术平方根的意义, 2是一个平方等于 2的非负数,因此有( 2)2 2
讲解点1: 二次根式的基本性质
一般地,有如下性质:(1) a ≥0(a ≥0 )
(2)( a )2 a(a ≥0 ) 即:一个非负数的算数平方根的平方等于非负数本身。
例题讲解
化简:
(1) 8
(2) (5)2
解: (1) 8 22 2 2 2
(2) (5)2 52 5
[典例]
计算: (1) (a 1)2 (a≥1() 2) (3.14 )2
解:(1)∵a≥1,∴a-1≥0, ∴ (a 1)2 | a 1| a 1 (2)∵3.14<п,∴3.14-п<0,
5. 注意灵活应用二次根式的性质
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
Thinking In Other People‘S Speeches,Growing Up In Your Own Story
讲师:XXXXXX XX年XX月XX日
华东师大版《数学 ·九年级(上)》
第22章 二次根式 §22.1 二次根式
第三课时 二次根式的性质
备用知识 1.平方根的意义、性质。
2.算术平方根的意义、性质 3.绝对值的意义、性质 4.二次根式的意义
回顾
1、形如
二次根式的概念
(a≥0)的式子叫做二次根式。
2、二次根式 a 有意义的条件:a≥0。
探究
2 2 2
2
4 4
2
17 17
1 3
2
1
3
2 0 0
2是2的算术平方根,根据算 术平方根的意义, 2是一个平方等于 2的非负数,因此有( 2)2 2
讲解点1: 二次根式的基本性质
一般地,有如下性质:(1) a ≥0(a ≥0 )
(2)( a )2 a(a ≥0 ) 即:一个非负数的算数平方根的平方等于非负数本身。
例题讲解
化简:
(1) 8
(2) (5)2
解: (1) 8 22 2 2 2
(2) (5)2 52 5
[典例]
计算: (1) (a 1)2 (a≥1() 2) (3.14 )2
解:(1)∵a≥1,∴a-1≥0, ∴ (a 1)2 | a 1| a 1 (2)∵3.14<п,∴3.14-п<0,
5. 注意灵活应用二次根式的性质
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
二次根式的概念和性质 PPT教学课件(数学人教版八年级下册)
a中的a≥0; a≥ 0. 双重非负性
(3)二次根式与算术平方根有什么关系? 二次根式都是非负数的算术平方根,带有根号的算术平方根
是二次根式.
数学初中 二次根式的概念和性质
课堂小结
(4)你知道了二次根式的哪些性质?
( a )2= a(a≥0) a2 =a(a≥0)
a2 a
(5)我们以前学习过的整式、分式都能像数一样进行运算,你认为 对于二次根式应该进一步研究哪些问题?
数学初中 二次根式的概念
上面问题中,得到的结果分别是: 3, S, 65 , h. 5
1 这些式子分别表示什么意义? 2 这些式子有什么共同特征?
h 分别表示 3,S,65,5 的算术平方根.
这些式子的共同特征是: 都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.
数学初中 二次根式的概念
t
1 含有数或表示数的字母; 2 用基本运算符号连接数或表示数的字母. 用基本运算符号把数或表示数的字母连接起来得到的式子叫代数式.
数学初中
课堂小结
二次根式的概念和性质
1 本节课你学到了哪一类新的式子? 2 二次根式有意义的条件是什么?二次根式的值的范围是什么? 3 二次根式与算术平方根有什么关系?
数学初中 二次根式的概念
变式 a 取何值时,下列二次根式有意义? (1) a2 -2a+1 ;(2) -(a-1)2 .
答案:(1) a为任何实数; (2) a =1.
总结:被开方数不小于零.
数学初中 二次根式的性质
问题1 根据算术平方根的意义填空.
( 4 )2= __4___;( 2 )2= ___2__;
(2)由 x-2≥0,得 x≥2
数学初中 二次根式的性质
(3)二次根式与算术平方根有什么关系? 二次根式都是非负数的算术平方根,带有根号的算术平方根
是二次根式.
数学初中 二次根式的概念和性质
课堂小结
(4)你知道了二次根式的哪些性质?
( a )2= a(a≥0) a2 =a(a≥0)
a2 a
(5)我们以前学习过的整式、分式都能像数一样进行运算,你认为 对于二次根式应该进一步研究哪些问题?
数学初中 二次根式的概念
上面问题中,得到的结果分别是: 3, S, 65 , h. 5
1 这些式子分别表示什么意义? 2 这些式子有什么共同特征?
h 分别表示 3,S,65,5 的算术平方根.
这些式子的共同特征是: 都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.
数学初中 二次根式的概念
t
1 含有数或表示数的字母; 2 用基本运算符号连接数或表示数的字母. 用基本运算符号把数或表示数的字母连接起来得到的式子叫代数式.
数学初中
课堂小结
二次根式的概念和性质
1 本节课你学到了哪一类新的式子? 2 二次根式有意义的条件是什么?二次根式的值的范围是什么? 3 二次根式与算术平方根有什么关系?
数学初中 二次根式的概念
变式 a 取何值时,下列二次根式有意义? (1) a2 -2a+1 ;(2) -(a-1)2 .
答案:(1) a为任何实数; (2) a =1.
总结:被开方数不小于零.
数学初中 二次根式的性质
问题1 根据算术平方根的意义填空.
( 4 )2= __4___;( 2 )2= ___2__;
(2)由 x-2≥0,得 x≥2
数学初中 二次根式的性质
二次根式ppt
03
公式法
利用求根公式,将一元二次方程的实 数根用二次根式表示出来。
在数学竞赛中的应用
二次根式的化简求值
在数学竞赛中,二次根式的化简求值是一个重要的考点,需要学生掌握二次根式 的性质、运算法则等知识。
二次根式的证明
数学竞赛中,二次根式的证明也是一个常见考点,需要学生掌握二次根式的性质 、运算法则等知识,以及一些常见的证明技巧。
二次根式的乘除法是指根据二次 根式的性质,对二次根式进行乘 法或除法的计算。
规则
乘法时,系数相乘,根指数相乘 ;除法时,系数相除,根指数相 除。
注意事项
乘法时,不要漏掉系数为1的项 ;除法时,不要漏掉系数为1的 项。
二次根式的化简
概念
二次根式的化简是指通过合并同类项、乘法或除法等手段,将二次根式化简为最简二次根式。
规则
化简后的二次根式必须满足两个条件:一是系数为1,二是被开方数中不含有分母。
注意事项
化简后的二次根式不一定是最简二次根式,需要多次进行次方程中的应用
01
配方法
02
因式分解法
通过将一元二次方程转化为一元一次 方程,利用二次根式求解方程的实数 根。
利用二次根式将一元二次方程的右边 化为0,再求解方程的实数根。
二次根式
xx年xx月xx日
contents
目录
• 二次根式的定义和性质 • 二次根式的运算 • 二次根式的应用
01
二次根式的定义和性质
二次根式的定义
非负性
由于二次根式对实数a的取值没有要求,因此其定义域为全体 实数,即对于任意实数a,都有a的二次根式$\sqrt{a}$。
平方根
对于任意实数a,其平方根为$\pm\sqrt{a}$。
二次根式的性质课件
案例二
求解$sqrt{2x + 1} + sqrt{x - 2} leq 5$。同样先确定定 义域,再利用二次根式的性质和不等式的解法进行求解。
实践操作
给出一些具体的一元二次不等式问题,让学生尝试利用二 次根式的性质进行求解,并引导学生总结求解过程中的注 意事项和技巧。
05
二次根式在函数图像和性质中应 用
06
总结回顾与拓展延伸
关键知识点总结回顾
• 二次根式的定义:$\sqrt{a}$($a \geq 0$)是一个二次根式 ,其中$a$是被开方数,$\sqrt{}$是根号。
关键知识点总结回顾
二次根式的性质 $sqrt{a^2} = |a|$($a$为任意实数)
$(sqrt{a})^2 = a$($a geq 0$)
04
解
$sqrt{12} + sqrt{27} = sqrt{4 times 3} + sqrt{9 times 3} = 2sqrt{3} + 3sqrt{3} = 5sqrt{3}$。
06
解
$x^2 - y^2 = (x + y)(x - y) = [(sqrt{3} + 1) + (sqrt{3} - 1)][(sqrt{3} + 1) - (sqrt{3} - 1)] = (2sqrt{3})(2) = 4sqrt{3}$。
二次函数图像和性质回顾
二次函数的一般形式:$f(x) = ax^2 + bx + c$,其中 $a neq 0$。
当 $a > 0$ 时,抛物线开口向上;当 $a < 0$ 时,抛物线开口向下。
二次函数的图像是一条抛物线,对称 轴为 $x = -frac{b}{2a}$,顶点坐标 为 $left(-frac{b}{2a}, c frac{b^2}{4a}right)$。
求解$sqrt{2x + 1} + sqrt{x - 2} leq 5$。同样先确定定 义域,再利用二次根式的性质和不等式的解法进行求解。
实践操作
给出一些具体的一元二次不等式问题,让学生尝试利用二 次根式的性质进行求解,并引导学生总结求解过程中的注 意事项和技巧。
05
二次根式在函数图像和性质中应 用
06
总结回顾与拓展延伸
关键知识点总结回顾
• 二次根式的定义:$\sqrt{a}$($a \geq 0$)是一个二次根式 ,其中$a$是被开方数,$\sqrt{}$是根号。
关键知识点总结回顾
二次根式的性质 $sqrt{a^2} = |a|$($a$为任意实数)
$(sqrt{a})^2 = a$($a geq 0$)
04
解
$sqrt{12} + sqrt{27} = sqrt{4 times 3} + sqrt{9 times 3} = 2sqrt{3} + 3sqrt{3} = 5sqrt{3}$。
06
解
$x^2 - y^2 = (x + y)(x - y) = [(sqrt{3} + 1) + (sqrt{3} - 1)][(sqrt{3} + 1) - (sqrt{3} - 1)] = (2sqrt{3})(2) = 4sqrt{3}$。
二次函数图像和性质回顾
二次函数的一般形式:$f(x) = ax^2 + bx + c$,其中 $a neq 0$。
当 $a > 0$ 时,抛物线开口向上;当 $a < 0$ 时,抛物线开口向下。
二次函数的图像是一条抛物线,对称 轴为 $x = -frac{b}{2a}$,顶点坐标 为 $left(-frac{b}{2a}, c frac{b^2}{4a}right)$。
八年级数学上册教学课件《二次根式(第3课时)》
课堂小结
2.7 二次根式
二次根 式混合 运算
四则混合运算
化简求值
化简已知条件和所求代数式 分母有理化
课后作业
作业 内容
2.7 二次根式
教材作业 从课后习题中选取 自主安排 配套练习册练习
1. 类比整式运算法则,掌握二次根式 的运算法则.
探究新知
2.7 二次根式
知识点 1 二次根式的混合运算 回顾
二次根式加减法的步骤:
(1)将每个二次根式化为最简二次根式;
(2)找出其中的同类二次根式;
(3)合并同类二次根式.
交流归纳
一化 二找 三合并
探究新知
2.7 二次根式
回顾 问题1 单项式与多项式、多项式与多项式的乘 法法则分别是什么? m(a+b+c)=ma+mb+mc; (m+n)(a+b)=ma+mb+na+nb
拓广探索题
2.7 二次根式
2.阅读下列材料,然后回答问题:
2
在进行类似于二次根式
的运算时,通常有如下两种方
3 1
法将其进一步化简:
方法一:
2
3 1
2 3 1 2 3 1
3 1
3 1
2
3 1
3 1;
方法二:
2
31
3 1
3 1 3 1.
3 1 3 1
3 1
课堂检测
拓广探索题
(1)请用两种不同的方法化简:
巩固练习
变式训练
化简:
2.7 二次根式
(1) 2 1 ; (2)12 3 1; (3)( 18 1 ) 8 .
5 10
3
初中数学二次根式PPT课件图文
【解析】选C.若二次根式 有意义,则2x+6≥0, 解得x≥-3,在数轴上时从表示-3的点向右画,且用实心 圆点.
3.(2014·南通中考)若 在实数范围内有意义, 则x的取值范围是 ( ) A.x≥ B.x≥- C.x> D.x≠
【解析】选C.由题意得 解得x>
一、二次根式的相关概念 1.二次根式:一般地,形如 (_____)的式子. 2.最简二次根式:同时满足:(1)被开方数不含_____. (2)被开方数中不含能开得尽方的___________.
a≥0
字母
因数或因式
二、二次根式的性质
两个重要性质
( )2=__(a≥0).
=|a|=
【名师点津】理解二次根式的性质需注意的两个问题 (1) (a≥0)的双重非负性: ①被开方数a非负; ② 本身非负.
(2) 与( )2的异同: 中的a可以取任何实数,而( )2中的a必须取非负 数,只有当a取非负数时, =( )2.
【题组过关】 1.(2016·潍坊中考)实数a,b在数轴上对应点的位置如 图所示,化简|a|+ 的结果是 ( ) A.-2a+b B.2a-b C.-b D.b
【解析】选A.由题干图知:a<0,a-b<0, 则|a|+ =-a-(a-b)=-2a+b.
2.(2015·资阳中考)已知:(a+6)2+ =0,则 2b2-4b-a的值为________. 【解题指南】首先根据非负数的性质可求出a的值和 b2-2b=3,进而可求出2b2-4b-a的值.
3.二次根式的混合运算:与实数的运算顺序相同,先算 乘方,再算_____,最后算加减,有括号的先算括号里面 的(或先去括号).
3.(2014·南通中考)若 在实数范围内有意义, 则x的取值范围是 ( ) A.x≥ B.x≥- C.x> D.x≠
【解析】选C.由题意得 解得x>
一、二次根式的相关概念 1.二次根式:一般地,形如 (_____)的式子. 2.最简二次根式:同时满足:(1)被开方数不含_____. (2)被开方数中不含能开得尽方的___________.
a≥0
字母
因数或因式
二、二次根式的性质
两个重要性质
( )2=__(a≥0).
=|a|=
【名师点津】理解二次根式的性质需注意的两个问题 (1) (a≥0)的双重非负性: ①被开方数a非负; ② 本身非负.
(2) 与( )2的异同: 中的a可以取任何实数,而( )2中的a必须取非负 数,只有当a取非负数时, =( )2.
【题组过关】 1.(2016·潍坊中考)实数a,b在数轴上对应点的位置如 图所示,化简|a|+ 的结果是 ( ) A.-2a+b B.2a-b C.-b D.b
【解析】选A.由题干图知:a<0,a-b<0, 则|a|+ =-a-(a-b)=-2a+b.
2.(2015·资阳中考)已知:(a+6)2+ =0,则 2b2-4b-a的值为________. 【解题指南】首先根据非负数的性质可求出a的值和 b2-2b=3,进而可求出2b2-4b-a的值.
3.二次根式的混合运算:与实数的运算顺序相同,先算 乘方,再算_____,最后算加减,有括号的先算括号里面 的(或先去括号).
二次根式的性质课件(共31张PPT)
(1) ( a)2 a
(2) (a)2 a
(3) (a2)2 2a
例5:已知:x<0,化简: 16x2
解 :1 6 x 2(4x)24x
∵x<0 , ∴4x<0, ∴原式 = -4x
练一练:
化 :x 2 简 6 x 9 x 2 2 x 1
(其 中 -1x3)
化简:
(1) 210 (2) a 4
算 一 算 : (1 ) ( -9 ) 2 (2 )
(
1 3
)2
(3 ) 6 4
(4 ) (x 2+ 1 )2
归纳
a2 a
a ( a >0 ) 0 ( a =0 ) -a ( a <0 )
由 a2 aa0,可以得 a a2a0。
利用这个式子,可以把任何一个非负数写成 带有“ ”的形式,例: 5 25,
x1 y 3 0
∴ x 1 =0, y 3 =0
∴x=1,y=-3
∴x+y=-2
例 求下列二次根式的值
解:(1)
∵3 0
∴ (3 )2
3
(2)
当x= 3 时,x-1<0
∴ x2 2x11x 1 3
∴当x= 3 时, x2 2x 1 1 3
初中阶段的三个非负数: (a≥0) ≥0
题型:二次根式的非负性的应用.
(2)(3)a 2b 2
(a<0,b>0)
(4) 12aa2 (a>1 )
(5) (x1)296xx2
(1<x<3 )
( a)2 a(a0)
a(a0)
a 2 a a(a0)
注意区a别 2与( a) 2
1. 求式子 x+1-5-有x意义时X的取值范围。
(2) (a)2 a
(3) (a2)2 2a
例5:已知:x<0,化简: 16x2
解 :1 6 x 2(4x)24x
∵x<0 , ∴4x<0, ∴原式 = -4x
练一练:
化 :x 2 简 6 x 9 x 2 2 x 1
(其 中 -1x3)
化简:
(1) 210 (2) a 4
算 一 算 : (1 ) ( -9 ) 2 (2 )
(
1 3
)2
(3 ) 6 4
(4 ) (x 2+ 1 )2
归纳
a2 a
a ( a >0 ) 0 ( a =0 ) -a ( a <0 )
由 a2 aa0,可以得 a a2a0。
利用这个式子,可以把任何一个非负数写成 带有“ ”的形式,例: 5 25,
x1 y 3 0
∴ x 1 =0, y 3 =0
∴x=1,y=-3
∴x+y=-2
例 求下列二次根式的值
解:(1)
∵3 0
∴ (3 )2
3
(2)
当x= 3 时,x-1<0
∴ x2 2x11x 1 3
∴当x= 3 时, x2 2x 1 1 3
初中阶段的三个非负数: (a≥0) ≥0
题型:二次根式的非负性的应用.
(2)(3)a 2b 2
(a<0,b>0)
(4) 12aa2 (a>1 )
(5) (x1)296xx2
(1<x<3 )
( a)2 a(a0)
a(a0)
a 2 a a(a0)
注意区a别 2与( a) 2
1. 求式子 x+1-5-有x意义时X的取值范围。
第3讲二次根式ppt课件全面版
值,然后代入代数式计算,根据题意,得 x-1=0,y+3=0,解得:x=1,y=-3,
所以 x+y=-2.
(2)∵ ������-2 ≥0,(n-2 017)2≥0, ������-2+(n-2 017)2=0,
∴ ������-2=0,(n-2 017)2=0,解得:m=2,n=2 017.
∴m-1+n0=2-1+2 0170=12+1=32.
x2
1 x2
5
的值.
解:(1)
(2)由x2-4x+1=0 x+ -4=0 x+ =4. ∴原式=
1.(04浙江)若数轴上表示数x的点在原点的
左边,则化简 3x x2 的结果是( C )
A.-4x B.4x C.-2x D.2x
2.能使等式
x x2
x 成立的x的取值
x2
范围是( B )
(3)
2
2
2 1
(4) 3 18 1 50 4 1
2 1
5
2
(5)先化简,再求值:x2 x
1 1
x(1
1 x
)
,
其中 x 2 1
7.
x
的取值范围是(
A.x≥-12,且 x≠1 B.x≠1
C.x≥-12
D.x>-12,且 x≠1
答案:A
2.下列式子中,属于最简二次根式的是(
A. 9
B. 7
C. 20
答案:B
)
)
D.
1 3
考点梳理 自主测试
3.下列根式中,不能与 3合并的是( )
A.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• ④什么是最简二次根式?
2020/12/09
4
自学检测
• ①成立的条件是( ):
• A xy 0 B xy 0 C x0, y>0 D x0, y>0
• ②下列各式的计算中,正确的是( ):
• A.
C
• B.
D
2020/12/09
5
• 2、化简下列二次根式:①
②;
• ③;3m6n55m4n2
第3课时 二次根式的性质(2)
积的算术平方根的性质
2020/12/09
1
学习目标
• 1. 掌握积的算术平方根的性质;
• 2. 会利用积的算术平方根进行化简。
• 3. 掌握最简二次根式的条件;
• 4. 会把二次根式化成最简二次根式.
2020/12/09
2
一、 由实际问题引入新课
• 1、 什么是算术平方根? • 2、一般地,二次根式又有下面的性质:
④ 12aa2(a1)
• 3、P159 T1 T2
2020/12/09
6
一展身手
• 1) :化简下列二次根式:①; 7 2 ② 2 1 6
• ③ 2008
④
• 2) :设a≥0,b≥0,化简下列二次根式:
•①
②
2020/12/09
7
• 1) :已知
挑战自我
,求 的值.
• 2) :设m,n都是实数, 且满足
,
• 求 的值.
2020/12/09
8
课堂小结
• 1):积的算术平方根的性质:.
• 2):运用性质时,要注意条件,如果根号下的偶 次幂的底数是负数,要注意转化.
• 3):把一个二次根式化成最简二次根式的步骤有 哪些?
• 4):在二次根式的运算中,最后结果有哪些要求?
2020/12/09
9
课堂作业
• 必做题:教材P160 习题 A组 4、5
• 选做题:
• ①估算 的大小应在( ):
• A.7到8之间;B.8到8.5之间;C.8.5到9之间;D.9 到10之间.
• ②若,求x的取值范来自.2020/12/09
10
PPT精品课件
谢谢观看
Thank You For Watching
11
a2a a(aa(a 0)0)
2020/12/09
3
自学指导
• (一) :看书:教材P157---P1159. 4分钟后解答下列问题:
• (二) :解答下列问题:
• ① 积的算术平方根的性质是什么?
• ② 如何用语言叙述它?
•
a b = a · b (a≥0,b≥0)
• ③自学例题4和例题5, 二次根式化简的结果应满足什么要求?