离散数学第六章 集合-自然数与自然数集.

合集下载

《离散数学》 第六章 集合的基数

《离散数学》 第六章  集合的基数
6.2.1 可数集
定理6.2.5 可数个可数集的并集仍然是一可数集。
在上面元素的排列中,由左上端开始,其每一斜线上的每一元素
的两足码之和都相同,依次为2,3,4,…,各斜线上元素的个
数依次为1,2,3,4,…,故A的排列为: a11,a21,a12,a31,a22,a13,… 故S是可数的,定理得证。
(3)card X = card Y。
6.3 基数的比较
定理6.3.3 设X、Y为任意两个集合, 如果cardX ≼· cardY,cardY ≼· cardX, 则cardX=cardY。
例6.3.1
证明[0,1]和(0,1)有相同的基数。
解 根据定理6.3.3,我们只需构造两个单射函数:
f:(0,1) → [0,1],f(x)=x
6.2 可数集和不可数集
6.2.1 可数集
定理6.2.5
证明 为:
可数个可数集的并集仍然是一可数集。
设S1,S2 , S3,……是可数个可数集,分别表示 S1={a11,a12,a13,…,a1n,…} S2={a21,a22,a23,…,a2n,…} S3={a31,a32,a33,…,a3n,…} …………
6.1 基数的概念
定义 6.1.3 设 X 为任意集合,称 card X 为集合 X 的基数,并作 以下规定: ( 1 )对于任意的集合 X 和 Y ,规定 card X = card Y ,当且仅当 X≈Y; (2)对于任意有限集合X,规定与X等势的那个唯一的自然数n为X 的基数,记作 card X = n (3)对于自然数集合N,规定 card N = (读作阿列夫零) (4)对于开区间(0,1),规定 card(0,1)= (读作阿列夫)
⑵ 若X≈Y,则X≼· Y且Y≼· X。

离散数学第六章 集合-包含与排斥原理

离散数学第六章 集合-包含与排斥原理

│A1∪A2│=│A1│+│A2│–│A1∩A2│ = 12+18-5 = 2Ar是r个有限集。则
| A1 A2 Ar | | Ai |
i 1
r
1i j r j
| A A
i
j
|

1i j k r
| A A
例 (p71-72) 求出在1和300之间,不能被2、3、5、7中 任意一个整除的整数的个数。
分析:
A1表示1和300之间能被2整除的整数集合 A2表示1和300之间能被3整除的整数集合 A3表示1和300之间能被5整除的整数集合 A4表示1和300之间能被7整除的整数集合
│A1∪A2∪A3∪A4 │=?
a1表示1和300之间能被2整除的整数集合a2表示1和300之间能被3整除的整数集合a表示1和300之间能被5整除的整数集合a3表示1和300之间能被5整除的整数集合a4表示1和300之间能被7整除的整数集合a1a2a3a4
第六章 集合
6.1 集合的基本概念 6.2 集合的基本运算 6.3 全集和集合的补 6.4 自然数与自然数集 6.5 包含与排斥原理
例 (p71-72)求出在1和300之间,不能被2、3、5、7中
任意一个整除的整数的个数。
解:设A1,A2,A3,A4分别表示1和300之间能被2整除的、能被3整除的 、能被5整除的和能被7整除的整数集合。故有: │A1│=150,│A2│=100,│A3│=60,│A4│=42, │A1∩A2│=50,│A1∩A3│=30,│A1∩A4│=21 │A2∩A3│=20,│A2∩A4│=14,│A3∩A4│=8 │A1∩A2 ∩A3 │=10,│A1∩A2 ∩A4 │=7 │A1∩A3 ∩A4 │=4, │A2∩A3 ∩A4 │=2 │A1∩A2 ∩A3 ∩A4 │=1 于是,我们有: │A1∪A2∪A3∪A4 │ =150+100+60+42– (50+30+21+20+14+8)+(10+7+4+2)–1 =231 因此, 所求个数为 300-231=69.

精品文档-离散数学(方世昌)-第6章

精品文档-离散数学(方世昌)-第6章

第六章 代 数
(2) 幂集合ρ(S)、并、交、补、
S可构成一个代数。
①载体是S的幂集合ρ(S)。
②定义在载体上的运算是: 二个二元运算∪和∩、 一个
一元运算。

S。
这个代数可记为〈ρ(S), ∪, ∩,
, , S〉。
第六章 代 数
在不产生误解的情况下, 标示代数的记号可以简化, 不一 定将所有成分都写出, 有时常数可以不写, 有时仅用载体标记该代 数。
那么〈Q, +, ·, -, 0, 1〉和〈R, +, ·, -, 0, 1〉是同类代数, 但〈ρ(S), ∪, ∩, -, , S〉, 这里“-” 表示集合的非, 是 不同类的, 因为公理(6)对这个代数不成立。
第六章 代 数
6.1.2 么元和零元
定 义 6.1-1 设 * 是 S 上 的 二 元 运 算 ,1l 是 S 的 元 素 , 如果对S中的每一元素x, 有
中有二个二元运算, 对运算∪, 是么元, S是零元。对运算∩, 是零元, S是么元。
第六章 代 数
定理 6.1-1 设*是S上的一个二元运算, 具有左么元1l和 右么元1r, 那么1l=1r, 这元素就是么元。
证 因为1l和1r是左么元和右么元。
1r = 1l·1r = 1l
证毕。
第六章 代 数 定理 6.1-2 设*是S上的二元运算, 具有左零元0l和右
第六章 代 数
第六章 代 数
6.1 代数结构 6.2 子代数 6.3 同态 6.4 同余关系 6.5 商代数和积代数 6.6 半群和独异点 6.7 群 6.8 环和城
第六章 代 数 6.1 代数结构
6.1.1 代数的构成和分类方法 代数通常由3部分组成:

离散数学-第六章习题答案

离散数学-第六章习题答案

第6章习题答案1.列举出从X到Y的关系S的各元素(1)X={0,1,2},Y={0,2,4},S={<x,y>|x+y∈X⋂Y}(2)X={1,2,3,4,5},Y={1,2,3},S={<x,y>|x=y2,x∈X,y∈Y}解:(1)S={<0,0>,<0,2>,<2,0>}(2)S={<1,1>,<4,2>}2.设P={<1,2>,<2,4>,<3,3>}Q={<1,3>,<2,4>,<4,2>}求dom(P),ran(P),并证明:dom(P⋃Q)=dom(P)⋃dom(Q)解:dom(P)={1,2,3}ran(P)={2,3,4}证明:对于任意xx∈dom(P⋃Q)⇔∃y(<x,y>∈P⋃Q)⇔∃y(<x,y>∈P∨<x,y>∈Q)⇔∃y(<x,y>∈P)∨∃y(<x,y>∈Q)⇔ x∈dom(P)∨x∈dom(Q)⇔ x∈dom(P)⋃dom(Q)所以,dom(P⋃Q)=dom(P)⋃dom(Q)3.若关系R和S自反的,对称的和传递的,证明:R⋂S也是自反的,对称的和传递的。

证明:设R和S是集合A上的关系。

因为R和S是自反的,所以,对于A中的任意元素x,有<x,x>∈R和<x,x>∈S。

因此<x,x>∈R⋂S,即R⋂S是自反的。

因为R和S是对称的,所以对于任意<x,y>,<x,y>∈R⋂S⇔<x,y>∈R∧<x,y>∈S⇔<y,x>∈R∧<y,x>∈S⇔<y,x>∈R⋂S因此,R⋂S是对称的。

因为R和S是传递的,所以对于任意<x,y>和<y,z><x,y>∈R⋂S ∧<y,z>∈ R⋂S⇔<x,y>∈R∧<x,y>∈S∧<y,z>∈ R∧<y,z>∈ S⇔(<x,y>∈R∧<y,z>∈ R)∧(<x,y>∈S ∧<y,z>∈ S)⇔<x,z>∈R∧<x,z>∈ S⇔<x,z>∈R⋂S因此,R⋂S是传递的。

《离散数学》第六章 集合代数

《离散数学》第六章 集合代数
例2:某学校有12位教师,已知有8位老师可以教数学,6位 可教物理,5位可教化学.其中有5位教师既教数学又教 物理.4位老师兼教数学和化学,3位老师兼教物理和化 学,3位老师兼教这三门课. 1.求不教任何课的老师有几位? 2.只教一门课的老师有几位? 3.正好教其中两门课的老师有几位?
例3: 4个x ,3个y,2个z的全排列中,求不出现xxxx,yyy ,zz图象的排列。
设x不具有性质P1,P2,…,Pm ,那么x∉Ai,i= 1,2,…m。则它对等式左边计数的贡献为1,对 等式右边的计数的贡献也是1。
根据牛顿二项式定理不难得到上面式子的结果是0.而 由于x具有n个性质,它对等式左边的贡献也为0。
4.3 几个例子
例1:求1-1000之间(包括1和1000)不能被5,也不能被6, 还不能被8整除的整数有多少个?
总体上还是多采用命题逻辑中的等值式,但在叙述
上采用半形式化的方法。
例6.6 证明A-(B∪C)=(A-B)∩(A-C).
证明: 对于∀x
x ∈ A-(B∪C) Ù x ∈ A ∧ x ∉(B∪C) Ù x ∈ A ∧ ⎤ (x∈B ∨ x∈C) Ù x ∈ A ∧ (⎤x∈B ∧ ⎤x∈C) Ù x ∈ A ∧ (x ∉ B ∧ x ∉ C) Ù x∈A∧x∉B∧x∉C Ù (x ∈ A ∧ x ∉ B) ∧ (x ∈ A ∧ x ∉ C) Ù x ∈ A- B ∧ x ∈ A- C Ù x ∈( A- B) ∩(A- C)
全排列的个数为:9!/(4!3!2!)=1260; 所以要求的排列数为
1260-(60+105+280)+(12+20+30)-6 =871.
4.4 三个练习
练习1:求由a,b,c,d构成的n位符号串中,a,b,c,d都至 少出现一次的符号串的数目。

离散数学第六章 集合-集合的基本运算

离散数学第六章 集合-集合的基本运算

第六章 集合
6.1 集合的基本概念 6.2 集合的基本运算 6.3 全集和集合的补 6.4 自然数与 {x 存在一个 i, 1 i k,x Pi }
把P1∩P2∩┅∩Pk简记为
k
i 1
Pi
k
i 1
Pi {x 对于所有的 i, 1 i k,x Pi }
推论 (p67)
设A, Pi (1≤i≤k)是k+1个集合, 则
A Pi ( A Pi ) i 1 i 1
A
B
C
例1
(p66)
(A-B)∪(A-C)=A在何条件下成立?
分析: A的元素a既是B的元素、也是C的元素,则等式不成立。 解: 根据分析当且仅当 A∩(B∩C)=Ø时,等式成立。 首先,假若(A-B)∪(A-C)=A, 要证明A∩(B∩C)=Ø。 用反证法。 若A∩B∩C≠Ø, 则∃x∊A∩B∩C, 所以 x∊A, x∊B , x∊C 。 由x∊A,x∊B, 有 x ∉A-B, 又由x∊A,x∊C, 有x ∉A-C, 所以有 x ∉ (A-B)∪(A-C)=A。 矛盾说明A∩B∩C=Ø。
对称差
定义2:A,B是两个集合,存在一个集合,它的 元素是所有的或者属于A不属于B,或者属 于B不属于A,称它为集合A和集合B的对 称差,记为A⊕B,即:
A⊕B={x│x∊A且x∉B,或x∊B且x∉A}
A⊕B
由定义,不难知: A⊕B = (A–B)∪(B–A) A⊕ A = Ø A⊕ Ø = A
命题
对于任意的x,若x∊ A∪(B∩C),则 x∊ A,或x∊B∩C 。 当x∊ A,则x∊ A∪B 且x∊ A∪C,所以 x∊ (A∪B)∩(A∪C) ; 当x∊B∩C,则x∊B 且x∊C,就有x∊ A∪B, 且x∊ A∪C, 所以 x∊ (A∪B)∩(A∪C) 。 故 A∪(B∩C)⊆(A∪B)∩(A∪C)

离散数学第六章 集合 自然数与自然数集

离散数学第六章 集合 自然数与自然数集

学一:认识作者,了解作品背景作者简介:欧阳修(1007—1072),字永叔,自号醉翁,晚年又号“六一居士”。吉州永丰(今属江西)人,因吉州原属庐陵郡,因此他又以“庐陵欧阳修”自居。谥号文忠,世
称欧阳文忠公。北宋政治家、文学家、史学家,与韩愈、柳宗元、王安石、苏洵、苏轼、苏辙、曾巩合称“唐宋八大家”。后人又将其与韩愈、柳宗元和苏轼合称“千古文章四大家”。
6.1 集合的基本概念 6.2 集合的基本运算 6.3 全集和集合的补 6.4 自然数与自然数集 6.5 包含与排斥原理
11 醉翁亭记
1.反复朗读并背诵课文,培养文言语感。
2.结合注释疏通文义,了解文本内容,掌握文本写作思路。
3.把握文章的艺术特色,理解虚词在文中的作用。
4.体会作者的思想感情,理解作者的政治理想。一、导入新课范仲淹因参与改革被贬,于庆历六年写下《岳阳楼记》,寄托自己“先天下之忧而忧,后天下之乐而乐”的政治理想。实际上,这次改革,受
当n=0时,已经证明了结论成立。 对n作归纳假设,假设对任意自然数m, 有n∊m, 或者n=m,或者m∊n三者之一成立。 现在考察对于n+=n+1的情况。
n+=n∪{n},对于任意自然数m, 若n∊m, 则由对m用归纳法可以证明 n+∊m或者n+=m之一成立(见前页)。 若n=m,则m∊{m}={n},即m∊n∪{n}=n+。 若m∊n,则m∊n∪{n}=n+。
,使得0=m+。 4.n和m均是自然数,如果n+=m+,那么n=m。 5.如S是N的子集,有性质
(1) 0∊S, (2) 如果n∊S,那么n+∊S , 则有 S=N。
数学归纳法——皮亚诺公设的第5条

自然数集概念-概述说明以及解释

自然数集概念-概述说明以及解释

自然数集概念-概述说明以及解释1.引言1.1 概述概述自然数集是数学中一个非常基础和重要的概念,它是由0、1、2、3、4、5……组成的无限集合,用符号N表示。

自然数集是最基本的数学对象之一,在数学理论和实际问题中都具有重要的地位和应用价值。

本文将围绕自然数集的定义、性质和应用展开讨论,探究自然数集在数学中的地位和未来的发展前景。

通过深入了解自然数集的相关知识,可以有效提升数学思维能力,增强对数学世界的认识。

1.2 文章结构文章结构部分的内容:本文分为引言、正文和结论三部分。

在引言部分,我们将概述自然数集的概念,并介绍本文的结构和目的,为读者提供对后续内容的整体认识。

在正文部分,我们将着重阐述自然数集的定义、性质和应用,帮助读者深入理解自然数集在数学领域中的重要性和应用价值。

在结论部分,我们将对自然数集的重要性进行总结,并探讨自然数集在数学中的地位以及未来发展的展望。

通过对自然数集的全面讨论,希望读者能够对自然数集有更深刻的理解,并认识到其在数学领域中的重要作用和发展潜力。

1.3 目的:本文的目的在于深入探讨自然数集的概念、定义、性质和应用,以全面了解自然数集在数学中的重要性和地位。

通过对自然数集的研究,我们可以更好地理解数学基础知识,为数学学习打下坚实的基础。

同时,也可以探讨自然数集在实际生活和其他学科中的应用,从而更好地认识数学与现实的联系。

最后,本文也旨在展望自然数集未来的发展方向,探讨其在数学领域中可能的新应用和进展,为数学研究提供一定的参考和启发。

通过本文的撰写,希望能够引起对自然数集的关注和思考,进一步推动数学研究的发展。

2.正文2.1 自然数集的定义自然数集是最基本的数学概念之一,它是用来描述自然现象和计数的集合。

自然数集通常用符号N来表示,其中包括0、1、2、3、4……,一直延伸到无穷大。

在数学中,自然数集是非负整数的集合,它是整数集的一个子集。

自然数集的定义可以用归纳法来描述,按照以下步骤来定义自然数集N:1. 0属于自然数集,即0是自然数。

离散数学 第六章

离散数学 第六章

第二部分集合论引言集合是数学中最为基本的概念,又是数学各分支、自然科学及社会科学各领域的最普遍采用的描述工具。

集合论是离散数学的重要组成部分,是现代数学中占有独特地位的一个分支。

G.康托尔是作为数学分支的集合论的奠基人。

1870年前后,他关于无穷序列的研究导致集合论的系统发展。

1874年他发表了关于实数集合不能与自然数集合建立一一对应的有名的证明。

1878年,他引进了两个集合具有相等的“势”的概念。

然而,朴素集合论中包含着悖论。

第一个悖论是布拉利-福尔蒂的最大序数悖论。

1901年罗素发现了有名的罗素悖论。

1932年康托尔也发表了关于最大基数的悖论。

集合论的现代公理化开始于1908年E.策梅罗所发表的一组公理,经过A.弗兰克尔的加工,这个系统称为策梅罗-弗兰克尔集合论(ZF),其中包括1904年策梅罗引入的选择公理。

另外一种系统是冯*诺伊曼-伯奈斯-哥德尔集合论。

公理集合论中一个有名的猜想是连续统假设(CH)。

K.哥德尔证明了连续统假设与策梅罗-弗兰克尔集合论的相容性,P.J.科恩证明了连续统假设与策梅罗-弗兰克尔集合论的独立性。

现在把策梅罗-弗兰克尔集合论与选择公理一起称为ZFC系统。

本部分主要介绍朴素集合论的主要内容,其中包括集合代数(第六章)、二元关系(第七章)、函数(第八章)、集合的基数(第九章)等。

本部分的先行知识及各部分的关系如下图所示:6.1 集合的基本概念一.集合的表示集合是不能精确定义的基本概念。

直观地说,把一些事物汇集到一起组成一个整体就叫集合,而这些事物就是这个集合的元素或成员。

例如:方程x2-1=0的实数解集合;26个英文字母的集合;坐标平面上所有点的集合;……集合通常用大写的英文字母来标记,例如自然数集合N(在离散数学中认为0也是自然数),整数集合Z,有理数集合Q,实数集合R,复数集合C等。

表示一个集合的方法有两种:列元素法和谓词表示法,前一种方法是列出集合的所有元素,元素之间用逗号隔开,并把它们用花括号括起来。

离散数学第二版答案(6-7章)

离散数学第二版答案(6-7章)

离散数学第二版答案(6-7章)LT第六章 代数系统6.1第129页1. 证明:任取,x y I ∈,(,)*(,)g y x y x y x yx x y xy g x y ==+-=+-=,因此,二元运算*是可交换的; 任取,,x y z I ∈,(,(,))*(*)*()()g x g y z x y z x y z yz x y z yz x y z yz x y z xy xz yz xyz==+-=++--+-=++---+((,),)(*)*()*()(,(,))g g x y z x y z x y xy zx y xy z x y xy z x y z xy xz yz xyz g x g y z ==+-=+-+-+-=++---+=因此,运算*是可结合的。

该运算的么元是0,0的逆元是0,2的逆元是2,其余元素没有逆元。

2.证明:任取,,x y N x y ∈≠,由*,*x y x y x y x ==≠知,**y x x y ≠,*运算不是可交换的。

任取,,x y z N ∈,由(*)**x y z x z x ==,*(*)*x y z x y x ==知,(*)**(*)x y z x y z =,*运算是可结合的。

任取x N ∈,*x x x =,可知N 中的所有元素都是等幂的。

*运算有右么元,任取,x y N ∈,*x y x =,知N 中的所有元素都是右么元。

*运算没有左么元。

证明:采用反证法。

假定e 为*运算的左么元,取,b N b e ∈≠,由*的运算公式知*e b e =,由么元的性质知,*e b b =,得e b =,这与b e ≠相矛盾,因此,*运算没有左么元。

3.解: ① 任取y x I y x ≠∈,,的最小公倍数和y x y x =*的最小公倍数和的最小公倍数和y x x y x y ==*因此对于任意的y x I y x ≠∈,,都有x y y x **=,即二元运算*是可交换的。

离散数学屈婉玲第六章

离散数学屈婉玲第六章
因此 X=S5. (3) S1, S2, S3, S4和S5都是S1的子集,不包含在S3的子集含有
偶数,因此 X=S1, S2或S4. (4) XS3=意味着 X是S3的子集,因此 X=S3或 S5. (5) 由于S3是S1的子集,因此这样的X不存在.
32
练习3
3. 一个班50个学生,在第一次考试中有26人得5分,在第二 次考试中有21人得5分. 如果两次考试中都没有得5分的有 17人,那么两次考试都得5分的有多少人?
任取x, xX … xY (2) 证X=Y
方法一 分别证明 XY 和 YX 方法二
任取x,xX … xY 注意:在使用方法二的格式时,必须保证每步推理都是充 分必要的
21
集合等式的证明
方法一:命题演算法 例5 证明A(AB) = A (吸收律)
证 任取x, xA(AB) xAxAB
xA(xAxB) xA 因此得 A(AB) = A.
离散数学屈婉玲第六章
2020年4月29日星期三
6.1 集合的基本概念
1. 集合定义 集合没有精确的数学定义 理解:由离散个体构成的整体称为集合,称这些个体为集 合的元素 常见的数集:N, Z, Q, R, C 等分别表示自然数、整数、有 理数、实数、复数集合
2. 集合表示法 枚举法----通过列出全体元素来表示集合 谓词表示法----通过谓词概括集合元素的性质 实例: 枚举法 自然数集合 N={0,1,2,3,…} 谓词法 S={ x | x是实数,x21=0}
推论 S中至少具有一条性质的元素数为
12
实例
方法二 |S| = 1000 |A|=1000/5=200, |B|=1000/6=166, |C|=1000/8=125 |AB| = 1000/lcm(5,6) = 1000/33 = 33 |AC| = 1000/lcm(5,8) = 1000/40 = 25 |BC| = 1000/lcm(6,8) = 1000/24 = 41 |ABC| = 1000/lcm(5,6,8) = 1000/120 = 8

《离散数学集合》课件

《离散数学集合》课件

满射。
双射
03
如果一个映射既是单射又是满射,则称该映射为双射。
函数的基本性质
确定性
对于任意一个输入,函数只能有一个输出。
互异性
函数的输出与输入一一对应,没有重复的输 出值。
可计算性
对于任意给定的输入,函数都能计算出唯一 的输出值。
域和陪域
函数的输入值的集合称为函数的定义域,函 数输出的集合称为函数的陪域。
04
集合的运算性质
并集运算性质
并集的交换律
对于任意集合A和B,有A∪B=B∪A。
并集的幂等律
对于任意集合A,有A∪A=A。
并集的结合律
对于任意集合A、B和C,有 A∪(B∪C)=(A∪B)∪C。
并集的零律
对于任意集合A和空集∅,有A∪∅=ቤተ መጻሕፍቲ ባይዱ。
交集运算性质
交集的交换律
对于任意集合A和B,有A∩B=B∩A。
在数学中的应用
集合论
集合论是数学的基础,它为数学提供了基本的逻辑和概念 框架。通过集合,可以定义和讨论概念、关系和性质等。
概率论
在概率论中,集合用来表示事件,事件发生的概率可以定 义为该事件所对应的集合的元素个数与样本空间所对应的 集合的元素个数之比。
拓扑学
拓扑学是研究几何形状在大范围内变化的学科。在拓扑学 中,集合用来表示空间中的点、线、面等元素,以及它们 之间的关系。
THANKS FOR WATCHING
感谢您的观看
03
集合的分类
有穷集和无穷集
有穷集
集合中元素的数量是有限的,可以明 确地列举出集合中的所有元素。例如 ,集合{1, 2, 3}是一个有穷集。
无穷集
集合中元素的数量是无限的,无法列 举出集合中的所有元素。例如,自然 数集N={1, 2, 3,...}是一个无穷集。

离散数学(修订版)-耿素云

离散数学(修订版)-耿素云
例如 A = { a, b, c, …, z } Z = { 0, ±1, ±2, … }
谓词表示法: 用谓词来概括集合中元素的属性. 例如:B = { x | x R 且 x2 - 1 = 0 } 集合B表示方程x2 - 1 = 0的实数解集.
图示法:用一个圆来表示, 圆中的点表示集合中的元素. 许多集合可用两种方法来表示, 如: B = { -1, 1 }. 有些集合不能用列元素法表示, 如: 实数集合, 不能列举出
6.2 集合的运算
中山大学计算机科学系
18
集合的基本运算有并(Union), 交(Intersection)和相对
补(Relative Complement).
定义6.7 设A和B为集合, A与B的并集A∪B, 交集A∩B, B对A
的相对补集A-B分别定义如下:
A∪B = { x | x A∨x B }
常用的集合名称:
N: 自然数集合(本课程中认为0也是自然数)
Z: 整数集合
Q: 有理数集合
R: 实数集合
C: 复数集合
6.1 集合的基本概念
中山大学计算机科学系
10
集合有三种表示方法:列元素法、谓词表示法和图示法.
列元素法:列出集合中的所有元素, 各元素之间用逗号隔开, 并 把它们用花括号括起来.
《离散数学》(修订版) 耿素云、屈婉玲, 高等教育出版社, 2004年
教学参考书
《离散数学》
王兵山、王长英、周贤林、何自强编, 国防科技大学出版社, 1985年
《离散数学》
檀凤琴、何自强编著, 科学出版社, 1999年
《离散数学》
孙吉贵、杨凤杰、欧阳丹彤和李占山, 高等教育出版社, 2002年
《离散数学》

离散数学第六章集合-自然数与自然数集.ppt

离散数学第六章集合-自然数与自然数集.ppt
所以归纳得证S=N。
1908年Zermelo(蔡梅罗)定义的自然数
0=Ø 1={Ø } 2={{Ø }} 3={{{Ø }}} 4 ={{{{Ø }}}} ┅┅
显然,
0∊1∊2∊画出自然
数本身所固有的良好性质。
例 求证:对于任意自然数m和n, 若n∊m, 则n+∊m或者n+=m之一成立.
当n=0时,已经证明了结论成立。 对n作归纳假设,假设对任意自然数m, 有n∊m, 或者n=m,或者m∊n三者之一成立。 现在考察对于n+=n+1的情况。
n+=n∪{n},对于任意自然数m, 若n∊m, 则由对m用归纳法可以证明 n+∊m或者n+=m之一成立(见前页)。 若n=m,则m∊{m}={n},即m∊n∪{n}=n+。 若m∊n,则m∊n∪{n}=n+。
例1证(续)
若n∊S,要证n+=n+1∊S。 设有两个集合n1和n2,且 n1∊n2,n2∊n+=n∪{n}。 因n2∊n∪{n},所以n2∊n或者n2∊{n}。 若n2∊n,由于n∊S,所以n1∊n。 若n2∊{n},则n2=n,即n1∊n2=n。 综上所述n1∊n ⊆ n∪{n}=n+, 故 n+=n+1 ∊S。
N
皮亚诺公设(Peano’s Axioms)
设N表示自然数集。则: 1.0∊N 2.如果n∊N,那么n+∊N , 3.0不是任何自然数集的后继,即不存在自然数m∊N,
使得0=m+。 4.n和m均是自然数,如果n+=m+,那么n=m。 5.如S是N的子集,有性质
(1) 0∊S, (2) 如果n∊S,那么n+∊S , 则有 S=N。

离散数学第六章 集合-全集和集合的补

离散数学第六章 集合-全集和集合的补
第六章 集合
6.1 集合的基本概念 6.2 集合的基本运算 6.3 全集和集合的补 6.4 自然数与自然数集 6.5 包含与排斥原理
ห้องสมุดไป่ตู้
全集
定义: 我们在研究某一个具体问题时,往往 规定一个集合,使所涉及的集合都是它 的子集合,称这个集合为全集, 记为U (或E )。
全集是个有相对性的概念,不同的问题, 可以规定不同的全集。
任一集合的补集合是唯一的。
推论
设A是任意一个集合,则
A A
定理3 德· 摩根定律
(Augustus De Morgan, 1806-1871, 英國數學家)
A B A B
A B A B
证明:( A B) ( A B)
[ A ( A B)] [ B ( A B)] [( A A) B] [(B B) A] [ B] [ A]
补运算: Ā
定义:设A是一个集合,U 是全集合,我们 称集合U–A为A的补集,记为Ā,即有: Ā={ x│x∉A且x∊U }
Ā
A
U
定理1 A是一个任意集合,则
A∪Ā= U A∩Ā= Ø
定理2 Ā=B当且仅当A∪B=U且A∩B=Ø
证明: “” 由定理1结论成立。 “” 设A∪B=U 且A∩B=Ø ,则 B =B∩U =B∩(A∪Ā)=(B∩A)∪(B∩Ā) =Ø∪(B∩Ā) = (A∩Ā) ∪(B∩Ā) =(A∪B)∩Ā=U∩Ā=Ā
因而结论得证。
例 (p68)
证明:
(A–B)∩(A–C)=A– (B∪C)
( A B) ( A C ) ( A B) ( A C ) A (B C) A (B C) A (B C)

离散数学集合.ppt

离散数学集合.ppt
| U | 50, | A | 26, | B | 21, | A∩ B |17
首先由A∩ B A∪B 知 | A∪B ||U A∪B | | U A∩ B |=33 又因为 |A∪B| = |A| + |B| |A∩B| 所以 |A∩B| = |A| + |B| |A∪B|
= 26 + 21 33 = 14
即 |A∪B|=|B|+|A||A∩B|
推广
|A∪B∪C ||A||B||C||A∩B ||A∩C||B∩C||A∩B∩C |
n
n
∪i1 Ai
|Ai| |Ai∩ Aj|
i1
i j
n
| i jk
A∩i
Aj∩
Ak|
(1)n1|∩ i1
Ai|
二、实例
例3.3 某班有25个学生,其中14人会打篮球, 12人会打排球,6人会打篮球和排球, 5人会打篮球和网球,还有两人会打 这三种球,而6个会打网球的人都会 打另外一种球(指篮球和排球),求不 会打这三种球的人数?
(4) 幂 集:集合A的全体子集构成的集合, 记作P(A)。
符号化: P(A) = {B | B A },n 元集A的幂集P(A)中含2n个元素。
例3.1 计算以下幂集 (1) P() (2) P({,{}}) (3) P({1,{2,3}})
解: (1) P()={} ( 为什么不是 ? ) (2) P({,{}}) = {, {}, {{}}, {,{}}} (3) P({1,{2,3}}) = {,{1}, {2,3}, {1,{2,3}}}
=12+6+146 5+2|A∩B|=23|A∩B|
又因为6个会打网球的人都会打另外一种球, 所以:B (B∩ A∩ C )∪(B∩ C∩ A))∪(B∩ C∩ A)

离散数学集合论

离散数学集合论

2001.9
集合论 44
集合论
§1.3 自然数和归纳法
2001.9
45
集合论
自然数和归纳法
主要概念: 集合的后继
主要方法:归纳原理、第一归纳法、第二归纳法
2001.9
46
集合论
自然数的引进方法
① 公理化方法:皮亚诺公理(G.Peano);
② 构造性方法:借助集合论,具体构造出 N。
2001.9
离散数学
集合论
李舟军
集合论
主要内容
1. 集合及其表示 2. 集合的运算 3. 自然数和归纳法 4. 笛卡尔乘积
2001.9
2
集合论
集合是不能严格定义的原始概念 (相当于欧氏几何中的点、线)
原始概念
派生概念
2001.9
3
集合论
§1.1 集合及其表示
2001.9
4
集合论
集合及其表示
主要概念: 集合、集合的元素、属于、空集、 有限集、无限集、子集、真子集、 集合相等、幂集、罗素悖论
其中的iii)和iv)称为广义分配律,而v)和vi)称为广义德·摩尔根律。
2001.9
39
集合论
定理1.2.4
设 A 为任意集合,В为任意集类。 i) 若 B∈В,则 ∩В B 且 B ∪В; ii) 若对每个B∈В皆有A B,则 A ∩В; iii) 若对每个B∈В皆有 B A,则 ∪В A。
主要性质:空集是任意集合的子集、 子集关系的自反性和传递性、 空集的唯一性
主要方法:集合的四种表示方法 (列举法、部分列举法、命题法、归纳定义法) 求有限集幂集的元素个数 反证法 (取非要准确,例 A )
2001.9

离散数学 高教版 屈婉玲 06

离散数学 高教版 屈婉玲 06
y2 4-x x y1
2 4-x
y3
5-2
y1+2(4-x)+x+2=13
4-x
y2+2(4-x)+x=9
y3+2(4-x)+x=10 y1+y2+y2+3(4-x)+x=19
C
解方程组得 x=1,y1=4,y2=2,y3=3.
7/11/2013 1:59 AM Discrete Math. , huang liujia 11
| A1 A2 Am |
| S | | Ai |
i 1 m 1i j m
| A A
i
j
|

1i j k m
| Ai A j Ak | (1) m | A1 A2 Am |
7/11/2013 1:59 AM
7/11/2013 1:59 AM
Discrete Math. , huang liujia
14
应用——欧拉函数的值
CHAPTER SIX
例6.6 计算欧拉函数的值(n). 欧拉函数 :小于 n 且与 n 互素的自然数的个数 解 n 的素因子分解式: n p11 p22 ...pk k Ai = { x | 0xn1,且 pi 整除 x }, (n) | A A2 ... Ak | . 则 1
7/11/2013 1:59 AM Discrete Math. , huang liujia 3
§6.1 集合的基本概念
注:元素与集合的关系是属于∈和不属于 。 本书规定集合的元素都是集合。对任何集合A,都有AA .
CHAPTER SIX
2.子集合(Def 6.1):若集合B中的元素都在集合A中,则称B是A的子集合(简 称子集)。这时也称B被A包含,或A包含B。记为B A。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4 ={Ø ,{Ø },{Ø ,{Ø }},{Ø ,{Ø },{Ø ,{Ø }}}}
┅ ┅ ┅ ┅
自然数的定义
0=Ø 1={0}=0+ 2={0,1}=1+ 3={0,1,2}=2+ 4={0,1,2,3}=3+ ┅┅┅┅ 定义2 对于一个集合S, 如果它是空集Ø(亦即0 ), 或者有一个自然数n ,使得S=n+ , 则称S为一个自然数。
第二归纳法
若 n=0时命题成立, 假定当n 小于等于k 时命题成立,可以证明 n等于k+1 时命题也成立。
则对于一切自然数命题成立。
这种归纳方法又叫第二归纳法。
性质
①设n1,n2和n3是三个任意的自然数,若
n1∊n2,n2∊n3,则n1∊n3 。 ②设n1和n2是两个任意的自然数,则下述三个 式中有一个成立: n1∊n2, n1=n2, n2∊n1 ③设S是自然数集的任意非空子集,则存在 n0∊S ,使得n0∩S=Ø。
后继、前驱
对于任意两个自然数m和n, 如果m=n+,即 m=n∪{n}, 称m为n的后继,可以记为 m=n+1, 也称n为m的前驱,也可以记为 n=m-1。
自然数集 N
定义3 存在一个由所有自然数组成的集 合叫自然数集,记为
N
皮亚诺公设(Peano’s Axioms)
设N表示自然数集。则: 1.0∊N 2.如果n∊N,那么n+∊N , 3.0不是任何自然数集的后继,即不存在自然数m∊N ,使得0=m+。 4.n和m均是自然数,如果n+=m+,那么n=m。 5.如S是N的子集,有性质 (1) 0∊S, (2) 如果n∊S,那么n+∊S , 则有 S=N。
所以归纳得证S=N。
1908年Zermelo(蔡梅罗)定义的自然数
0=Ø 1={Ø } 2={{Ø }} 3={{{Ø }}} 4 ={{{{Ø }}}} ┅ ┅ 显然, 0∊1∊2∊3∊4∊ ┅ ┅ 但“∊”不满足传递性,未能准确刻画出自然 数本身所固有的良好性质。
例 求证:对于任意自然数m和n, 若n∊m, 则n+∊m或者n+=m之一成立.
例1 (传递性)
设n是一个自然数,求证:
若n1和n2为两个集合,且n1∊n2,n2∊n,则n1∊n。

S={n∊N│若有n1,n2, 且n1∊n2,n2∊n,则n1∊n},
要证S=N。 证明思路: 0∊S ? 若n∊S,n+=n+1∊S?

例1证(续)
若n∊S,要证n+=n+1∊S。 设有两个集合n1和n2,且 n1∊n2,n2∊n+=n∪{n}。 因n2∊n∪{n},所以n2∊n或者n2∊{n}。 若n2∊n,由于n∊S,所以n1∊n。 若n2∊{n},则n2=n,即n1∊n2=n。 综上所述n1∊n ⊆ n∪{n}=n+, 故 n+=n+1 ∊S。
自然数
0=Ø
(冯· 诺03年12月28日生于匈牙利,1957年2月8日卒于美国)
1={Ø }
2={Ø ,{Ø }}
3={Ø ,{Ø },{Ø ,{Ø }}}
1={0} 2={0,1}=1+ 3={0,1,2}=2+ 4={0,1,2,3}=3+ ┅┅┅┅
第六章 集合
6.1 集合的基本概念 6.2 集合的基本运算 6.3 全集和集合的补 6.4 自然数与自然数集 6.5 包含与排斥原理
后继: A+ =A∪{A}
定义1 A是一个给定的集合,存在一个集合叫做 A的后继,记为A+ 。 例 设A={a}, 则 A+= {a}∪{{a}} = {a, {a}} 例 设B={a,b}, 则 B+={a,b}∪{{a,b}} = {a,b,{a,b}}
数学归纳法——皮亚诺公设的第5条
设n是一个自然数, P(n)表示一个与n有关的公式或命题, 令 S={n∊N│P(n)为真} 。
若证明了 P(0)为真,也即0∊S (归纳基础); 若P(n)为真,则P(n+) 也为真, 即若n∊S,则n+∊S ( 归纳步骤)。 则由皮亚诺公设第5条, 得S=N。
例2
(p69)
证明:对于任意自然数m和n,都有 m∊n或者m=n或者n∊m之一成立。
证明:对n用归纳法。 当n=0时, n=Ø. 显然, 对于任意的自然数m, 只有两种情况: m=Ø, 或者 Ø ∊m (对于非0自然数) 即有 m=n, 或者n∊m之一成立.
可以对m运用数学归纳法证明(详见教材)
例2 证明:对于任意自然数m和n,都有 m∊n或者m=n或者n∊m之一成立。
证明:对m用归纳法。 若m=n+,则 n∊m成立, 此时有n+=m 。 归纳假设对任意的m, 若n∊m,则n+=m,或者n+∊m之一成立。 考察m+=m∪{m}, 若n ∊m+={m}∪m, n ∊{m}∪m
n =m n+ =m+
n ∊m
n+=m
n+ ∊m
n+ ∊m+
例 求证:对于任意自然数m和n, 若n∊m, 则n+∊m或者n+=m之一成立.
证明:对m用归纳法。 若m=n+,则 n∊m成立, 此时有n+=m 。 归纳假设对任意的m, 若n∊m,则n+=m,或者n+∊m之一成立。 考察m+=m∪{m}, 若n ∊m+={m}∪m,则n=m,或者n∊m。 于是有n+=m+, 或者n+=m,或者n+∊m之一成立。 从而分别有n+=m+ , 或者n+=m∊m+,或者n+∊m ∊m+ 之一成立, 即有n+=m+或者n+∊ m+之一成立。 所以归纳得证结论成立。
(p69)
当n=0时,已经证明了结论成立。
对n作归纳假设,假设对任意自然数m, 有n∊m, 或者n=m,或者m∊n三者之一成立。 现在考察对于n+=n+1的情况。 n∊m n+∊m n+=m n=m m∊n m∊n+
例2 证明:对于任意自然数m和n,都有 m∊n或者m=n或者n∊m之一成立。
(p69)
当n=0时,已经证明了结论成立。 对n作归纳假设,假设对任意自然数m, 有n∊m, 或者n=m,或者m∊n三者之一成立。 现在考察对于n+=n+1的情况。
n+=n∪{n},对于任意自然数m, 若n∊m, 则由对m用归纳法可以证明 n+∊m或者n+=m之一成立(见前页)。 若n=m,则m∊{m}={n},即m∊n∪{n}=n+。 若m∊n,则m∊n∪{n}=n+。 即对n+ 满足: 对于任意自然数m, 有m∊n+, 或者m=n+, 或者n+∊m三者之一成立。
相关文档
最新文档