理论力学1_绪论 拉格朗日力学
理论力学_ 拉格朗日表述(课件)_

∑ ∑ s
α =1
⎛⎜⎜⎝
d dt
∂L ∂q&α
⎟⎟⎞⎠q&α
s
−
∂L
α =1 ∂qα
q&α
=0
∑ ∑ ∑ s
α =1
⎜⎜⎛⎝
d dt
∂L ∂q&α
⎞q&α ⎠
=
sd α =1 dt
⎜⎜⎛⎝
∂L ∂q&α
q&α
⎞s −
∂L
⎠ α =1 ∂q&α
q&&α
∑ ∑ ∑ d
dt
s α =1
∂L ∂q&α
q&α
§8-2 广义动量积分和广义能量积分
L = 1 m(x& 2 + y& 2 + z& 2 ) − mgz 2
∂L = 0 ∂x
∂L = 0 ∂y
px
=
∂L ∂x&
=
mx&
=
常量
py
=
∂L ∂y&
=
my&
=
常量
L = 1 m(r& 2 + r 2θ&2 + r 2 sin 2 θϕ& 2 ) − mgr cosθ
§8-2 广义动量积分和广义能量积分
拉格朗日方程在一定条件下存在两种第一积分, 一个是广义动量积分, 一个是广义能量积分.
第一积分的存在,不但使拉格朗日方程降为一 阶方程, 简化求解;而且当第一积分有明确的物理意义 时, 还有利于我们对物理过程的认识和研究.
1.广义动量和广义动量积分
d dt
理论力学中的拉格朗日方程

理论力学中的拉格朗日方程在理论力学中,拉格朗日方程是一种重要的数学工具,用于描述系统的运动行为和力学规律。
拉格朗日方程由意大利数学家和物理学家约瑟夫·拉格朗日于18世纪提出,被广泛应用于经典力学的各个领域。
1. 拉格朗日方程的引入拉格朗日方程的引入是为了解决在复杂的力学系统中,尤其是多体系统中,求解运动方程困难的问题。
拉格朗日方程通过引入广义坐标和广义速度的概念,将原来的N个质点受力问题转化为2N个一阶偏微分方程组的求解问题。
2. 广义坐标和广义速度在拉格朗日方程中,将系统的坐标由笛卡尔坐标系转化为广义坐标系,这样可以更好地描述系统的自由度。
广义坐标的数目等于系统的自由度,它们可以用来完全描述系统的构型。
广义速度则是对广义坐标的时间导数,表示系统的运动状态。
3. 拉格朗日量在拉格朗日力学中,拉格朗日量是一个以广义坐标、广义速度和时间为变量的函数,代表系统的能量和动力学性质。
拉格朗日量可以通过系统的动能和势能函数得到。
对于自由度为n的系统,拉格朗日量可以表示为L(q, q', t),其中q表示广义坐标,q'表示广义速度,t表示时间。
4. 欧拉-拉格朗日方程欧拉-拉格朗日方程是拉格朗日方程的数学形式,它由拉格朗日原理引出。
欧拉-拉格朗日方程可以描述系统在运动过程中的动力学规律。
它可以表示为d/dt(dL/dq') - dL/dq = 0,其中d/dt表示对时间求导数。
通过求解这个方程组,我们可以得到系统的运动方程。
5. 应用与例子拉格朗日方程在经典力学中的应用非常广泛。
例如,它可以用于求解刚体的运动,弹性体的振动,以及受约束的质点系等问题。
通过将系统的动能和势能函数表示为广义坐标和广义速度的函数,可以得到相应的拉格朗日量,进而求解运动方程。
总结:拉格朗日方程是一种在理论力学中广泛应用的工具,用于描述系统的运动行为和力学规律。
它通过引入广义坐标和广义速度的概念,将系统的受力问题转化为求解一阶偏微分方程的问题。
最新理论力学-拉格朗日方程教学讲义ppt

m2g
此为一个自由度质点系,选角α为
广义坐标。
y
第七章 拉格朗日方程
§7-1 动力学普遍方程
例题 7-1
δrB F*B B
m1g δrC
d
O
α
x
ω dα
δrA A F*A
m1g
C
m2g
各质点的虚位移可用广义坐标的
变分表示
xA(dlsi n), xAlcos
yAlcos
yAlsin
xB(dlsi n),xBlcos
yBlcos,
yBlsin
yC2lcos, yC2lsin
y
第七章 拉格朗日方程
δrB F*B B
m1g δrC
§7-1 动力学普遍方程
例题 7-1
F A * x A F B * x B m 1 g y A m 1 g y B m 2 g y C 0(a)
d
O
α
x
ω dα
δrA A F*A
理论力学-拉格朗日方程
动力学
第 七
§7– 1 动力学普遍方程
章
拉
格
§7–2 拉格郎日方程
郎
日
方
程
§7–3 拉格郎日方程的第一积分
目录
第七章 拉格朗日方程
§7-1 动力学普遍方程
第七章 拉格朗日方程
第七章 拉格朗日方程
第七章 拉格朗日方程
第七章 拉格朗日方程
§7-1 动力学普遍方程
n
(Fi Fi*)ri 0
m1g
C
m2g
y
代入式(a)得
2m 1(dlsi n)2lcos2 m 1gsli n 2m 2gsli n 0
理论力学经典课件第九章拉格朗日方程

理论力学经典课件第九章拉格朗日方程是理论力学的重要组成部分,涉及欧 拉-拉格朗日方程和拉格朗日函数。在本次课件中,我们将深入探讨拉格朗日 方程的定义、应用实例及求解原理,并介绍多自由度的系统和哈密顿原理。 让我们一起来了解这一重要的物理学概念。
引言
理论力学的概念
欧拉-拉格朗日方程
理论力学是研究质点、质点系、 星系、表面、弹性体、流体等 物质运动规律与作用的一门自 然科学。
对于任意系统,在所有可能的 运动中,其真实运动使得作用 量达到最小值,作用量函数是 由拉格朗日函数定义的。
拉格朗日函数
描述了系统状态、参数、状态 变量与计算所有物理量的关系, 对于每一个系统都是唯一的。
拉格朗日方程的概念
参考文献
相关教材
• 《理论力学》(屠光 绍编)
• 《哈密顿力学:平凡 而重要的力学》(丘
• 维《声方编法)学与系统形态 学:拉格朗日方程的 理论与应用》(杨晋 编)
相关论文章
• Wei-Chiam Chung ,David Nezlin, Chuan-Jong Shih (2002)The
• LVa. gBraalankgriiasnhnan, S. FMo.rBmhualtattaiochna,rjee S(p2r0in0g7e)r CUlSassical M echanics: Point Particles and Special Relativity
• , G.WEboardldi,SLc.iZeanntiefi(c 2008)On the Variational and Lag r an g i an Representations of Classical M echanics, INTECH Open Access Publisher
理论力学-拉格朗日方程PPT

拉格朗日方程的推导
拉格朗日方程的推导基于哈密顿原则,通过对系统的运动原理进行最小作用 量的假设,推导出系统的运动方程。
拉格朗日方程的应用
拉格朗日方程在各个物理学和工程学领域都有广泛的应用,例如刚体动力学、 量子力学、控制理论等。
经典示例:单摆运动
单摆运动是拉格朗日方程应用的经典示例之一,通过建立摆角和摆长的关系,可以得到描述摆动的拉格 朗日方程。
拉格朗日方程的优点
相较于牛顿方程,拉格朗日方程具有独特பைடு நூலகம்优点,如坐标自由度更广、描述力学系统更简洁等。
拉格朗日方程在其他领域的应 用
除了物理学和工程学领域外,拉格朗日方程还在经济学、生物学等领域中有 着广泛的应用,为解决复杂问题提供了新的视角。
理论力学-拉格朗日方程 PPT
欢迎大家来到这个关于理论力学的PPT。本次内容将深入探讨拉格朗日方程的 定义、与牛顿方程的关系、推导方法、应用、经典示例和其他领域的应用。
拉格朗日方程的定义
拉格朗日方程是解决运动的一种优雅方法,通过定义拉格朗日函数和广义坐 标来描述系统的动力学行为。
拉格朗日方程与牛顿方程的关系
理论力学经典课件-第九章拉格朗日方程

理想弹性振子的振动分析
总结词
理想弹性振子是一个简化的模型,用于研究振动的规 律。通过拉格朗日方程,可以分析其振动行为。
详细描述
理想弹性振子是一个质量为m的质点,连接到一个无 质量的弹簧上。当振子受到一个外部力作用时,它会 开始振动。通过应用拉格朗日方程,可以计算出振子 的振动频率和振幅。
地球的运动分析
详细描述
分离变量法是一种求解偏微分方程的常用方法。它通过假设解可以表示为多个独立变量的乘积,将偏微分方程转 化为多个常微分方程,从而简化了求解过程。这种方法在求解波动方程、热传导方程等偏微分方程时非常有效。
哈密顿正则方程法
总结词
利用哈密顿原理和正则方程推导出系统 的运动方程,适用于完整约束系统。
VS
相对论力学中的拉格朗日方程
总结词
相对论力学中的拉格朗日方程是经典拉格朗 日方程的进一步发展,它考虑了相对论效应 ,适用于高速运动和高能量密度的物理系统 。
详细描述
在相对论力学中,由于物体的高速运动和相 对论效应的影响,经典拉格朗日方程需要进 行相应的修正。相对论力学中的拉格朗日方 程能够更好地描述高速运动和高能量密度下 的物理过程,如相对论性粒子的运动、高能
要点一
总结词
地球的运动是一个复杂的系统,涉及到多个力和力的矩。 通过拉格朗日方程,可以分析地球的运动轨迹和规律。
要点二
详细描述
地球的运动包括自转和公转,受到太阳和其他天体的引力 作用。通过应用拉格朗日方程,可以计算出地球的运动轨 迹和周期,以及地球上不同地区的重力加速度和潮汐现象 等。
非保守系统的拉格朗日方程
总结词
非保守系统中的拉格朗日方程需要考虑非保 守力的影响,这需要引入额外的变量和方程 来描述系统的运动。
经典力学的拉格朗日与哈密顿形式

经典力学的拉格朗日与哈密顿形式经典力学是物理学中的一个重要分支,用来研究物体在作运动时的力学规律。
在经典力学的发展历程中,拉格朗日力学和哈密顿力学是两个基本的理论框架。
本文将对拉格朗日力学和哈密顿力学的基本概念、原理和应用进行介绍。
一、拉格朗日力学拉格朗日力学是由意大利数学家拉格朗日于18世纪提出的一种描述力学系统的方法。
它基于一个称为“拉格朗日函数”的函数来描述物体的运动。
拉格朗日函数由广义坐标和广义速度构成,具体形式为L(q, ẋ),其中q表示广义坐标,ẋ表示广义速度。
在拉格朗日力学中,通过引入一个称为“作用量”的量来描述系统的运动。
作用量定义为物体在运动过程中受到的广义力与广义坐标变化的积分,即S = ∫L(q, ẋ)dt。
拉格朗日原理指出,物体在运动时,其实际路径是使作用量S取极值的路径。
通过应用拉格朗日原理,可以得到运动方程及其解。
对于单个质点的运动,拉格朗日力学方程可以写为∂L/∂q - d(∂L/∂ẋ)/dt = 0。
对于多个质点的系统,可以将拉格朗日函数写为各质点的质量、速度以及势能、动能的函数,并将系统的位形空间表示为广义坐标的空间。
拉格朗日力学具有坐标变换不变性、方程形式简洁等优点,适用于描述各种复杂力学系统的运动。
二、哈密顿力学哈密顿力学是由爱尔兰物理学家威廉·哈密顿于19世纪提出的一种力学描述方法。
它是拉格朗日力学的一种等价形式,通过引入广义动量,将力学系统的描述从坐标空间转化为相空间。
在哈密顿力学中,广义动量定义为p = (∂L/∂ẋ),并利用广义动量和广义坐标构成哈密顿函数H(q, p)。
哈密顿函数描述了系统的总能量,并在相空间中表示系统的状态。
利用哈密顿原理,可以推导出哈密顿力学的运动方程,即哈密顿正则方程。
对于单个质点的运动,哈密顿正则方程写为dq/dt = (∂H/∂p),dp/dt = - (∂H/∂q)。
对于多个质点的系统,可以将哈密顿函数表示为各质点坐标、动量以及势能、动能的函数。
理论力学—拉格朗日方程PPT

a1
3(m1
m2 gsin2 m2 )-2m2cos2
ar
2gsin (m1 m2 ) 3(m1 m2 )-2m2cos2
15
§18-2 拉格朗日(Lagrange)方程
由n个质点所 组成的质点系
主动力 虚位移
广义坐标 第i个质 点的位矢
F (F1, F2,, Fn )
r (r1,r2,,rn )
O1
x1
l
l
rA
rB
xA l cos yA l sin
FIA
A B FIB
m1g l
rC l m1g
xB l cos
C
yB l sin
m2g
yC 2l sin
y1
2m1lsin2lcos 2m1glsin 2m2glsin 0
2 (m1 m2 )g
m1lcos
10
例题3 质量为m1的三棱柱ABC
FIA
A B FIB
m1g l
rC l m1g
根据几何关系,有
C
m2g
xA lsin yA lcos
xA l cos
yA l sin
y1
xB lsin
xB l cos
yB lcos
yB l sin
yC 2lcos
yC 2l sin
9
3、应用动力学普遍方程
FIA δxA FIB δxB m1g δyA m1g δyB m2 g δyC 0
其次,要确定系统的自由度,选择合适的广义坐标。 按照所选择的广义坐标,写出系统的动能、势能或广 义力。
将动能或拉格朗日函数、广义力代入拉格朗日方程。
23
理论力学-拉格朗日方程

d dt
(
L qr
)
L qr
0
24
积分得:
L qr
C
(常数)
(rk)
循环积分
因L = T - U,而U中不显含 qr ,故上式可写成
L qr
qr
(T
U
)
T qr
Pr
C
(常数)
Pr称为广义动量,因此循环积分也可称为系统的广义动量积分。 保守系统对应于循环坐标的广义动量守恒。
能量积分和循环积分都是由保守系统拉格朗日方程积分一 次得到的,它们都是比拉格朗日方程低一阶的微分方程。
12 g
W ( ) M
Q
W (
)
M
T
1 6
2P
9Q g
(R r)2
;
d dt
T
1 6
2P
9Q g
(
R
r)
2
;
T
0
15
代入拉氏方程:
1 2P 9Q (R r)2 0 M
6g
6M
g
(2P 9Q)(R r)2
积分,得:
3M (2 P 9Q )(R r ) 2
gt
2
C1t
C2
代入初始条件,t =0 时, 0 0 , 0 0 得 C1 C2 0
故:
3M
gt 2
(2P9Q)( Rr)2
16
[例2] 与刚度为k 的弹簧相连的滑块A,质量为m1,可在光 滑水平面上滑动。滑块A上又连一单摆,摆长l , 摆锤质量为 m2 ,试列出该系统的运动微分方程。
解:将弹簧力计入主 动力,则系统成为具 有完整、理想约束的 二自由度系统。保守
系统。取x , 为广义
拉格朗日原理

拉格朗日原理可以总结为:在所有可能的轨迹中,物体运动的真实轨迹使得作用量 S 取得最小值。
拉格朗日原理的基本原理包括以下几个方面:
1. 广义坐标与拉格朗日函数
在拉格朗日力学中,为了简化问题和描述系统的微观行为,通常采用广义坐标来描述系统的运动状态。广义坐标是一组与系统的自由度相对应的坐标,它们可以完整地描述系统的位置和运动状态。
拉格朗日方程的应用非常广泛,包括刚体运动、振动系统、流体力学、电磁学等方面。它为研究和解决各种力学问题提供了一种统一而强大的数学工具。
拉格朗日力学具有较高的自然和数学美,它克服了牛顿力学的一些固有缺陷,提供了一种更加简洁、统一的描述物体运动的方法。拉格朗日原理的应用已经深入到物理学的各个领域,并对现代科学的发展产生了重大影响。
约束是指系统在运动过程中所受到的限制,例如硬约束(如杆的长度不变),软约束(如弹簧的拉伸长度受限制)等。约束对虚位移的大小和方向有一定的限制。
3. 动力学方程
拉格朗日力学中的动力学方程是描述系统运动的基本方程,通过该方程可以求解系统的运动轨迹。
根据拉格朗日原理,系统的真实轨迹使得作用量 S 最小。作用量由广义坐标和广义速度的积分路径 L 决定。通过对作用量求取极值的条件可以推导出系统的动力学方程,即欧拉-拉格朗日方程。对于具有 n 个自由度的系统,其动力学方程为:
d/dt (∂L/∂q̇i) - ∂L/∂qi = 0, i = 1, 2, ..., n
其中 L 是拉格朗日函数,q 是广义坐标,q̇ 是广义速度。这组方程描述了系统运动的特征和规律。
4. 拉格朗日方程的应用
拉格朗日方程是解决多个自由度力学问题的一种有效方法。通过将问题转化为寻找使作用量最小的轨迹所满足的动力学方程,可以在最小的计算量下得到系统的运动规律。
理论力学-拉格朗日方程共74页文档

谢谢!
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
理论力学-拉格朗日方程
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
拉格朗日力学

約瑟夫∙拉格朗日拉格朗日力学维基百科,自由的百科全书拉格朗日力学(英语:Lagrangian mechanics )是分析力学中的一种,于1788年由約瑟夫∙拉格朗日所创立。
拉格朗日力学是对经典力学的一种的新的理论表述,着重于数学解析的方法,並運用最小作用量原理[1],是分析力学的重要组成部分。
经典力学最初的表述形式由牛顿建立,它着重於分析位移,速度,加速度,力等矢量间的关系,又称为矢量力学。
拉格朗日引入了广义坐标的概念,又运用达朗贝尔原理,求得与牛顿第二定律等价的拉格朗日方程。
不仅如此,拉格朗日方程具有更普遍的意义,适用范围更广泛。
还有,选取恰当的广义坐标,可以大大地简化拉格朗日方程的求解过程。
目录1自由度2广义坐标3拉格朗日量4拉格朗日方程5拉格朗日力学的扩展6参见7参考文献自由度力学系统可以由一组坐标来描述。
例如,一个质点的运动(在笛卡尔坐标系中)由x 、y 、z 三个坐标来描述。
一般而言,个质点组成的力学系统由个坐标来描述。
力学系统中常常存在着各种约束,使得这个坐标并不都是独立的。
力学系统的独立坐标的个数称之为自由度。
对于个质点组成的力学系统,若存在个约束,则系统的自由度为。
广义坐标在矢量力学中,约束的存在体现于作用于系统的约束力。
约束力引入额外的未知量,通常使问题变得更为复杂。
但若能选取适当的个完全满足约束条件的独立坐标,则约束不再出现在问题中,只需要求解关于个未知变量的方程,使问题得以大大简化。
而如果运用牛顿力学来解约束问题,通常约束越多,需要求解的方程个数就越多,反而增加了一定的难度。
这样的个坐标不再局限于各质点的位置坐标,而可以是任何能描述系统的几何参量,因此称为“广义坐标”。
拉格朗日量拉格朗日力学的一个基本假设是:具有个自由度的系统,其运动状态完全由个广义坐标及广义速度决定。
或者说,力学系统的运动状态由一个广义坐标和广义速度的函数描述:。
这个函数称为拉格朗日函数或拉格朗日量。
引入势能函数[2]。
理论力学 拉格朗日方程

d 3m m ( x r ) ( 2kx) 0 dt 2 2 3m m r 4kx 0 x (1) 对广义坐标φ
d 3m 2 m rx) (2kr 2 ) 0 ( r dt 4 2 m 3m x r 2kr 0 ( 2) 2 4 这就是系统的运动微分方程。
且圆柱体位于斜面最高点。试求:(1)系统的运动微分方程;(2) 楔形体的加速度。
解:其研究楔形体与圆柱体组
成的系统。系统受理想、完整、 定常约束,具有两个自由度。 取广义坐标为x, s ;各坐标原 点均在初始位置。
系统的动能:
1P 2 1Q 2 2 1 1Q 2 s 2 T x ( x s 2 xs cos ) r ( ) 2g 2g 2 2g r 1 PQ 2 3 Q 2 Q x s xs cos 2 g 4g g
例2 质量为m的物块A在光滑平面上运动 质量为 半径r 的圆盘作纯滚动,各弹簧连 接如图,均为自然长度。 建立系统运动微分 方程。
m 2
2K K A
B
K
d L L 0 d t q j q j
取广义坐标 x,
m 2 1m 11m 2 2 2 T x ( x r ) r 2 2 2 22 2 3m 2 3m 2 2 m x r rx 4 8 2
L L 2 m2l m2 xl cos , m2 xl sin m2 gl sin d L ( ) m2l 2 m2 l cos m2 xl sin x dt
d L L ( ) 0 dt q j q j
系统势能:(以弹簧原长为弹性势能零点,滑块A所在平面
理论力学第十八章 拉格朗日方程 教学PPT

h
h
j
h
(2)
ri ri (q1, q2 ,...qk ; t) 对任 qh求偏导,再对时间t求导得
d
dt
( ri ) qh
k j1 q j
(
ri qh
)qj
2 ri tqh
k 2r
i
j1 q q
q j
2r i
tq
j
h
h
(3)
式(3)右边与式(2)右边比较可得关系式
i 1
以上二式称为动力学普遍方程 或 达朗贝尔——拉格朗日方程。
n
Fi miai δ ri 0
i 1
n
Fix mi xi δ xi Fiy mi yi δ yi Fiz mizi δ zi 0
i 1
动力学普遍方程
但是,如果改用广义坐标,来描述系统的运动,将动力 学普遍方程表达成广义坐标的形式,就可得到与广义坐标 数目相同的一组独立的运动微分方程,这就是著名的拉格 朗日方程,用它求解较复杂的非自由质点系的动力学问题 常很方便。
拉格朗日方程的推导
设由 n 个质点组成的质点系,受到 s 个理想、完整约束,因此该系统 具有k= 3m- s个自由度,可用 k 个广义坐标 q1 , q2 , … , qk 来确定该系统的 位形。
动力学普遍方程-例题1
动力学普遍方程-例题1
δrB F*B B
m1g δrC
解: 球简化为质点,除主动力外,图上画出了
d
O α δ x
ω dα
δrA A F*A
m1g
飞球的惯性力F*A和F*B,两力大小相等,方 向相反。
理论力学-拉格朗日方程

涨落力广泛应用于统计物理、凝聚态物理、材料科学等领域。
多体动力学问题的求解
拉格朗日方程也可以应用于多体动力学问题,下面将展示拉格朗日方程求解多体系统运动规律的实例。
数学表述
多体系统问题可以表示为n个质 点组成的整体。设第i个质点的 坐标为ri,速度为vi,将其表示 为广义坐标和广义速度,得到n 个广义坐标和广义速度的描述 向量Q。
应用
广泛应用于天体物理学、量 子力学、粒子物理学等领域。
数学表达
拉格朗日方程的核心在于始终作用量原理。通过最小作用量原理,我们可以得到物理系统的拉格朗日方程。
协变性
拉格朗日力学描述物体运动规律 不随坐标系的选择而改变。
数学形式
实验验证
拉格朗日方程为求解动力学问题 提供了一种非常便捷的数学语言。
大量实验结果证明拉格朗日方程 可以准确描述物体的运动规律。
优点
相比于牛顿运动定律,拉格朗日方程更加简明、严谨。
应用领域
涉及众多领域,如物理、数学、历史等。
研究意义
对拉格朗日方程深入理解有助于人们掌握某些方面的物理知识,提高人们的综合分析和问题 解决能力。
公式推导
拉格朗日力学与哈密顿力学是两种常用的力学描述方式。接下来,我们将比较两种描述方式,并展示拉 格朗日方程的具体公式表达。
1
拉格朗日力学
将物理问题转化为描述系统能量的拉格朗日函数,通过一组广义坐标和广义速度来表示 系统的状态。
2
哈密顿力学
基于哈密顿量,通过广义坐标和广义动量表示系统状态。哈密顿量表示粒子对系统全能 量的贡献。
公式推导
通过哈密顿原理或变分原理, 推导出Lagrangian和Lagrange's equations of motion,这样就可 以写下多体系统的Lagrangian方 程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f (r , t ) 0
约束方程
分析力学的发展
• 1717, 约翰 伯努利,虚功原理 Johann Bernoulli, Principle of virtual work • 1744, 莫培督,最小作用量原理 Maupertuis, Principle of least action • 1752,达朗贝尔, 达朗贝尔原理 D’Alembert, D’Alembert Principle • 1760, 拉格朗日,拉格朗日方程 Lagrange, Lagrange’s equation • 1788, 拉格朗日,《分析力学》 Lagrange, 《Analytical mechanics》 • 1834, 哈密顿,哈密顿原理 Hamilton, Hamilton’s Principle • 1835, 哈密顿,正则方程 Hamilton, Canonical equation
第二章 拉格朗日力学 Chapter 2. Lagrangian mechanics
牛顿力学的局限性
r , r 0 0 初始条件 mr F ( r , r , t ) f ( r , t ) mat mac
x1
l
x2
2D平面运动
2D平面运动
f 2, ( x1 , x2 )
f 1, , l , A
h
2D平面运动
第二章 拉格朗日力学 复习
1.1 约束和广义坐标
• 1. 约束(限制质点自由运动的条件) • 2. 自由度f(对受完整约束的系统,唯一地 确定体系的位置和形状必须给出的独立量 的数目) • 3. 广义坐标q(任何一组能明确表明体系位 形的参数) • 4. 位形空间(由f个广义坐标张成的f维空间) • 5. 虚位移r (符合约束条件的无限小、瞬时 的位置变更,不经历时间)
d L dt q
, t ) T V L(q, q
T L p q q
1.4 哈密顿原理与拉格朗日方程
• 1. 变分法 x J f ( x, y( x), y( x))dx 泛函
2
x1
取极值的条件
d f f 0 dt y y
理论力学
宋若龙 崔志文 王鲲
吉林大学物理学院
songrl@ 物理楼246
考核方式
• 作业: 20分 • 阶段考试:20+20分 • 期末考试:40分
参考书
1. 王克协,经典力学教程,吉林大学出版社 2. 秦敢,力学与理论力学(下册),科学出版社 3. 朗道,力学,高等教育出版社
空间均匀性 空间各向同性 时间均匀性 动量守恒 角动量守恒 广义能量守恒
1.3 达朗贝尔原理与拉格朗日方程
• 1.达朗贝尔原理
• 2. 拉格朗日方程
Fi Ri mr i 0
d T dt q T q Q L q 0
• 3. 保守系拉格朗日方程 • 4. 拉格朗日函数 • 5. 广义动量
• 2. 哈密顿原理 对相同的起止位置和约束,完整保守系 在所有可能的运动中,真实运动使拉格朗 日函数对时间的积分取极值。
, t )dt S s L(q, q
t1
t2
1.5 拉格朗日方程第一积分
• 1.循环坐标 L d L 0 q dt q
0, p Constant p
分析力学的特点
• 1. 避开系统各部分之间的约束力和繁琐的 向量运算,用一标量拉格朗日函数(L=T-V) 描述系统的动力学特征。 • 2. 将力学建立在新的原理之上:哈密顿原 理。
• 3. 用能量来描述力学系统,适用于从量子 力学到宇宙学等物理学的各个领域。
2.1 广义坐标 (generalized coordinates)
, t ) 0, i 1,2,, m fi (r1, r2 ,, rn , r1, r2 ,, r n
稳定约束(stable)
fi (r1, r2 ,, rn ) 0, i 1,2,, m
2. 自由度(Freedom)
对受完整约束的系统,唯一地确定其位形(位置和形状)所必 须给出的独立参量的数目,称为自由度。
1.2 虚功原理
• 1. 理想约束: Ri ri 0
• 2. 虚功原理:平衡的充要条件 Fi ri 0
ri • 3. 广义力: Q Fi q
V Q 所有主动力都是保守力 q
• 4. 平衡的稳定性
V ( x0 ) 0
V ( x0 ) 0 稳定 V ( x0 ) 0 不稳定
1788, Lagrange, 《分析力学》
1834, Hamilton, 《论动力学中的一种普遍方 法》(哈密顿原理)
内 容
• 第一章 向量与非惯性系
• 第二章 拉格朗日力学 • 第三章 哈密顿力学 • 第四章 微振动 • 第五章 中心力 • 第六章 刚体 • 第七章 非线性动力学与混沌 经典力学问题 分析力学
4. Goldstein, H., Classical Mechanics
5. 李德明,经典力学,高等教育出版社
ቤተ መጻሕፍቲ ባይዱ
6. Jose,J. V., Classical Dynamics: A contemporary approach,
绪论
• 研究对象:低速 宏观物体 的机械运动
• 三个里程碑:
1687, Newton, 《自然哲学的数学原理》
1. 约束(Constraints) 限制质点或质点系自由运动的条件,称为约束。
完整约束(holonomic: essentially integrable) (几何约束,可积约束)
fi (r1, r2 ,, rn , t ) 0, i 1,2,, m
非完整约束(nonholonomic) (微分约束,速度约束)
3. 广义坐标(Generalized coordinates)
任何一组能明确表明体系位形的参数,都可以作为一组坐标, 称为广义坐标。 独立变更,唯一确定体系位形
r
2D纯滚动
2D平面运动
f 3, ( r, , ), ( x, y, )
f 2, ( , ), ( x, ) ( , )
• 2. 哈密顿函数 L q H ( q, p, t ) p q q , p ,t
H T2 T0 V H T V
(对稳定约束)
dH L dt t
L 0 H Constant t
1.6 受广义有势力系统拉式方程
F e( E v B)
A E t
B A
U e( v A)
U d U Fi i xi dt x
L T U
d L dt x
L x 0
1.7 对称性和守恒定律