变风量系统及控制原理Word版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

提要:本文主旨指导初学者了解一些变风量系统的基本概念,提供变风量系统设计流程及设计方案选择指南,同时着重介绍Onyx-2000变风量系统基本控制策略。

一、变风量空调系统基本概念

1.1 变风量空调系统定义

众所周知,变风量空调系统是通过改变送风量也可调节送风温度来控制某一空调区域温度的一种空调系统。该系统是通过变风量末端装置调节送入房间的风量,并相应调节空调机(AHU)的风量来适应该系统的风量需求。变风量空调系统可根据空调负荷的变化及室内要求参数的改变,自动调节空调送风量(达到最小送风量时调节送风温度),以满足室内人员的舒适要求或其他工艺要求。同时根据实际送风量自动调节送风机的转速,最大限度地减少风机动力,节约能量。

1.2 国内外发展概况

变风量(Variable Air Volume)空调系统于20世纪60年代起源于美国。在当时定风量系统加末端再热和双风道系统在很长一段时间内占据舒适性空调的主导地位,因此,变风量系统出现以后并没有立刻得到推广,直到1973年西方石油危机之后,能源危机推动了变风量系统的研究和应用,此后20年中不断发展,如今已经成为美国空调系统的主流。

变风量系统在发展初期,因支管风量平衡的需要和控制设备的局限,大多要求采用高速送风系统,主要送风速度在12.5m/s以上,并且推荐采用静压复得法设计风管系统。尽可能地采用圆形或椭圆形风管,以减小摩擦阻力。但是高速送风系统的风机耗能大,且管路系统噪音增加。随着压力无关型VAV box基本上全面取代压力相关型VAV box及DDC控制器的发展,于是变风量空调方式在低速送风系统中的应用越来越普遍。

在日本,将变风量空调方式用于低速送风系统的研究与开发值得

关注。由于传统的皮托管流量传感器在5m/s的风速下难以测定,因此日本人开发研究了超声波流量传感器和电磁式流量传感器等多种适用于低速

送风系统的前端设备,一方面节能,另一方面降低了风管噪音,因此,进入9 0年代以后,无论是新建还是70年代以前建造的空调系统的翻新改造,基本上都采用变风量空调系统。

我国在70年代即有人研究VAV系统的开发和应用,并在地下厂房、纺织厂、体育馆等建筑中就采用过VAV系统。在80年代末期我国出现的首批智能化建筑中,也曾采用过VAV系统,但由于建设过程和使用过程中的种种问题,有些工程两三年后使用单位便取消了变风量系统的运行方式,相应的自控设备也拆除了,这使得变风量系统的优点没有发挥出来,变风量系统附加的投资难以得到回报。在此期间,变风量空调技术(包括控制技术和设备),也在不断地发展和完善。目前,在国内智能建筑的高速发展过程中,急需全面深刻地分析变风量空调系统的发展趋势和技术关键,总结工程实例,促进这一重要技术的平稳发展。

1.3 变风量系统的特点

1.能实现局部区域(房间)的灵活控制,可根据负荷的变化或个人的舒适要求自动调节自己的工作环境;不再需要加热方式或双风道方式就能适应多种室内舒适要求或工艺设计要求;完全消除再加热方式或双风道方式的冷热混合损失。

2.自动调节各个空调区域的送入能量,在考虑同时使用系数的情况下,空调器总装机容量可减少10%-30%左右。

3.室内无过热过冷现象,由此可减少空调负荷15%-30%左右。

4.部分负荷运转时可大量减少送风动力,根据理论模拟计算,全年平均空调负荷率为60%时,变风量空调系统(变静压法控制)可节约风机动力78%。

5.可应用于民用建筑、工业厂房等各类相应的场合。可适应于采用全热交换器的热回收空调系统及全新风空调系统。

6.可避免凝结水对吊顶等装饰的影响,并方便二次装饰分割。

总之,变风量空调系统较定风量空调系统和风机盘管系统而言,具有舒适、节能、安全和方便的优点,已得到越来越多的采用。

1.4 变风量系统的构成

1.VAV装置

VAV空调系统的运行依靠称为VAV装置的设备来根据室内要求提供能量控制其送风量。同时向DDC控制器传送自己的工作状况,经DDC分析计算后发出控制风机变频器信号。根据系统要求风量改变风机转速,节约送风动力。最常用的VAV装置原理如图1-1所示。主要由室内温度传感器、电动风阀、控制用DDC板、风速传感器等部件构成。大部分采用可换式通用设备,控制系统多为各设备厂家自己开发。像风速传感器就有多种型式,如采用超声波涡旋法、叶轮转子法、皮托管法、半导体法、磁体法、热线法等专利产品。

图1-1 VAV装置原理图

如图1-2所示的VAV装置常常被称为FPB(Fan Powered Box),即风机动力型末端。

其特点是根据室内负荷由VAV装置调节一次送风量,同时与室内空气混合后经风机加压(或一次风不经风机加压与加压室内空气并联)送

入室内,以保持室内换气次数不变。该方式加设了风机系统,成本提高,可靠性、噪声等性能指标有所下降。

2.DDC控制器

DDC控制器的主要功能是根据系统中各VAV装置的动作状态或风管的静压值(设定点),分析计算系统的最佳控制量,指示变频器动作。在各种VAV空调系统的控制方法中,除DDC式外,其他方法均设置独立式系统控制器。

3.变频风机(空调机)

VAV空调系统常采用在送风机的输入电源线路上加装变频器的方法,根据DDC控制器的指示改变送风机的转速,满足空调系统的需求风量。

1.5 变风量系统的分类

一般地,可以把变风量系统按周边供热方式和变风量末端结构两方面进行分类。

(1)按照周边供热方式的分类(内部区域单冷)

①内部区域单冷系统。即是指在空调内区采用的变风量空调形式,一般地不带供热功能,下面几种形式均是以采用内部区域单冷为前提的。②周边散热器系统。散热器设置在周边地板上,不用冷、热空气的混合来控制空气温度,一般采用热水或电热散热器,具有防止冷气流下降、运行成本低、控制简单等优点。但需要精确计算冷却和加热负荷,以避免冷热同时作用。在国外一些豪华考究的设计中,常采用顶棚辐射散热器提供更舒适的空调环境。

③风机盘管周边系统。风机盘管可以是四管式,也可采用冷热切换二管式,或单供热二管式。风机盘管采用暗吊时不占用地板面积,同样具有运行成本低、控制简单的优点。夏天由于吊顶内仍保留冷水管及凝水盘,天花板仍有发生水患的可能。

④变风量再热周边系统。在变风量末端装置中加再热盘管,一般采用热水或电加热盘管。该系统比双风道系统初投资更低,比定风量再热系统节约能源,尽管同样不占用地板面积,但控制程序复杂。

相关文档
最新文档