一次函数的应用—三种题型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数的应用
行程问题
k、b所表达的意义:
如图是小明从学校到家里行进的路程S(米)与时间t(分)的函数图象,观察图象,从中得到如下信息,其中不正确的是
A、学校离小明家1000米
B、小明用了20分钟到家
C、小明前10分钟走了路程的一半
D、小明后10分钟比前10分钟走得快
“高高兴兴上学来,开开心心回家去”.小明某天放学后,17时从学校出发,回家途中离家的路程s(km)与所走的时间t(min)之间的函数关系如图所示,那么这天小明到家的时间为()
小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是?
追击问题 如图(1),在同一直线,甲自A 点开始追赶等速度前进的乙,且图(2)表示两人距离与所经时间的线型关系.若乙的速率为每秒1.5公尺,则经过40秒,甲自A 点移动多少公尺?
如图OB 、AB 分别表示甲、乙两名同学运动的一次函数图象,图中s 和t 分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①甲让乙先跑12米;②甲的速度比乙快1.5米/秒;③8秒钟内,乙在甲前面;④8秒钟后,甲超过了乙,其中正确的说法是( )
为迎接20XX 年北京奥运会,某学校组织了一次野外长跑活动,参加长跑的同学出发后,另一些同学从同地骑自行车前去加油助威。如图,线段L 1,L 2分别表示长跑的同学和骑自行车的同学行进的路程y (千米)随时间x (分钟)变化的函数图象。根据图象,解答下列问题:
(1)分别求出长跑的同学和骑自行车的同学的行进路程y 与时间x 的函数表达式;
(2)求长跑的同学出发多少时间后,骑自行车的同学就追上了长跑的同学
o x (分钟)
y (千米)108642
605040302010
快车甲和慢车乙分别从A 、B 两站同时出发,相向而行.快车到达B 站后,停留1小时,然后原路原速返回A 站,慢车到达A 站即停运休息.下图表示的是两车之问的距离y (千米)与行驶时间x (小时)的函数图象.请结合图象信息.解答下列问题: (1)直接写出快、慢两车的速度及A 、B 两站间的距离; (2)求快车从B 返回 A 站时,y 与x 之间的函数关系式; (3)出发几小时,两车相距200千米?请直接写出答案.
甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时).图中折线OABC 、线段DE 分别表示甲、乙两车所行路程y (千米)与时间x (小时)之间的函数关系对应的图象(线段AB 表示甲出发不足2小时因故停车检修).请根据图象所提供的信息,解决如下问题: (1)求乙车所行路程y 与时间x 的函数关系式;
(2)求两车在途中第二次相遇时,它们距出发地的路程;
(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)
有一个附有进水管和出水管的容器,在单位时间内的进水量和出水量分别一定.设从某时刻开始的5分钟内只进水不出水,在随后的15分钟内既进水又出水,得到容器内水量y (升)与时间x (分)之间的函数图象如图.若20分钟后只放水不进水,这时(x ≧20时)y 与x 之间的函数关系式是
A O D
P B F G
E y (千米) x (小时)
480
6 8 10 2 4.5
某空军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油过程中,设运输飞机的油箱余油量为Q1t,加油飞机的加油油箱余油量为Q2t,加油时间为tmin,Q1,Q2与t之间的函数图象如图所示,结合图象回答下列问题:
(1)加油飞机的加油油箱中装载了______吨油.
(2)将这些油全部加给运输飞机需______分钟.
(3)求加油过程中,运输飞机的余油量Q(t)与时间t(min)的函数关系式.
(4)运输飞机加完油后,以原速继续飞行,需10h到达目的地,油料是否够用
一艘轮船从甲港出发,顺流航行3小时到达乙港,休息1小时后立即返回.一艘快艇在轮船出发2小时后从乙港出发,逆流航行2小时到甲港,立即返回(掉头时间忽略不计).已知轮船在静水中的速度是22千米/时,水流速度是2千米/时.下图表示轮船和快艇距甲港的距离y(千米)与轮船出发时间x(小时)之间的函数关系式,结合图象解答下列问题:(顺流速度=船在静水中速度+水流速度,逆流速度=船在静水中速度-水流速度)
(1)甲、乙两港口的距离是________千米;快艇在静水中的速度是_________千米;
(2)求轮船返回时的解析式,写出自变量取值范围;
(3)快艇出发多长时间,轮船和快艇在返回途中相距12千米?
因南方旱情严重,乙水库的蓄水量以每天相同的速度持续减少.为缓解旱情,北方甲水库立即以管道运输的方式给予以支援下图是两水库的蓄水量y (万米3)与时间x (天)之间的函数图象.在单位时间内,甲水库的放水量与乙水库的进水量相同(水在排放、接收以及输送过程中的损耗不计).通过分析图象回答下列问题: (1)甲水库每天的放水量是多少万立方米?
(2)在第几天时甲水库输出的水开始注入乙水库?此时乙水库的蓄水量为多少万立方
米?
(3)求直线AD 的解析式.
相遇问题
某中学九年级甲、乙两班商定举行一次远足活动,A 、B 两地相
距10千米,甲班从A 地出发匀速步行到B 地,乙班从B 地出发
匀速步行到A 地。两班同时出发,相向而行。设步行时间为x 小 时,甲、乙两班离A 地的距离分别为y 1千米、y 2千米,y 1、y 2与x 的函数关系图像如图所示,根据图像解答下列问题:
(1) 直接写出,y 1、y 2与x 的函数关系式; (2) 求甲、乙两班学生出发后,几小时相遇?相遇时乙班离A 地多少千米?
甲从P 地前往Q 地,乙从Q 地前往P 地.设甲离开P 地的时间为t (小时),两人距离Q 地的路程为S (千米),图中的线段分别表示S 与t 之间的函数关系.根据图象的信息,下列说法正确的序号是( )
①甲的速度是每小时80千米; ②乙的速度是每小时50千米;
③乙比甲晚出发1小时; ④甲比乙少用2.25小时到达目的地; ⑤图中a 的值等于 6607.
y 1 O
10
y /千米 x /小时
2 2.5
y 2