《生活中的数学》校本课程正文

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲象棋中运用的防守和进攻原理与学习高中数学的联系象棋与其他棋类不同。它不像五子棋得

个空,五子连线就胜利;也不像围棋非得下

满,数子多的胜利;更不像军旗一板一眼,

服从上下级。象棋只需要取敌主将首级才算

胜利,否则你便是杀他个精光,你的老将与

之对脸,你也是输!五子棋相当于抱有侥幸

心理学习数学,只是到考试时候努力一阵。

但数学是理科知识,不经历一定的训练,是

难以达到融会贯通的。即便真的“临阵磨枪”

考得不错,那也难以找到自己错题的原因。而且不知道为什么做对比不知道为什么做错更可怕!围棋相当于题海战术,使劲做题,恨不得做光所有难题。可是根据心理学中“学习效率说”,并非学习次数越多越能掌握知识。而是每次做完一题都要检验一下是否正确,如果错,错在哪。要是把作业本做的满满的,你也没心情去考虑每个知识点的用法。不过适用于工科,因为工科是动手实践能力,这个可是多多益善,只要你确信你做的每个步骤是对的。军旗就相当于循规蹈矩,老师让做什么就做什么,而且有些练习册还把题分出了ABC三个难易等级。其实数学基础要扎实,但是不见的说难题不能做。现在的老师也把学生分成三六九等,分别做着ABC难度的题,这不只是侮辱,更是束缚了学生的发展空间。我建议各种难度的题都做一下,干什么排长就不能活捉司令阿!只有象棋才会融汇特种作战的作风。它容许偶尔偷奸耍滑,反正只要掌握要点就行,三十二个军中取得上将首级就够了。但这只是用于高考使得应试能力!它也不是强调杀人吃子,因为即使你吃的再多,胜利只在乎考试好坏耳。考试不给人解释的机会,现实也不给人这个机会。它也没有上下级观念,卒子可以杀将。新手可以做A 题!《最后一颗子弹留给我》里小庄当特种兵时,不也就是一个列兵吗?只要能抓住耗子,谁会在乎那是是不是猫!只要做对题,谁能在乎你是怎么学习的?还有,记住守住自己的老将,那是你的及格线。一旦丢了老将,你的棋盘也就无意义了!我认为象棋与高中数学关系,不过于此!说实在的,玩棋要有棋德。不管是什么棋,都不要老想着偷一个棋,摸一个子的。别管是否发现,都是盗取,有可能失去下棋的资格。当然,如果一盘棋关乎一生,你就要仔细斟酌了!

学生探究实施建议:

学有余力之时,下下象棋也是不错的选择。

第二讲扑克牌中的数学游戏

一、巧排顺序

将1—K共13张牌,表面上看顺序已乱(实际上已按一定顺序排好),将其第1张放到第13张后面,取出第2张,再将手中的牌的第1张放到最后,取出第2张,如此反复进行,直到手中的牌全部取出为止,最后向观众展示的顺序正好是1,2,3,……,10,J,Q,K.

请你试试看!

扑克牌的顺序为:7,1,Q,2,8,3,J,4,9,5,K,6,10.

你知道这是怎么排出的吗?

这是“逆向思维”的结果,将按顺序1,2,3,4,5,6,7,8,9,10,J,Q,K排好的扑克牌按开始的操作过程反向做一遍即可.

司马光砸缸的故事你早已听说过吧!孩子掉入水缸,常人一般考虑是让孩子离开水,而司马光砸缸是让水离开孩子,这就是逆向思维,巧排扑克牌的顺序也是逆向思维。在你的学习、生活中离不开逆向思维,愿你早日有意识的这样思维,变得更聪明。

二、妙算猜牌

[玩法]

1.将54张牌洗乱;

2.将54张牌(正面朝上),一张一张地顺序数出30张,翻面(正面朝下)放在桌上,表演者在数30张牌时,牢记第9张牌的花色与点数。

3.从手中的24张牌中,请观众任取一张,若为10,J,Q,K之一,算为10点,并且正面朝上作为第一列放在一旁;若牌的点数a1小于10(大小王的点数为0),将这张牌正面朝上放在一旁,并且从手中任取10—a1张牌正面朝下,作为第一列放在这张牌下面,再请观众从手中的牌中任取一张,按上法组成第2列;最后再请观众从手中任取一张牌,按上法组成第3列,若手中的牌不够,从桌上已放好的30张补足,但是必须从上到下地取牌。

4.将每列的第一张牌的点数a1,a2,a3加起来,得a=a1+a2+a3;

5.表演者从手中已剩下的牌数起,数完后再从放在桌上30张牌中的第一张开始接着数去(如果手中已无剩牌,则从桌上剩下的第一张牌数起),一直数到第a 张牌,并准确的猜出这张牌的点数与花色(即开始数30张牌时记的第9张的花色与点数)。

[原理]

三列中牌的总数:

A=3+(10- a1)+(10-a2)+(10-a3)

=33-(a1+a2+a3)

手中剩的牌数:

B=24-A.

∵B+9=24-A+9=33-[33-(a1+a2+a3)]

=33-33+(a1+a2+a3)

=a,

∴从手中剩下的牌数起,这时的第a张牌恰好为原来30张牌中的第9张牌。学生探究实施建议:

亲自动手体验本讲义中的实例,并积极思维,尝试自行设计有趣的玩法。

第三讲:对称——自然美的基础

在丰富多彩的物质世界中,对于各式各样的物体的外形,我们经常可以碰到完美匀称的例子。它们引起人们的注意,令人赏心悦目。每一朵花,每一只蝴蝶,每一枚贝壳都使人着迷;蜂房的建筑艺术,向日葵上种子的排列,以及植物茎上叶子的螺旋状颁都令我们惊讶。仔细的观察表明,对称性蕴含在上述各种事例之中,它从最简单到最复杂的表现形式,是大自然形式的基础。

花朵具有旋转对称的性征。花朵绕花心旋转适当位置,每一花瓣会占据它相邻花瓣原来的位置,花朵就自相重合。旋转时达到自相重合的最小角称为元角。不同的花这个角不一样。例如梅花为72°,水仙花为60°。“对称”在生物学上指生物体在对应的部位上有相同的构造,分两侧对称(如蝴蝶),辐射对称(放射虫,太阳虫等)。我国最早记载了雪花是六角星形。其实,雪花形状千奇百怪,但又万变不离其宗(六角星)。既是中心对称,又是轴对称。

很多植物是螺旋对称的,即旋转某一个角度后,沿轴平移可以和自己的初始位置重合。例如树叶沿茎杆呈螺旋状排列,向四面八方伸展,不致彼此遮挡为生存所必需的阳光。这种有趣的现象叫叶序。向日葵的花序或者松球鳞片的螺线形排列是叶序的另一种表现形式。

“晶体闪烁对称的光辉”,这是俄国学者费多洛夫的名言。无怪乎在古典童话故事中,奇妙的宝石交织着温馨的幻境,精美绝伦,雍容华贵。在王冠上,以其熠熠光彩向世人炫耀,保持永久不衰的魅力。

学生探究:

1、亲自动手制作蝴蝶标本,观察记录各种蝴蝶的对称性详细情况。

2、观察梅花,水仙花等花朵的旋转对称性。

相关文档
最新文档