可视化商业智能大数据分析平台整体解决方案

合集下载

可视化智能平台建设实施方案

可视化智能平台建设实施方案

可视化智能平台建设实施方案实施方案概述:可视化智能平台建设的目标是开发一个集成多种数据来源和智能分析技术的可视化平台,以提供直观、实时的数据可视化呈现,帮助用户更好地理解和分析数据,支持决策制定和业务管理。

本文将提出一个基于以下步骤实施该方案的详细方案:1. 需求分析:-明确用户需求和目标业务场景。

-确定数据来源和类型,包括结构化和非结构化数据。

-识别必要的数据处理和分析需求。

2. 数据集成:-建立数据集成框架,支持从不同的数据源中提取、转换和加载数据。

-实现数据清洗和预处理,包括数据清理、格式转换和缺失值处理。

-确保数据的准确性、完整性和一致性。

3. 可视化设计:-选择适当的可视化工具和技术,包括图表、图形和地图。

-设计可视化界面和交互功能,使用户能够快速获取和解释数据。

-考虑多种用户需求,提供灵活的可视化选择和自定义功能。

4. 智能分析模型集成:-选择合适的智能分析技术,如机器学习、深度学习和自然语言处理。

-构建和训练智能模型,包括数据特征提取和模型优化。

-将智能模型集成到可视化平台中,实现自动化的数据分析和推断。

5. 平台开发与测试:-根据需求和设计制定平台开发计划,包括前端和后端的开发工作。

-进行系统测试和性能优化,确保平台的稳定性和可靠性。

-与用户进行沟通和反馈,及时修复和改进平台功能。

6. 部署与维护:-选择合适的部署方式,包括本地部署和云平台部署。

-定期进行系统维护和更新,保证平台的安全性和性能。

-持续监测和优化平台的运行效果,根据用户需求进行功能扩展和改进。

通过以上步骤,可视化智能平台建设实施方案可以确保高质量的可视化结果和智能分析功能,提供强大的数据分析和决策支持能力。

大数据平台解决方案

大数据平台解决方案
3.数据处理:需实现数据的实时处理和离线分析,为业务提供快速、准确的数据支撑;
4.数据安全:需确保数据安全和合规性,遵循国家相关法律法规;
5.数据应用:需提供丰富的数据挖掘和可视化功能,辅助企业决策。
三、解决方案
1.数据采集与传输
(1)采用分布式数据采集技术,实现对多源异构数据的实时采集;
(2)设计高效的数据传输机制,确保数据传输的实时性和完整性;
(1)数据挖掘
结合业务需求,运用机器学习、深度学习等算法,进行数据挖掘和智能分析。
(2)可视化展示
采用可视化工具,将分析结果以图表、地图等形式进行展示,提高决策效率。
四、实施策略
1.项目规划:明确项目目标、范围、时间表和资源需求;
2.技术选型:根据业务需求,选择合适的大数据技术栈;
3.团队建设:组建专业的项目团队,包括项目经理、开发人员、数据分析师等;
(3)对采集的数据进行预处理,包括数据清洗、去重、转换等,提升数据质量。
2.数据存储
(1)采用分布式存储技术,构建可扩展的大数据存储平台;
(2)根据数据类型和业务需求,选择合适的存储引擎,如HDFS、HBase、Kudu等;
(3)设计合理的存储策略,实现数据的高可靠性和高性能。
3.数据处理与分析
(1)采用大数据处理框架(如Spark、Flink等),实现数据的实时处理和离线分析;
2.技术风险:选择成熟的大数据技术和工具,降低技术风险;
3.项目管理风险:加强项目进度管理和沟通协作,确保项目按时按质完成;
4.法律合规风险:遵循国家法律法规,确保项目合法合规。
六、总结
本方案旨在为企业提供一套合法合规的大数据平台解决方案,实现数据的高效存储、计算和分析。通过构建完善的数据治理体系,确保数据的真实性、准确性、完整性和安全性。同时,借助数据挖掘和可视化技术,助力企业挖掘潜在商机,提升决策水平。在实施过程中,需关注风险防范,确保项目顺利推进。

商业智能分析平台介绍

商业智能分析平台介绍

商业智能分析平台介绍
商业智能(BI)分析平台是一种能够帮助企业更快、更好地做出决策的软件工具。

它可以帮助企业从数据中提取有用的信息,从而充分利用当前环境中的商业机会。

商业智能(BI)分析平台可以帮助企业发现未来的商业机遇,提前预测数据变化趋势,掌握竞争对手的最新动态,并以此做出有效的决策。

它可以通过大数据和人工智能技术来尽可能深入了解和掌握企业数据。

BI 分析平台的使用,可以帮助企业分析未来的商业趋势,提升企业的决策能力,并帮助企业控制成本、提升绩效。

BI分析平台主要包括三个组成部分:数据管理、分析和可视化。

数据管理是汇总、处理和组织企业数据的关键部分,是运用BI分析平台的基础。

它可以汇总来自各种源的数据,比如客户关系管理系统、财务系统和市场营销系统,将这些数据整理成一个统一的数据集,用于分析和可视化。

分析是根据整理的数据,通过对数据进行建模和模型预测,来解决企业的实际问题。

这里涉及到大数据分析、数据挖掘和数据模型等技术,它可以帮助企业从海量数据中提取高质量的信息,并以此来做出专业的商业决策。

可视化是一个可以将复杂数据清晰呈现出来的图表工具。

基于大数据的商业智能分析系统设计

基于大数据的商业智能分析系统设计

基于大数据的商业智能分析系统设计随着数字化浪潮的不断涌现,商业数据的数量急剧增长,商业智能(BI)作为一种高效的管理工具被广泛应用于商业领域中。

商业智能分析系统不仅可以帮助企业更好地了解市场趋势,而且能够为管理层制定更具针对性的决策提供有效的支持。

本文将围绕基于大数据的商业智能分析系统进行探讨,并提出一种完整的设计方案。

一、商业智能分析系统的的概念与特点商业智能(BI)是利用数据仓库和数据挖掘等技术来获取内部和外部数据,并将其转化为有用的决策信息的一种信息系统。

商业智能分析系统建立在数据仓库和数据挖掘技术基础上,可以采用多维数据分析技术,实现对大数据的分析和可视化呈现,通常包括数据仓库、OLAP分析和可视化报告等功能,并具有以下特点:1. 数据源广泛:商业智能分析系统可以连接各类不同的数据源,并将其整合起来。

常见的数据源包括企业内部的数据仓库、各类业务系统、外部开放数据以及社交媒体等。

2. 维度多样:商业智能分析系统是以多维度的方式来进行问题的分析的,可以根据不同维度进行多维数据分析,能够对数据进行多角度的展示和挖掘。

3. 图表化呈现:商业智能分析系统可以将数据转化为可视化的图表,提高数据的表述效果和交互性,方便用户深入挖掘和理解数据。

同时,商业智能分析系统还可以为数据挖掘提供预处理,如数据的清洗、处理、统计和计算等。

二、商业智能分析系统的设计流程要搭建商业智能分析系统需要经过多个阶段的设计和开发,通常从数据采集、数据仓库建设、数据挖掘、报表展示等多个方面展开。

下面是商业智能分析系统的设计流程:1. 数据采集:商业智能分析系统从各种数据源中采集数据,将其清理、标准化后存储于数据仓库中。

2. 数据仓库建设:商业智能分析系统中的数据仓库是包含一个或多个数据源的大型数据集合和数据库系统。

3. 数据挖掘:通过数据分析、建立模型等技术,可以发掘数据中隐藏的规律、趋势以及异常点等信息,以及提高下一步基于数据的决策的精度和效果。

大数据平台整体解决方案

大数据平台整体解决方案
大数据平台整体解决方案
汇报人: 2024-01-08
目录
• 大数据平台概述 • 大数据平台架构 • 大数据平台关键技术 • 大数据平台实施方案 • 大数据平台应用案例 • 大数据平台未来展望
01
大数据平台概述
大数据的定义与特性
数据量大
数据量通常达到TB级别甚至 PB级别。
数据多样性
包括结构化数据、非结构化数 据、流数据等多种类型。
03
大数据平台的出现为解决大规模数据处理和分析问 题提供了解决方案。
大数据平台的应用场景
01
商业智能
通过大数据分析,提供商业洞察和 决策支持。
风险控制
通过大数据分析,进行风险评估和 预警。
03
02
智能推荐
基于用户行为和喜好,进行个性化 推荐。
社交媒体分析
分析社交媒体上的用户行为和舆论 趋势。
04
02
大数据平台架构
数据采集层
数据采集
支持多种数据源接入,包括数据库、 文件、API等,实现数据的统一采集 。
数据清洗
对采集到的数据进行清洗和预处理, 去除无效和错误数据,保证数据质量 。
数据存储层
数据存储
采用分布式存储系统,实现数据的可靠存储和高效访问。
数据压缩
对存储的数据进行压缩,节省存储空间,提高数据存储效率。
总结词
优化库存管理、提升用户体验
详细描述
电商企业利用大数据分析用户购买行为和喜 好,实现精准选品和库存管理,降低库存积 压风险;同时,通过数据分析优化物流配送 ,提升用户收货体验。
物流行业大数据应用案例
总结词
提高运输效率、降低运营成本
详细描述
物流企业利用大数据分析运输路线和货物流转情况, 优化运输计划,提高运输效率;同时,通过数据分析 降低人力和物力成本,提升企业盈利能力。

大数据平台数据治理整体解决方案 大数据可视化平台建设方案

大数据平台数据治理整体解决方案 大数据可视化平台建设方案

大数据可视化平台建设方案目录第1章前言 0第2章XXX大数据现状分析 (1)2.1、基本现状 (1)2.2、总体现状 (1)2.2.1、行领导 (1)2.2.2、业务人员 (1)2.3、数据架构方面 (2)2.3.1、业务表现 (2)2.3.2、问题 (2)2.4、数据应用难题 (3)2.4.1、缺少统一的应用分析标准 (3)2.4.1.1、业务表现 (3)2.4.1.2、问题 (3)2.4.2、缺少统一的基础数据标准 (4)2.4.2.1、业务表现 (4)2.4.2.2、问题 (5)2.4.3、缺少反馈机制 (5)2.4.3.1、业务表现 (6)2.4.3.2、问题 (6)2.5、数据应用现状总结 (6)第3章XXX大数据治理阶段目标 03.1、数据平台逻辑架构 (1)3.2、数据平台部署架构 (1)3.3、建设目标 (2)3.3.1、建设大数据基础设施,完善全行数据体系架构 (2)3.3.2、开发大数据资源,支撑全行经营管理创新 (2)3.3.3、培养大数据人才队伍,建立大数据分析能力 (2)3.4.1、发现数据质量问题,推动大数据治理工作的开展,建立数据质量检核系统.. 33.4.2、分析、梳理业务系统,推动数据标准的建立,统一全行口径 (3)3.4.3、建立数据仓库模型框架,优化我行数据架构,建设稳定、可扩展的数据仓库33.5、目标建设方法 (4)3.5.1、建设内容 (4)3.5.2、工作阶段 (4)3.5.2.1、源系统分析阶段 (4)3.5.2.1.1、工作内容 (4)3.5.2.1.2、工作依据 (4)3.5.2.1.3、工作重点 (5)3.5.2.2、数据质量问题检查阶段 (5)3.5.2.2.1、工作内容 (5)3.5.2.2.2、工作依据 (5)3.5.2.2.3、工作重点 (6)3.5.2.3、数据质量问题分析阶段 (6)3.5.2.3.1、工作内容 (6)3.5.2.3.2、工作依据 (6)3.5.2.3.3、工作重点 (6)3.6、预期建设效益 (6)3.6.1、实现数据共享 (6)3.6.2、加强业务合作 (7)3.6.3、促进业务创新 (7)3.6.4、提升建设效率 (7)3.6.5、改善数据质量 (7)第4章XXX大数据建设总体规划 04.1、功能需求 04.1.1、个人和企业画像 04.1.3、为金融业提供风险管控 (3)4.1.4、运营优化 (4)4.2、XXX大数据应用架构远景 (4)4.2.1、XXX需要从“坐商”转型为“行商” (5)4.2.2、客户下沉 (5)4.2.3、与“互联网金融”进行差异化竞争 (5)4.3、XXX大数据平台应用架构 (6)4.4、XXX大数据平台架构 (7)4.5、XXX大数据支撑平台 (7)4.5.1、大数据虚拟化平台 (7)4.5.1.1、设计原则 (8)4.5.1.2、虚拟化平台设计 (10)4.5.1.3、硬件基础设施层 (10)4.5.1.4、虚拟化存储 (11)4.5.1.5、虚拟化计算 (11)4.5.1.6、平台管理 (12)4.5.1.7、数据存储系统设计 (12)4.5.1.8、高性能SAN存储系统 (14)4.5.1.9、存储方案优势 (15)4.5.2、大数据分析管理平台 (16)4.6、大数据分析处理平台 (16)4.6.1、分布式内存分析引擎 (17)4.6.2、数据挖掘引擎 (17)4.6.3、分布式实时在线数据处理引擎 (18)4.6.4、流处理引擎 (18)4.6.5、大数据分析支撑系统 (18)4.6.6、大数据分析节点群 (24)4.6.7、软硬件配置 (25)4.6.8、虚拟化平台关键特性 (27)4.7、安全保障系统 (30)4.7.1、设计原则 (30)4.7.2、总体设计 (31)4.7.3、物理安全设计 (31)4.7.4、网络安全设计 (33)4.7.4.1、外网边界安全 (33)4.7.4.2、网络基础设施安全 (34)4.7.5、主机安全设计 (35)4.7.6、应用安全设计 (35)4.7.7、数据库安全设计 (36)4.7.8、安全制度与人员管理 (37)4.7.9、安全管理体系建设 (37)4.7.10、安全运维 (38)4.7.11、安全人员管理 (39)4.7.12、技术安全管理 (39)4.7.13、安全保障系统配置 (40)4.8、计算机网络系统 (40)4.8.1、设计原则 (40)4.8.2、系统设计 (42)4.8.3、计算机网络系统配置 (45)4.9、基础支撑软件 (45)4.9.1、地理信息软件 (45)4.9.2、操作系统软件 (47)4.9.3、数据库管理软件 (48)4.9.4、机房建设方案 (49)4.9.5、基础支撑系统软硬件配置 (52)第5章系统架构设计 (56)5.1、总体设计目标 (56)5.3、案例分析建议 (58)5.3.1、中国联通大数据平台 (58)5.3.2、项目概述 (58)5.3.2.1、项目实施情况 (60)5.3.2.2、项目成果 (67)5.3.2.3、项目意义 (68)5.3.3、恒丰XXX大数据平台 (68)1.1.1.1项目概述 (69)1.1.1.2项目实施情况 (73)1.1.1.3项目成果 (80)1.1.1.4项目意义 (81)5.3.4、华通CDN运营商海量日志采集分析系统 (83)5.3.5、项目概述 (83)5.3.5.1、项目实施情况 (84)5.3.5.2、项目成果 (89)5.3.5.3、项目意义 (89)5.3.6、案例总结 (90)5.4、系统总体架构设计 (91)5.4.1、总体技术框架 (91)5.4.2、系统总体逻辑结构 (95)5.4.3、平台组件关系 (98)5.4.4、系统接口设计 (104)5.4.5、系统网络结构 (109)第6章系统功能设计 (111)6.1、概述 (111)6.2、平台管理功能 (112)6.2.1、多应用管理 (112)6.2.2、多租户管理 (116)6.2.3.1、Hadoop集群自动化部署 (119)6.2.3.2、Hadoop集群性能监控 (121)6.2.3.3、Hadoop集群资源管理 (125)6.2.3.4、图形界面方式多租户管理 (128)6.2.3.5、系统巡检信息收集 (132)6.2.3.6、系统性能跟踪 (134)6.2.3.7、与集团运维监控平台对接 (135)6.2.4、作业调度管理 (139)6.3、数据管理 (141)6.3.1、数据管理框架 (141)6.3.1.1、结构化数据管理框架 (142)6.3.1.2、半/非结构化数据管理框架 (143)6.3.2、数据采集 (144)6.3.3、数据交换 (147)6.3.4、数据存储与管理 (149)6.3.4.1、数据存储管理功能 (152)6.3.4.2、数据多温度管理 (154)6.3.4.3、生命周期管理 (156)6.3.4.4、多索引模式 (157)6.3.4.5、多数据副本管理 (158)6.3.4.6、数据平衡管理 (159)6.3.4.7、在线节点管理 (160)6.3.4.8、分区管理 (161)6.3.4.9、数据导入与导出 (162)6.3.4.10、多级数据存储 (163)6.3.4.11、多种数据类型支持 (165)6.3.4.12、多种文件格式支持 (167)6.3.4.13、数据自定义标签管理 (171)6.3.4.14、数据读写锁处理 (171)6.3.4.16、表压缩 (172)6.3.5、数据加工清洗 (172)6.3.6、数据计算 (174)6.3.6.1、多计算框架支持 (174)6.3.6.2、并行计算与并行处理能力 (176)6.3.6.3、PL/SQL存储过程 (180)6.3.6.4、分布式事务支持 (184)6.3.6.5、ACID测试案例 (186)6.3.7、数据查询 (196)6.3.7.1、OLAP函数支持 (196)6.3.7.2、分布式 Cube (197)6.3.7.3、SQL兼容性 (200)6.3.7.4、SQL功能 (217)6.4、数据管控 (222)6.4.1、主数据管理 (222)6.4.2、元数据管理技术 (224)6.4.3、数据质量 (227)6.5、数据ETL (235)6.6、数据分析与挖掘 (238)6.6.1、数据分析流程 (241)6.6.2、R语言开发环境与接口 (242)6.6.3、并行化R算法支持 (243)6.6.4、可视化R软件包 (247)6.6.5、编程语言支持 (249)6.6.6、自然语言处理和文本挖掘 (249)6.6.7、实时分析 (250)6.6.8、分析管理 (251)6.6.8.1、需求管理 (252)6.6.8.2、过程管理 (253)6.6.9、分析支持 (256)6.6.10、指标维护 (256)6.6.11、分析流程固化 (257)6.6.12、分析结果发布 (257)6.6.13、环境支持 (257)6.7、数据展现 (258)6.7.1、交互式报表 (260)6.7.2、仪表盘 (267)6.7.3、即席查询 (268)6.7.4、内存分析 (269)6.7.5、移动分析 (270)6.7.6、电子地图支持 (271)第7章技术要求实现 (272)7.1、产品架构 (272)7.1.1、基础构建平台 (277)7.1.2、大数据平台组件功能介绍 (278)7.1.2.1、Transwarp Hadoop分布式文件系统 (278)7.1.2.2、Transwarp Inceptor内存分析交互引擎 (280)7.1.2.3、稳定的Spark计算框架 (282)7.1.2.4、支持Memory+SSD的混合存储架构 (283)7.1.2.5、完整SQL功能支持 (283)7.1.2.6、Transwarp Discover机器学习引擎 (289)7.1.2.7、并行化统计算法库 (291)7.1.2.8、机器学习并行算法库 (293)7.1.2.9、Transwarp Hyperbase列式存储数据库 (300)7.1.2.10、智能索引 (311)7.1.2.11、全局索引 (312)7.1.2.12、全文索引 (313)7.1.2.14、图数据库 (315)7.1.2.15、全文数据处理 (316)7.1.2.16、Transwarp Stream数据实时处理分析 (318)7.1.2.17、分布式消息队列 (322)7.1.2.18、流式计算引擎 (323)7.1.2.19、流式SQL执行 (324)7.1.2.20、流式机器学习 (325)7.1.3、系统分布式架构 (325)7.2、运行环境支持 (328)7.2.1、系统操作支持以及环境配置 (328)7.2.2、与第三方软件平台的兼容说明 (329)7.3、客户端支持 (330)7.3.1、客户端支持 (330)7.3.2、移动端支持 (331)7.4、数据支持 (331)7.5、集成实现 (333)7.6、运维实现 (336)7.6.1、运维目标 (336)7.6.2、运维服务内容 (337)7.6.3、运维服务流程 (340)7.6.4、运维服务制度规范 (342)7.6.5、应急服务响应措施 (343)7.6.6、平台监控兼容 (344)7.6.7、资源管理 (345)7.6.8、系统升级 (348)7.6.9、系统监控平台功能 (348)7.6.9.1、性能监控 (348)7.6.9.2、一键式收集 (352)7.6.9.3、系统资源监控图形化 (354)7.6.9.5、消息队列监控 (355)7.6.9.6、故障报警 (356)7.6.9.7、告警以及统巡检以及信息收集 (356)7.7、平台性能 (358)7.7.1、集群切换 (358)7.7.1.1、主集群异常及上层业务切换 (358)7.7.1.2、从集群异常及上层业务切换 (359)7.7.2、节点切换 (360)7.7.3、性能调优 (361)7.7.3.1、图形化性能监控 (361)7.7.3.2、图形化调优工具 (362)7.7.3.3、调优策略 (366)7.7.4、并行化高性能计算 (367)7.7.5、计算性能线性扩展 (370)7.8、平台扩展性 (372)7.9、可靠性和可用性 (374)7.9.1、单点故障消除 (374)7.9.2、容灾备份优化 (375)7.9.2.1、扩容、备份、恢复机制 (375)7.9.2.2、集群数据容灾优化 (377)7.9.2.3、数据完整性保障和方案 (378)7.9.2.4、主集群异常及上层业务切换 (380)7.9.2.5、从集群异常及上层业务切换 (380)7.9.3、系统容错性 (381)7.10、开放性和兼容性 (383)7.10.1、高度支持开源 (388)7.10.1.1、PMC-HaoyuanLi (388)7.10.1.2、Committor-AndrewXia (390)7.10.1.3、Committor-ShaneHuang (392)7.10.1.5、Committor-JasonDai (397)7.10.1.6、Committor-WeiXue (400)7.10.2、操作系统支持以及软件环境配置 (401)7.10.3、兼容性与集成能力 (402)7.11、安全性 (404)7.11.1、身份鉴别 (404)7.11.2、访问控制 (405)7.11.3、安全通讯 (413)7.12、核心产品优势 (413)7.12.1、高速运算、统计分析和精确查询 (413)7.12.1.1、Spark引擎结合分布式内存列存提供高性能计算 (413)7.12.1.2、多种索引支持与智能索引 (415)7.12.2、有效的资源利用 (416)7.12.3、高并发、低延迟性能优化 (417)7.12.4、计算资源有效管控 (418)7.12.5、API设计和开发工具支持 (420)7.12.6、友好的运维监控界面 (422)7.12.7、扩容、备份、恢复机制 (427)7.12.8、集群自动负载均衡 (429)7.12.9、计算能力扩展 (429)7.13、自主研发技术优势 (430)7.13.1、高稳定、高效的计算引擎Inceptor (430)7.13.2、完整的SQL编译引擎 (432)7.13.3、高性能的SQL分析引擎 (433)7.13.4、SQL统计分析能力 (433)7.13.5、完整的CURD功能 (435)7.13.6、Hyperbase高效的检索能力 (436)7.13.7、基于Hyperbase和SQL引擎的高并发分布式事务 (438)7.13.8、Hyperbase非结构化数据的支持 (440)7.13.9、机器学习与数据挖掘 (440)7.13.10、Transwarp Stream (445)7.13.11、内存/SSD/磁盘混合存储 (448)7.13.12、MR/Spark/流处理统一平台 (450)7.13.13、多租户支持能力 (452)7.13.14、多租户安全功能 (453)7.13.15、标准JDBC与ODBC接口 (454)第8章系统性能指标和测试结果说明 (455)8.1、性能测试报告 (455)8.1.1、测试目标 (455)8.1.2、测试内容 (455)8.1.3、测试环境 (456)8.1.4、测试过程和结果 (457)8.2、TPC-DS测试报告 (460)8.2.1、测试目标 (460)8.2.2、测试内容 (461)8.2.3、测试环境 (463)8.2.4、测试过程和结果 (464)8.3、量收迁移验证性测试报告 (465)8.3.1、测试目标 (465)8.3.2、测试内容 (465)8.3.3、测试环境 (466)8.3.4、串行执行情况 (467)8.3.5、并行执行情况 (469)8.3.6、生产表数据规模 (471)8.3.7、测试结果 (475)8.4、某XXX性能测试报告 (475)8.4.1、测试目标 (475)8.4.2、测试内容 (475)8.4.4、测试过程和结果 (477)第9章系统配置方案 (491)9.1、硬件系统配置建议 (491)9.1.1、基础Hadoop平台集群配置规划 (491)9.1.2、数据仓库集群配置规划 (494)9.1.3、集群规模综述 (496)9.1.4、开发集群配置建议 (497)9.1.5、测试集群配置建议 (498)9.2、软件配置建议 (498)9.3、软硬件配置总表 (500)9.4、网络拓扑 (503)第10章系统测试 (504)10.1、系统测试方法 (504)10.2、系统测试阶段 (505)10.3、系统测试相关提交物 (507)第11章项目实施 (508)11.1、项目实施总体目标 (508)11.2、项目管理 (509)11.3、业务确认 (510)11.4、数据调研 (511)11.5、系统设计阶段 (512)11.6、集成部署阶段 (513)11.7、ETL过程设计 (513)11.8、ETL开发与测试 (515)11.9、系统开发阶段 (516)11.10、系统测试阶段 (516)11.11、系统上线及验收 (518)11.13、系统的交接与知识转移 (523)第1章前言随着信息化程度的加深,以及移动互联网、物联网的崛起,人们产生的数据急剧膨胀,传统的数据处理技术难以支撑数据大量的增长和处理能力。

服装企业商业智能(BI)整体解决方案

服装企业商业智能(BI)整体解决方案

THANKS
感谢观看
度。
06
CATALOGUE
项目成果评估与持续改进计划
项目成果评估指标体系构建
关键绩效指标(KPI)
包括销售额、毛利率、库存周转率等,用于衡量项目对业务的直接 贡献。
业务影响指标
评估项目对业务流程、决策效率、客户满意度等方面的影响,反映 项目的间接价值。
技术性能指标
针对BI系统的稳定性、响应速度、数据准确性等技术方面进行评估 ,确保系统满足业务需求。
数据质量评估与提升措施
数据质量评估
01
通过数据完整性、准确性、及时性等方面对数据质量进行评估

数据清洗与修复
02
对错误、重复、缺失等数据进行清洗和修复,提高数据质量。
数据质量监控
03
建立数据质量监控机制,持续跟踪数据质量变化并及时处理。
数据安全管理与合规性要求
数据加密与访问控制
对敏感数据进行加密处理,并设置访问控制策略,确 保数据安全。
进行系统测试、性能优化和用户 体验改进,确保系统稳定可靠。
上线运行与维护阶段
系统正式上线运行,提供持续的 技术支持和维护服务。
项目启动阶段
确立项目目标、范围、计划和团 队组成,进行初步需求调研。
里程碑节点
项目启动、需求调研完成、系统 设计与开发完成、系统测试通过 、正式上线运行等关键节点。
团队组建与培训安排
02
基于数据分析结果,制定有针 对性的营销策略,提高营销效 果和ROI。
03
对营销活动进行数据跟踪和效 果评估,及时调整营销策略, 实现营销效益最大化。
05
CATALOGUE
实施计划与风险控制策略
项目实施时间表及里程碑节点设置

大数据可视化平台产品设计方案

大数据可视化平台产品设计方案
商务风格
将所有功能和数据展示集中在单一界面中,方便用户操作和查看。
单一界面布局
将功能和数据按照类别和层级进行划分,分别展示在不同的级别界面中,提高界面的清晰度和可读性。
分级界面布局
用户可以根据自己的需求和习惯,自由拖拽和组合界面元素,定制个性化的界面。
自定义布局
01
02
03
界面布局设计
图表设计
根据不同数据类型和展示需求,选择合适的图表类型,如柱状图、折线图、饼图等,并考虑图表的色彩、大小、标签等细节。
数据计算
提供常见的数据计算功能,如平均值、方差、相关系数、回归分析等,以便用户进行数据分析。
数据处理设计思路
算法库丰富
提供多种数据挖掘算法,如聚类、分类、关联规则、时间序列等,以便用户进行数据挖掘分析。
数据挖掘设计思路
可视化挖掘结果
将数据挖掘结果以可视化的方式呈现给用户,便于用户理解和分析。
自动化挖掘
产品定义
产品定义与定位
产品目标与意义
大数据可视化平台产品的目标包括以下几个方面:提高数据驱动的决策能力、降低数据理解和使用的门槛、优化数据资产管理和利用效率、拓展数据价值和创新空间。
产品目标
大数据可视化平台产品的意义在于帮助企业从海量数据中提取有价值的信息,更好地支持决策制定和管理,同时通过可视化手段的运用,增强数据的可读性和易用性,提高数据的使用效率和价值。
要点一
要点二
模块化设计
将平台功能划分为不同的模块,如数据导入、数据处理、数据可视化、数据挖掘等,以便于功能扩展和维护。
良好的交互体验
平台操作流程应简单易用,界面设计应直观清晰,提供用户友好的交互体验。
要点三
数据可视化设计思路

智慧购物中心新零售大数据运营平台整体解决方案

智慧购物中心新零售大数据运营平台整体解决方案
智慧购物中心新零售大 数据运营平台整体解决 方案
汇报人: 日期:
contents
目录
• 智慧购物中心新零售大数据运营平台概 述
• 智慧购物中心新零售大数据运营平台的 核心功能
• 智慧购物中心新零售大数据运营平台的 架构设计
contents
目录
• 智慧购物中心新零售大数据运营平台的 实施与部署
• 智慧购物中心新零售大数据运营平台的 优势与价值
总结词
优化商品结构、提高销售额
VS
详细描述
该购物中心利用大数据技术对商品销售数 据进行分析,发现某些商品之间存在关联 关系。通过调整商品结构,购物中心成功 提高了销售额和客户满意度。
广州某品牌连锁购物中心的智能推荐系统应用案例
总结词
个性化推荐、提升客户满意度
详细描述
该购物中心开发了一款智能推荐系统,根据 客户的消费行为和喜好为其推荐个性化的商 品和服务。通过智能推荐系统,购物中心成 功提高了客户满意度和忠诚度。
• 智慧购物中心新零售大数据运营平台的 实践案例分析
智慧购物中心新零
01
售大数据运营平台
概述
智慧购物中心的定义与特点
定义
智慧购物中心是指通过互联网、物联 网、大数据等信息技术手段,实现智 能化运营、管理和服务的新型商业综 合体。
特点
智慧购物中心具有智能化、数字化、 线上线下融合等特点,能够提升消费 者购物体验,提高商业运营效率,推 动传统零售业转型升级。
提升品牌形象与市场竞争力
品牌形象提升
通过数据分析和精准营销,提升品牌知名度和美誉度,增强市场竞争力。
竞争力增强
通过数据分析和智能化决策,快速响应市场变化,抢占市场先机。

大数据分析平台总体架构方案

大数据分析平台总体架构方案

大数据分析平台总体架构方案1.数据采集层:该层负责从各个数据源收集原始数据,并进行数据清洗和预处理。

数据源可以包括传感器设备、网站日志、社交媒体等。

在数据清洗和预处理过程中,可以对数据进行去噪、过滤、转换等操作,确保数据的质量和准确性。

2.数据存储层:该层负责存储清洗和预处理后的数据。

可以选择关系型数据库、非关系型数据库或分布式文件系统等存储技术来存储数据。

数据存储层需要保证数据的可靠性、高效性和可扩展性。

3.数据计算层:该层负责对存储在数据存储层的数据进行计算和分析。

可以使用批处理、流处理、图计算等技术来进行数据处理。

具体的计算和分析过程包括数据聚合、数据挖掘、机器学习等。

4.数据可视化层:该层负责将计算和分析的结果以可视化的形式展示给用户。

可以使用各种可视化工具和技术来实现数据可视化,如图表、报表、仪表盘等。

数据可视化层可以帮助用户更直观地理解和分析数据。

5.安全和管理层:该层负责保护数据的安全性和保密性,包括数据的加密、权限控制和访问控制等。

同时还可以对数据进行备份、灾难恢复和性能监控等管理操作,确保数据平台的稳定和可靠。

6.接口和集成层:该层负责与其他系统和应用进行接口和集成。

可以提供API接口和数据交换协议,使得其他系统和应用能够与大数据分析平台进行数据交互。

此外,还可以集成各种数据源和数据工具,方便用户的数据分析和处理。

以上是一个典型的大数据分析平台总体架构方案。

在实际应用中,可以根据具体的需求和场景进行调整和优化。

同时,还需要考虑性能、可靠性、可扩展性和成本等方面的因素来选择和设计相应的技术和架构。

数据可视化分析软件开发大数据系统建设解决方案

数据可视化分析软件开发大数据系统建设解决方案

数据可视化分析软件开发大数据系统建设解决方案概述随着大数据时代的到来,越来越多的企业开始关注如何从海量的数据中获取有价值的信息。

数据可视化分析软件成为了一个重要的工具,帮助企业对数据进行分析和可视化呈现。

本文将介绍数据可视化分析软件开发大数据系统建设的解决方案。

解决方案1.需求分析在开发数据可视化分析软件之前,首先需要进行需求分析。

这包括确定软件的使用者群体,了解他们的需求和期望,以及核心功能和特性的定义。

通过需求分析,可以明确软件的定位和目标,为后续的开发工作打下基础。

2.数据收集与清洗数据的质量对于数据可视化分析软件的开发至关重要。

在大数据系统建设中,需要考虑如何从不同的数据源中收集数据,并对数据进行清洗和处理,以确保数据的准确性和一致性。

数据收集与清洗是确保数据可视化分析软件能够获取可靠数据的关键步骤。

3.数据存储与处理大数据系统建设中,需要考虑如何存储和处理海量的数据。

传统的关系数据库可能无法满足这种需求,因此需要考虑使用分布式存储和处理技术,如Hadoop和Spark等。

这些技术可以帮助将数据分散存储在集群中,并进行分布式计算和处理,以提高系统的性能和扩展性。

4.数据分析和挖掘数据可视化分析软件的核心是数据分析和挖掘功能。

通过使用统计分析、机器学习和数据挖掘算法,可以从大数据中提取有价值的信息,并生成具有可视化效果的报表和图表。

这些报表和图表可以帮助用户快速理解数据的趋势和规律,从而做出更准确的决策。

5.用户界面设计与交互用户界面设计和交互是数据可视化分析软件开发的重要环节。

一个易于使用和直观的界面可以帮助用户快速上手并获取所需信息。

在界面设计中,应考虑用户的习惯和使用场景,提供简洁明了的操作方式和功能导航。

同时,为用户提供交互功能,如拖拽、筛选和放大缩小等,以增强用户体验。

6.安全与权限管理在大数据系统建设中,数据的安全性是至关重要的。

在开发数据可视化分析软件时,需要考虑如何实施安全控制和权限管理。

AI智能+大数据可视化平台建设综合解决方案

AI智能+大数据可视化平台建设综合解决方案
将处理后的数据以直观、易用 的方式呈现给用户。
平台功能模块
数据处理
利用AI算法对大数 据进行清洗、整合 、分析和挖掘。
报表生成
根据用户需求生成 各类报表,支持导 出和打印功能。
数据采集
支持多种数据源接 入,如数据库、API 、文件等。
数据可视化
提供丰富的图表类 型和可视化效果, 支持自定义配置。
用户管理
02
AI智能技术概述
AI技术原理
机器学习
通过训练数据,让机器 自动学习并识别模式, 从而进行预测和决策。
深度学习
利用神经网络模型处理 大规模数据,实现更精
确的预测和分类。
自然语言处理
让机器理解和生成人类 语言,实现人机交互。
计算机视觉
利用图像处理和识别技 术,实现目标检测、识
别和跟踪。
AI技术的应用场景
支持多用户角色和 权限管理,保证数 据安全。
平台实施步骤和计划
需求调研
了解用户需求和业务场景,制定 实施计划。
系统设计
根据需求进行系统架构设计和功 能模块规划。
系统开发
按照设计进行系统开发和实现。
后期维护
提供系统运行维护和技术支持服 务。
上线部署
将系统部署到实际运行环境中, 进行上线运行。
系统测试
对开发完成的系统进行测试,确 保功能正常。
06
案例分析
案例一:AI智能在金融风控领域的应用
要点一
总结词
要点二
详细描述
金融风控是AI智能应用的重要领域之一,通过AI技术可以 实现对金融风险的实时监测、预警和防范,提高金融行业 的风险控制能力。
AI智能在金融风控领域的应用主要体现在以下几个方面:1 )反欺诈识别:利用机器学习算法对大量历史数据进行分 析,识别出异常交易和欺诈行为,及时进行预警和拦截;2 )信贷风险评估:通过对借款人的个人信息、信用记录等 数据进行分析,评估其信用风险,为信贷决策提供依据;3 )市场风险预测:利用大数据和机器学习技术对市场数据 进行实时监测和分析,预测市场风险走势,为投资决策提 供支持。

数据分析平台解决方案

数据分析平台解决方案
-实施高效的数据处理机制,支持实时数据流处理和批量数据处理。
-建立数据备份和恢复机制,保障数据安全。
3.数据分析工具与服务
-提供用户友好的数据分析工具,包括报表生成器、可视化工具等。
-集成先进的数据挖掘和机器学习算法,支持预测分析。
-开发API接口,允许第三方系统和工具接入,实现数据共享和互操作。
4.用户交互与报告
-设计直观的可视化界面,帮助用户轻松理解数据分析结果。
-支持移动设备访问,确保用户随时随地获取关键数据。
-提供报告自动化生成和分发服务,提高信息传递效率。
5.安全与合规性
-遵守国家相关法律法规,确保数据处理的合规性。
-实施严格的数据访问控制策略,防止未授权访问。
-定期进行安全审计和风险评估,确保系统安全。
1.提高数据利用率,降低运营风险;
2.提升全员数据分析能力,促进业务发展;
3.满足业务部门日益增长的数据分析需求,提升企业竞争力。
在项目实施过程中,我们将严格遵守国家法律法规,确保项目合法合规,为企业创造价值。
第2篇
数据分析平台解决方案
一、项目概述
为应对当前企事业单位在数据分析方面所面临的挑战,本方案提出构建一套全面、高效、安全的数据分析平台。该平台旨在提升数据处理能力,优化决策流程,增强业务洞察能力,确保数据资产得到合理运用。
(3)提供API接口,方便与其他业务系统集成。
5.用户培训与支持
(1)组织专业培训,提升用户数据分析能力;
(2)提供在线帮助文档和客服支持,解答用户疑问;
(3)定期收集用户反馈,优化平台功能和用户体验。
四、项目实施与保障
1.项目实施
(1)成立项目组,明确项目职责和分工;
(2)制定详细的项目计划,包括时间表、预算等;

大数据可视化数据治理技术解决方案

大数据可视化数据治理技术解决方案

要点二
数据整合解决方案
建立统一的数据管理平台,实现数据的集中存储、管理和 整合。同时,采用ETL(Extract, Transform, Load)等工 具,实现数据的抽取、转换和加载,将不同来源的数据整 合到一起,形成统一的数据视图。
数据安全挑战与解决方案
数据安全挑战
大数据环境下,数据的安全保护至关重要, 如何确保数据不被泄露、损坏和篡改成为一 大挑战。
电商行业大数据可视化数据治理案例
总结词
电商行业通过大数据可视化数据治理技术,能够更好 地了解消费者需求、优化产品推荐和提升营销效果, 增强电商平台的竞争力。
详细描述
在电商行业大数据可视化数据治理案例中,通过对电 商数据的收集、整合和标准化,实现数据的可视化展 示。这有助于电商平台更好地了解消费者购物行为、 偏好和需求,优化产品推荐和个性化营销策略。同时 ,也有助于电商平台提升用户体验、增强品牌影响力 和提高市场竞争力。
政府决策
政府机构可以利用大数据可视化来提高决策的科 学性和透明度。
ABCD
科学研究
在科研领域,大数据可视化可以帮助科学家更好 地理解复杂的数据和现象。
媒体报道
媒体可以利用大数据可视化来呈现复杂的数据和 趋势,提高报道的可读性和影响力。
02
数据治理技术
数据治理的定义与重要性
数据治理的定义
数据治理是对数据资产进行管理和控制的框架,确保数据的准确性、可靠性、安全性及一致性。
特点
数据量大、速度快、类型多样、价值 密度低、真实性难以保证。
大数据可视化的念
定义
大数据可视化是指通过图形化手段,将大数据呈现出来,帮助人们理解和分析数据。
目的
提高数据洞察力、增强数据可读性和易用性。

智慧电商行业大数据分析平台建设方案

智慧电商行业大数据分析平台建设方案

智慧电商行业大数据分析平台建设方案第一章:项目背景与目标 (3)1.1 项目背景 (3)1.2 项目目标 (3)第二章:大数据分析平台总体架构 (4)2.1 架构设计原则 (4)2.2 平台架构描述 (4)2.3 技术选型 (5)第三章:数据采集与存储 (5)3.1 数据采集方案 (5)3.1.1 采集对象与范围 (5)3.1.2 采集技术 (5)3.1.3 采集策略 (6)3.2 数据存储方案 (6)3.2.1 存储架构 (6)3.2.2 存储策略 (6)3.3 数据清洗与预处理 (6)3.3.1 数据清洗 (6)3.3.2 数据预处理 (7)第四章:数据处理与分析 (7)4.1 数据处理流程 (7)4.2 数据分析算法 (7)4.3 数据挖掘技术 (8)第五章:数据可视化与报告 (8)5.1 可视化工具选型 (8)5.2 报告策略 (9)5.3 用户界面设计 (9)第六章:数据安全与隐私保护 (10)6.1 数据安全策略 (10)6.1.1 数据加密 (10)6.1.2 访问控制 (10)6.1.3 数据备份与恢复 (10)6.1.4 网络安全防护 (10)6.1.5 安全审计 (10)6.2 数据隐私保护措施 (10)6.2.1 数据脱敏 (10)6.2.2 数据分类与标识 (10)6.2.3 用户隐私设置 (11)6.2.4 数据最小化原则 (11)6.3 法律法规遵循 (11)6.3.1 遵循国家法律法规 (11)6.3.2 遵循行业规范 (11)第七章:系统功能优化与扩展 (11)7.1 功能优化策略 (11)7.1.1 数据存储优化 (11)7.1.2 数据处理优化 (11)7.1.3 数据查询优化 (12)7.2 系统扩展设计 (12)7.2.1 模块化设计 (12)7.2.2 横向扩展 (12)7.3 弹性计算与负载均衡 (12)7.3.1 弹性计算 (12)7.3.2 负载均衡 (12)第八章:项目管理与实施 (13)8.1 项目管理流程 (13)8.1.1 项目启动 (13)8.1.2 项目规划 (13)8.1.3 项目执行 (13)8.1.4 项目验收 (14)8.2 项目实施计划 (14)8.2.1 项目阶段划分 (14)8.2.2 项目进度安排 (14)8.2.3 项目资源需求 (14)8.3 风险管理与质量控制 (15)8.3.1 风险管理 (15)8.3.2 质量控制 (15)第九章:培训与运维 (15)9.1 培训方案 (15)9.1.1 培训目标 (15)9.1.2 培训对象 (16)9.1.3 培训内容 (16)9.1.4 培训方式 (16)9.2 运维管理 (16)9.2.1 运维团队建设 (16)9.2.2 运维流程规范 (16)9.2.3 系统监控与预警 (17)9.2.4 故障排查与处理 (17)9.3 持续改进与更新 (17)9.3.1 技术更新 (17)9.3.2 业务优化 (17)9.3.3 数据驱动 (17)第十章:项目评估与展望 (17)10.1 项目成果评估 (17)10.1.1 评估指标 (17)10.1.2 评估方法 (18)10.2.1 技术层面 (18)10.2.2 管理层面 (18)10.3 未来发展展望 (18)第一章:项目背景与目标1.1 项目背景互联网技术的飞速发展,电子商务已经成为我国经济发展的重要推动力。

智慧工商大数据平台数据治理可视化分析综合解决方案

智慧工商大数据平台数据治理可视化分析综合解决方案
通过数据治理,规范数据管理流程,提高数据质量,实现数据的共享与应用;通过可视化分析,将复杂数据呈现为直观的图表或图像,帮助用户更好地理解和发现数据中的规律和趋势。
背景与意义
目的和目标
综合解决方案概述
数据治理架构
包括数据采集、数据存储、数据清洗、数据转换、数据挖掘等模块,实现对数据的全面管理和处理。
实现了大数据可视化分析
创新应用了人工智能技术
工作成果与亮点
深化大数据应用
01
未来,随着大数据技术的不断发展,工商大数据平台数据治理可视化分析综合解决方案将更加注重数据的深入应用,为政府和企业提供更加精细化和个性化的数据支持。
未来发展方向与趋势
加强数据安全保护
02
随着数据安全问题的日益突出,未来工商大数据平台将更加注重数据的安全保护,采取更加完善的数据加密和隐私保护措施。
通过可视化分析,该企业能够更好地制定销售策略,提高销售业绩和市场占有率。
通过将销售数据以图表、图像等形式呈现,该企业能够更好地了解销售趋势、潜在市场和客户偏好。
04
综合解决方案
随着大数据技术的发展和普及,工商管理部门面临着海量、多样性的数据挑战。为了更好地支撑业务决策和监管,需要构建一个智慧工商大数据平台,对数据进行治理和可视化分析。
设计合理的平台管理流程,包括用户管理、权限管理、数据管理、安全监控等环节。
系统性能优化
定期对系统性能进行监测和优化,确保系统稳定、高效地运行。
数据安全保障
制定和执行严格的数据安全保障措施,包括数据加密、数据备份、灾难恢复等,确保数据的安全性和完整性。
平台管理与维护方案
06
总结与展望
建立了全面的工商大数据平台数据治理机制
第一步:需求分析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可视化商业智能大数据分析平台建设方案目录第1章客户需求概述 (1)1.1需求分析 (1)第2章可视化商业智能大数据整体建设解决方案 (2)2.1解决方案系统架构 (2)2.2解决方案组成 (3)2.2.1数据仓库(InfoSphere Warehouse Layer) (4)2.2.2数据集市(Data Mart Layer) (4)2.2.3数据ETL处理系统 (4)2.2.4业务应用 (5)2.2.4.1Cognos客户洞察分析报表 (5)2.2.4.2报表门户 (5)2.2.4.3多维数据集 (11)2.3配置建议 (15)2.4整体解决方案优势 (17)第3章可视化商业智能数据仓库方案 (20)3.1可视化商业智能数据仓库方案概述 (20)3.2可视化商业智能数据仓库解决方案带来的价值 (21)3.3可视化商业智能数据仓库方案功能特点 (21)3.3.1数据分区技术 (DPF, Database Partitioning Feature) (22)3.3.2深度压缩技术 (24)3.3.3极限工作负载管理 (25)3.3.4嵌入式分析 (26)3.3.5数据挖掘、建模和打分 (26)3.3.6非结构化信息分析 (28)3.3.7OLAP Cubing 服务 (29)3.3.8灵活包装和许可选项 (30)3.4为什么选择I NFORMATION M ANAGEMENT软件 (32)第4章可视化商业智能客户分析应用方案 (35)4.1I NFO S PHERE DW P ACK FOR C USTOMER I NSIGHT 方案概述 (35)4.2解决方案带来价值 (37)4.3I NFO S PHERE DW P ACK FOR C USTOMER I NSIGHT功能特点 (38)4.3.1物理数据模型 (38)4.3.2Cognos 应用报表 (42)4.4为什么选择I NFO S PHERE DW P ACK FOR C USTOMER I NSIGHT (45)第5章数据抽取、转换和加载方案 (47)5.1I NFO S PHERE D ATA S TAGE 方案概述 (47)5.2I NFO S PHERE D ATA S TAGE ETL方案带来价值 (49)5.3I NFO S PHERE D ATA S TAGE 软件功能特点 (51)5.3.1DataStage基于Information Server的架构 (51)5.3.1.1通用用户界面 (52)5.3.1.2通用服务 (53)5.3.1.3通用知识库 (53)5.3.1.4通用并行处理引擎 (54)5.3.1.5通用连接器 (54)5.3.2直观易用的开发和维护环境 (55)5.3.3企业级实施和管理 (57)5.3.3.1作业顺序器 (57)5.3.3.2任务资源使用预估 (59)5.3.3.3图形化监控工具 (60)5.3.4高扩展的体系架构 (62)5.3.5具备线性扩充能力 (65)5.3.6ETL元数据管理 (66)5.4为什么选择I NFO S PHERE D ATA S TAGE软件 (68)第6章COGNOS (71)6.1C OGNOS 方案概述 (71)6.2C OGNOS方案带来价值 (73)6.3C OGNOS 软件功能特点 (75)6.4为什么选择C OGNOS软件 (82)第7章SPSS 数据挖掘工具 (86)7.1SPSS数据挖掘方案概述 (86)7.1.1数据分析应用主题 (86)7.1.2应用系统架构 (88)7.2SPSS方案带来价值 (90)7.3SPSS软件功能特点 (96)7.3.1数据挖掘软件及技术服务的技术标准 (96)7.3.2软件支持算法和模型 (97)7.3.2.1支持算法的广度和深度 (97)7.3.2.2软件界面易用性 (100)7.3.2.3软件运行性能 (105)7.3.2.4数据挖掘软件与现有系统的集成要求 (108)7.4为什么选择SPSS软件 (110)第8章专业化服务 (112)8.1业务需求分析 (112)8.2系统架构设计 (112)8.3客户化工作 (112)8.3.1业务需求定义 (112)8.3.2多纬度模型设计 (113)8.3.3数据模型修改 (113)8.3.4ETL设计和开发 (113)8.3.5Cognos报表开发 (116)8.4技术支持 (116)8.5培训 (116)第9章XX公司简介 (118)第1章客户需求概述1.1需求分析需求 - 1:建立数据中心,实现业务数据统一管治。

需求 -2 :把 Data Warehouse Pack for Customer Insight 报表集成到业务系统 PORT。

需求– 3:通过建立数据中心,获取可帮助业务优化的分析型报表,并实现操作型CRM的业务运营模式。

第2章可视化商业智能大数据整体建设解决方案当客户提出要建设BI系统以优化业务后,可视化商业智能公司建议使用整体建设的解决方案,详细说明如下。

2.1解决方案系统架构可视化商业智能公司建设BI系统的整体解决方案的系统架构说明如下。

可视化商业智能 BI整体解决方案系统架构1.建立企业级的中央数据仓库InfoSpere Warehouse,形成统一的业务数据管理平台,为企业各个业务部门提供业务层面上的数据分析结果,以实现业务优化的目标。

2.基于InfoSpere Warehouse基础上,建立面向部门级应用的数据集市,通过InfoSphere Data Warehouse Pack forCustomer Insight产品方案,物理数据模型和Cognos 8 BI系统提供样本报表,可帮助客户快速地建立针对客户资料和交易行为分析的应用系统。

3.基于InfoSpere Warehouse和部门级应用的数据集市的基础,针对特殊和关键的业务需求,通过可视化商业智能 SPSS数据挖掘软件工具,根据各项业务指标要求对挖掘模型进行训练,以挖掘出解决指定业务问题的答案,并持续支持业务发展。

4.可视化商业智能 Information Server 提供了数据集成的解决方案,其中 DataStage软件工具实现了从各个生产业务系统抽取出数据,并按业务规则进行转换,最后把处理结果加载入数据仓库平台。

2.2解决方案组成整个解决方案涉及的软件产品具体说明如下。

可视化商业智能 BI整体解决方案系统组成部分2.2.1数据仓库(InfoSphere Warehouse Layer)•物理模型提供InfoSphere Warehouse Sample DB DDL•InfoSphere Warehouse Design Studio 数据模型,含盖数据仓库的原子表和面向报表应用的事实表。

•数据从数据仓库更新到事实表的逻辑说明和指引说明文档。

2.2.2数据集市(Data Mart Layer)•InfoSphere Warehouse Cubing Services Cube 建立一个Star Schema•Cognos Framework Manager Model 建立全部 Star Schema•从数据仓库和 Cognos 元数据迁移到 Metadata Server的说明和指引文档资料。

2.2.3数据ETL处理系统•InfoSphere Information Server DataStage ver.8.12.2.4业务应用2.2.4.1Cognos客户洞察分析报表•Cognos ReportStudio Reports for Customer Insight•Cognos AnalysisStudio Reports for Customer Insight 备注:有关报表的详细内容,请参阅第四章节。

2.2.4.2报表门户1.1 管理驾驶舱管理驾驶舱以仪表盘、趋势图等方式展现业务绩效的关键指标,包括开销户、转为有效户、资产、交易量、佣金及净佣金率等。

图1 管理驾驶舱仪表盘仪表盘常用于同时展现绝对指标和相对指标。

图2中仪表盘的外圈刻度表示开销户、交易量等指标的绝对值,不同区域的颜色表示此指标值的健康程度;内圈刻度表示相对占比(如在公司或市场占比)。

图2 交易量仪表盘双轴柱线图图3为交易量趋势图,其中左轴是成交量,右轴是市场占比。

柱状代表成交量的变化趋势,折线是成交量市场占比的变化情况。

此图可以很好的表达公司自身的成交量趋势以及在同业中所处的水平。

图3 交易量趋势三维饼图图 4的饼图直观的揭示了特定时间段内的交易量构成,显示各证券类别的交易量占比。

图4 交易量构成1.2 客户分析1)多角度展示客户总体的特征分布(资金量、活跃度、年龄等其他人口统计学特征、净佣金等),摒弃简单的“大中散”客户分类方式,深层剖析客户盈利的关键因素。

分析流失客户的行为特征,为客户挽留提供数据依据。

2)开销户和资产报表:按时间段、按分公司(营业部)统计客户的开户数、销户数、转有效户数及其均值等,以及客户保证金、市值、资产及新增和流失的保证金、市值和资产。

堆积柱状图图5以堆积柱状图展示了不同年龄段客户群对不同证券交易品种的偏好。

图5 不同年龄段交易量结构图6 开销户明细报表1.3 综合排名各营业部按新增开销户、有效户、客户资产、佣金等指标在公司、分公司的排名及排名的变化。

图7 本月营业部新增有效户排名1.4 营业部报表1)营业部的开销户、有效户、交易量及佣金等指标的历史变化趋势图2)不同营业部之间多指标对比分析(雷达图)3)交易量等指标的构成(按证券类别、委托方式等)雷达图图8用雷达图可以对营业部进行直观的综合能力分析及对比。

可以选取多个关键性指标进行量化后作为雷达图的各个轴,每个轴分为十个刻度,值越大代表越好。

这样的话面积越大代表该营业部综合能力越强。

据图6所示,绿色营业部的综合实力明显强于红色营业部。

红色营业部虽然在期末资产和总成交金额胜于对方,但并未带来更多的净佣金收入,而绿色所代表的营业部在新增客户方面更强,且有更高的净佣金。

图8 营业部间多指标综合对比1.5 存管银行报表1)不同时段内,单个指标在存管银行间占比分析(饼图、堆积图等)2)两个或多个存管银行之间多指标对比(气泡图、雷达图)3)指定存管银行,多指标变化趋势气泡图图9用气泡图在平面图对各个存管银行的交易量、月末资产和新增开户数进行比较。

横轴代表交易量,纵轴代表月末资产。

图中的每个气泡代表一个存管银行,气泡的大小表示开户数。

图8以堆积柱形图展示存管银行交易量中各个证券类别的占比。

图9 存管银行客户持仓率、资产及开户数比较2.2.4.3多维数据集根据多维业务模型建立的多维数据集,作为一个统一的数据平台,不仅作为前台门户报表的数据源,同时支持业务分析人员从多角度(客户、时间、证券产品、委托方式等)及多层次(如时间的日、月、季度、年等),通过上卷、下钻等操作,快速灵活的分析客户的交易、持仓、盈亏等数据,使他们快速准确的掌握当前的运营状况,验证复杂假设、预测趋势并制定营销策略。

相关文档
最新文档