第六章 动态数据分析模型.

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
– 过程的统计特性不随时间的平移而变化
严平稳和宽平稳
• 严平稳
– 一种条件比较苛刻的平稳性定义。认为只有当 序列所有的统计性质都不会随着时间的推移而 发生变化时,该序列才能被认为平稳。
• 宽平稳
– 宽平稳是使用序列的特征统计量来定义的一种 平稳性。认为序列的统计性质主要由它的低阶 矩决定,所以只要保证序列低阶矩平稳(二 阶),就能保证序列的主要性质近似稳定。
回归分析,人工识别
二、动态数据分析模型分类
动态数据建模需要回答的问题
• 是确定的序列还是随机的序列? • 变量的变化有规律吗?
– 周期、趋势、相关
• 这种变化与其他变量的变化有什么关系? • 不同的因素相互影响、相互作用,使得系 统目标发生了什么变化?
动态数据分析模型分类
• 研究单变量或少数几个变量的变化
x)
(x x )
理解计算过程
k
p 1 0.2970 2 -0.2034 3 -0.0537 4 -0.3843
15 10 5 0 0 5 10 15
0.4000 0.2000 0.0000 -0.2000 -0.4000 -0.6000 1 2 3 4
3)白噪声
• 纯随机过程
– 随机过程由无关的随机变量序列构成
• 灰色系统方法 • 动态系统仿真方法
时间序列模型
动态系统 模型
建模步骤
研究目标和内容 一个序列 几个序列 序列之间的关系 预测 模拟
选择使用的模型
数据预处理
建立模型进行分析
结果分析验证
4 时间序列模型
4.1 基本概念
1)平稳随机过程
• 如果一个随机过程的均值和方差在时间过 程上是常数,并且在任何两时期之间的协 方差值仅依赖于该两时期间的距离和滞后, 而不依赖于计算这个协方差的实际时间, 那么,这个随机过程称为平稳的随机过程。 • 特点
• T时刻的值与过去的值没有关系
• 研究中可供对比的背景
– 白噪声检验
时间域和频率域
• 时间域
– 时间t作为自变量 – 离散 – 使用差分方程和相关函 数进行研究
• 频率域
– 假设随机过程是不同的 正弦函数和余弦函数叠 加(积分)的结果 – 基于傅里叶变换 – 谱分析
• 自回归模型
• 周期分析
4.2 周期分析
• 表示
– x(t)
• 时间t为自变量
– 整数:离散的,等间距 的 – 非整数:连续的。实际 分析时必须进行采样处 理
• 时间单位
– 秒,分,小时,日,周, 月,年
1.2 动态数据分类-按照指标值的表现形式
• 绝对数序列
– 时期序列
• 可加性
– 时点序列
• 不可加性
• 相对数/平均数序列
年 指 标
第六章 动态数据分析模型
内容
一.动态数据及其的特点 二.动态数据的模型分类 三.动态数据建模方法和建模步骤 四.周期分析 五.时间序列预测 六.灰色系统建模 七.系统动力学建模
一、动态数据
• 是指观察或记录下来的一组按时间先后 顺序排列起来的数据序列
1.1 数据特征
• 构成
– 时间 – 反映现象在一定时间条 件下的数量特征的指标 值
平稳序列的统计性质
• 常数均值 • 自协方差函数和自相关函数只依赖于时 间的平移长度而与时间的起止点无关
如果是平稳 的,那么
2)自相关函数
• 同一序列不同时间间 隔的相关性 • 自相关函数的性质
– 规范性 – 对称性
ˆk
( x x )( x
t 1 t n t 1 t
nk
t k 2
21
12
21
10
离散序列
350 300 250 200 150 100 50 0 8 10 12 小时 14 16 18
流量
350 300 250 200 150 100 50 0 8 10 12 小时 14 16 18
流量
内插
连续序列
25 20
气温
15 10 5 0 8 10 12 小时 14 16 18

1991
1992
1993
1994
1995
1996
1997
国内生产 总值 (亿元) 年底 总人口数 (万人) 人均国内生 产总值 (元/人) 城镇 人口比重 (%) 26.37 27.63 28.14 1879 2287 2939 115823 117171 118517 119850 21618 26638 34634 46759 58478 67885 74772
绝对数 时期
绝对数 时点
3923
121121
122389
Hale Waihona Puke Baidu
123626
4854
5576
6079
平均数/相对数
28.62 29.04 29.37 29.92
时间数据分类-按照时间的表现形式
• 连续 • 离散
时间序列中,时间必须是等间隔的
河流水位
10 2 4 4 5 8
时间
河流水位 10 2 4 时间 4 6 8
– 各种因素是如何相互作 用影响系统总体发展的
• 特点
– 系统反馈
• 系统动力学
模型表示
• 因果反馈逻辑图 • 未来系统要素变化趋势图
因果反馈逻辑图
未来系统要素变化趋势图
3 建模步骤
• • • • 分析数据的动态特征 进行数据序列分解 数据预处理 模型构建模型确认
建模方法
• 统计学方法
– 随机过程理论
– 随机过程
• 周期分析和时间序列分析 时间序列 模型
– 灰色系统
• 关联分析,GM模型
• 研究多变量的变化
– 系统动力学建模
动态系统 模型
2.1 时间序列模型
• 研究一个或多个被解 释变量随时间变化规 律的模型 • 模型主要用于预测分 析 • 目的
– 精确预测未来变化
• 数据要求
– 序列平稳
• 研究角度
• 提取单时间序列中存 在的周期的方法 • 时间域
– 时间域 – 频率域
• 模型内容
– 周期分析 – 时间序列预测
时间序列模型的表示
• 相关的检验参数
xt f ( xt 1 , xt 2 , ) t
白噪声
2.2 动态系统模型
• 研究具有时变特点的 多个因素之间的相互 作用,以及这些作用 与系统整体发展之间 的关系的模型。 • 模型主要用于模拟和 情景分析 • 重点
采样
动态数据的特点
1. 数据取值随时间变化 2. 在每一时刻取什么值,不可能完全准确地 用历史值预报 3. 前后时刻(不一定是相邻时刻)的数值或 数据点有一定的相关性 4. 整体存在某种趋势或周期性
1.3 动态数据的构成与分解
时间序列=趋势+周期+平稳随机成分+白噪声
线性
季节性的 其他
自回归模型
相关文档
最新文档