第5章偏振调制型传感器.
合集下载
光纤传感器的基本原理
![光纤传感器的基本原理](https://img.taocdn.com/s3/m/c4b7037aad02de80d5d8402d.png)
各向异性晶体中的普克耳效应是一种重要 的电光效应。当强电场施加于光正在穿 行的各向异性晶体时,所引起的感生双 折射正比于所加电场的一次方,称为线 性电光效应,或普克耳效应。
• 非功能型光纤传感器是利用其它敏感元 件感受被测量的变化,光纤仅作为传输 介质,传输来自远处或难以接近场所的 光信号.所以也称为传光型传感器.或 混合型传感器。
在光纤中传输的光波可用如下形式的方程描述:
光纤传感器按被调制的光波参数不同可分为
强度调制光纤传感器 相位调制光纤传感器 频率调制光纤传感器 偏振调制光纤传感器 波长(颜色)调制光纤传感器
• 采用双波长工作方式的目的是为了消除测量中
多种因素所造成的误差。取绿光(558nm)作为 调制检测光,红光(630 nm)作参考光,探测器 接收到的绿光与红光强度的吸收比值为R, pH 值与R的关系为
式中.c、k为常数;L为试剂长度, Δ=pH—pK,其中 pH是酸碱度, pK是酸碱平衡常数。
5.2 光纤磷光探测技术
x射线、γ射线等辐射线会使光纤材料的吸 收损耗增加,使光纤的输出功率降低, 从而构成强度调制辐射量传感器。改变 光纤材料成分可对不同的射线进行测量。 如选用铅玻璃制成光纤,它对x射线、 γ 射线、中子射线最敏感,用这种方法做 成的传感器既可用于卫星外层空间剂量 的监测,也可用于核电站、放射性物质 堆放处辐射量的大面积监测。
• 作业
1、由图5-2的几何关系推导出下列关系式
2、由图5-2,已知光纤芯直径为2r=200um, 数据孔径NA=0.5,光纤间距a=100um。若取 函数F(d)的最大斜率处为该系统的灵敏度, 则耦合功率F随d变化速率为何值?
5.2.3 光模式强度调制
当光纤之间状态发生变化时,会引起光纤中的模式耦合,其 中有些导波模变成了辐射模,从而引起损耗,
• 非功能型光纤传感器是利用其它敏感元 件感受被测量的变化,光纤仅作为传输 介质,传输来自远处或难以接近场所的 光信号.所以也称为传光型传感器.或 混合型传感器。
在光纤中传输的光波可用如下形式的方程描述:
光纤传感器按被调制的光波参数不同可分为
强度调制光纤传感器 相位调制光纤传感器 频率调制光纤传感器 偏振调制光纤传感器 波长(颜色)调制光纤传感器
• 采用双波长工作方式的目的是为了消除测量中
多种因素所造成的误差。取绿光(558nm)作为 调制检测光,红光(630 nm)作参考光,探测器 接收到的绿光与红光强度的吸收比值为R, pH 值与R的关系为
式中.c、k为常数;L为试剂长度, Δ=pH—pK,其中 pH是酸碱度, pK是酸碱平衡常数。
5.2 光纤磷光探测技术
x射线、γ射线等辐射线会使光纤材料的吸 收损耗增加,使光纤的输出功率降低, 从而构成强度调制辐射量传感器。改变 光纤材料成分可对不同的射线进行测量。 如选用铅玻璃制成光纤,它对x射线、 γ 射线、中子射线最敏感,用这种方法做 成的传感器既可用于卫星外层空间剂量 的监测,也可用于核电站、放射性物质 堆放处辐射量的大面积监测。
• 作业
1、由图5-2的几何关系推导出下列关系式
2、由图5-2,已知光纤芯直径为2r=200um, 数据孔径NA=0.5,光纤间距a=100um。若取 函数F(d)的最大斜率处为该系统的灵敏度, 则耦合功率F随d变化速率为何值?
5.2.3 光模式强度调制
当光纤之间状态发生变化时,会引起光纤中的模式耦合,其 中有些导波模变成了辐射模,从而引起损耗,
高中物理选择性必修件第五章认识传感器
![高中物理选择性必修件第五章认识传感器](https://img.taocdn.com/s3/m/d98efea7541810a6f524ccbff121dd36a32dc49f.png)
时间测量
在物理实验中,常常需要 精确测量时间,如使用光 电门传感器测量物体通过 某一点的时间。
验证物理定律实验
牛顿第二定律验证
通过加速度传感器测量物体的加 速度,结合已知的质量和合外力
,验证牛顿第二定律。
动量守恒定律验证
在碰撞实验中,使用速度传感器分 别测量碰撞前后两物体的速度,从 而验证动量守恒定律。
流量传感器
监测管道中液体或气体的流量,实现精确的流量 控制,保证生产过程的稳定性和效率。
环境保护领域应用
空气质量传感器
监测大气中的PM2.5、PM10、二氧化硫、氮氧化物等有害物质的 含量,为环境保护提供数据支持。
水质传感器
用于监测水体中的PH值、溶解氧、浊度、重金属离子等参数,评估 水环境质量。
高中物理选择性必修件第五章 认识传感器
汇报人:XX
20XX-01-19
CONTENTS
• 传感器概述 • 传感器技术基础 • 常见传感器类型及其工作原理 • 传感器在物理实验中的应用 • 传感器在日常生活和工业生产
中的应用 • 传感器技术发展趋势与挑战
01
传感器概述
定义与分类
传感器定义
传感器是一种能够将非电学量( 如温度、压力、光强等)转化为 电学量(如电压、电流等)的装 置。
应用领域
传感器广泛应用于工业自动化、环境监测、医疗诊断、智能家居等领域。
重要性
传感器技术的发展对于推动科技进步、提高生产效率和生活质量具有重要意义 ,是现代信息技术的重要组成部分。
02
传感器技术基础
敏感元件及转换电路
敏感元件
指传感器中能直接感受或响应被测量的部分,如热敏电阻、光敏 电阻等。
转换电路
第五章光纤传感基本原理-频率调制
![第五章光纤传感基本原理-频率调制](https://img.taocdn.com/s3/m/1b9f3eee48649b6648d7c1c708a1284ac8500508.png)
m
1,2,
光纤传感器基本原理
5.6 偏振调制机理
线偏振光,光波的光矢量方向始终不变,只是它的大小随 相位改变。光矢量与光的传播方向组成的平面为线偏振光的振 动面。
圆偏振光,光矢量大小保持不变,而它的方向绕传播方向 均匀地转动,光矢量末端的轨迹是一个圆。
椭圆偏振光,光矢量的大小和方向都在有规律地变化,且光 矢量的末端沿着一个椭圆转动。
黑体光谱辐射能量密度、 温度及波长三者之间的关系。
5.5.3 光纤黑体探测技术
光纤传感器基本原理
光纤黑体探测技术,就是以黑体做探头,利用光纤传输热辐射波, 不怕电磁场干扰,质量轻,灵敏度高,体积小,探头可以做到0.1mm。
光纤传感器基本原理
5.5.4 光纤法布里-珀罗滤光技术
0 m
2nd cos m /
FL 108
可检测到信号
5.4.2 光纤多普勒系统的局限性
光纤传感器基本原理
一般多普勒探测器最大只能实现液体中几毫米处粒子的运动
速度虚测像量半,径只ri适 a用du 于携带粒子的流体或混浊体中悬浮物质的速度 测量数。值速孔度径测NA量i 范NA围du 为μm/s~m/s,相应的频偏为Hz-MHz。
ne n0 0kE2
非寻常光折射率
寻常光折射率
大多数情况下,ne-n0>0
光纤传感器基本原理
5.6.2 克尔效应
不加外电场,无光通过,克尔盒关闭;加外电场,有光通过,
克尔盒开启。
光程差:
ne
n0
l
k
0
U d
2
l
N1、N2相互垂直,与 电场分别成±45°。
相位差:
2
kl
U d
2
光纤传感技术课件:偏振态调制型光纤传感器
![光纤传感技术课件:偏振态调制型光纤传感器](https://img.taocdn.com/s3/m/f774374702d8ce2f0066f5335a8102d277a26113.png)
21
偏振态调制型光纤传感器
这样, 为了获得大的法拉第效应, 可以将放在磁场中的 法拉第材料做成平行六面体, 使通光面对光线方向稍偏离垂 直位置, 并将两面镀高反射膜, 只留入射和出射窗口。 若光 束在其间反射N次后出射, 那么有效旋光厚度为Nl, 偏振面的 旋转角度就提高N倍。 法拉第效应是偏振调制器的基础, 利 用法拉第效应可制作光纤电流传感器。
偏振态调制型光纤传感器
偏振态调制型光纤传感器
6.1 偏振态调制型传感原理 6.2 偏振态调制光纤传感器应用实例
1
偏振态调制型光纤传感器
6.1
偏振态调制型光纤传感器是有较高灵敏度的检测装置。 它比高灵敏度的相位调制光纤传感器的结构简单且调整方便。 偏振态调制型光纤传感器通常基于电光、 磁光和弹光效应, 通过敏感外界电磁场对光纤中传输的光波的偏振态的调制来检 测被测电磁场参量。 最为典型的偏振态调制效应有Pockels效 应、 Kerr效应、 Faraday效应, 以及弹光效应(原理介绍详见 第一章1.3.4节)。
此时, 检偏镜的透射光强度 I 与起偏镜的入射光强度I0 之间的关系可由下式表示:
(6.1-11)
16
式中, 半波电压Uλ/2可表示为
偏振态调制型光纤传感器
(6.1-12)
利用克尔效应可以构成电场、 电压传感器, 其结构类 似于图6-1。
17
偏振态调制型光纤传感器
6.1.4 Faraday
物质在磁场的作用下使通过的平面偏振光的偏振方向发 生旋转, 这种现象称为磁致旋光效应或法拉第(Faraday)效应。
9
偏振态调制型光纤传感器
10
偏振态调制型光纤传感器
6.1.3 Kerr
Kerr效应也称为二次(或平方)电光效应, 它发生在一
偏振态调制型光纤传感器
这样, 为了获得大的法拉第效应, 可以将放在磁场中的 法拉第材料做成平行六面体, 使通光面对光线方向稍偏离垂 直位置, 并将两面镀高反射膜, 只留入射和出射窗口。 若光 束在其间反射N次后出射, 那么有效旋光厚度为Nl, 偏振面的 旋转角度就提高N倍。 法拉第效应是偏振调制器的基础, 利 用法拉第效应可制作光纤电流传感器。
偏振态调制型光纤传感器
偏振态调制型光纤传感器
6.1 偏振态调制型传感原理 6.2 偏振态调制光纤传感器应用实例
1
偏振态调制型光纤传感器
6.1
偏振态调制型光纤传感器是有较高灵敏度的检测装置。 它比高灵敏度的相位调制光纤传感器的结构简单且调整方便。 偏振态调制型光纤传感器通常基于电光、 磁光和弹光效应, 通过敏感外界电磁场对光纤中传输的光波的偏振态的调制来检 测被测电磁场参量。 最为典型的偏振态调制效应有Pockels效 应、 Kerr效应、 Faraday效应, 以及弹光效应(原理介绍详见 第一章1.3.4节)。
此时, 检偏镜的透射光强度 I 与起偏镜的入射光强度I0 之间的关系可由下式表示:
(6.1-11)
16
式中, 半波电压Uλ/2可表示为
偏振态调制型光纤传感器
(6.1-12)
利用克尔效应可以构成电场、 电压传感器, 其结构类 似于图6-1。
17
偏振态调制型光纤传感器
6.1.4 Faraday
物质在磁场的作用下使通过的平面偏振光的偏振方向发 生旋转, 这种现象称为磁致旋光效应或法拉第(Faraday)效应。
9
偏振态调制型光纤传感器
10
偏振态调制型光纤传感器
6.1.3 Kerr
Kerr效应也称为二次(或平方)电光效应, 它发生在一
第5章-偏振调制型传感器
![第5章-偏振调制型传感器](https://img.taocdn.com/s3/m/b570aade852458fb760b5631.png)
no=1.51,λ=546nm时,半波电压 V 7.6 103 V 比克尔盒要求的电压低得多
➢ 磷酸二氢胺(NH4H2PO4,ADP)
开关响应时间也极短
➢ <10-9s,可用作超高速开关,激光调Q,显示技 术,数据处理…
旋光效应-磁致旋光效应
磁致旋光(magnetic opticity)
l 2 l kV 2 d
d l
克尔盒
k 时 ,克尔盒相当于半波片-P2透光最强
硝基苯 k 1.44 101,8m设2 / Vl =2 3cm,d = 0.8cm, 则λ=
600nm,
V 2 104 V
优点:响应时间10-9s-用于光开关、高速摄影、
激光通讯、光速测距、脉冲激光系统(作为Q开关)
载流导线
检偏器
记录显示器
光纤电流传感器原理示意图
光纤电流传感器
y
E
P
振动面偏转角仅与电流 I 有关
V L
I
J
设:
2 r
x
检偏器方向设置
➢ 载流导线中的电流 I=0 时,线偏振光振动方向在检偏器
处的与y 轴平行,检偏器P(普通检偏器)的方位为φ;
➢ I≠0 时的方位为θ,在P上的投影(即光探测器的输出信号 强度)为J,则
自然光通过旋转的检偏器,光强不变
自然光
....
.
检偏器
双折射
各向异性介质中,一束入射光常有被分解为两束的现象
注意,这种现象不是因为不同频率的光在介质中的折射
率不同而产生的。 o光(寻常光):对于任意的入射角,其入射角的正弦与
折射角的正弦值比为一常数(即通常所说的折射率); e光(非寻常光):若其入射角的正弦与折射角的正弦值
➢ 磷酸二氢胺(NH4H2PO4,ADP)
开关响应时间也极短
➢ <10-9s,可用作超高速开关,激光调Q,显示技 术,数据处理…
旋光效应-磁致旋光效应
磁致旋光(magnetic opticity)
l 2 l kV 2 d
d l
克尔盒
k 时 ,克尔盒相当于半波片-P2透光最强
硝基苯 k 1.44 101,8m设2 / Vl =2 3cm,d = 0.8cm, 则λ=
600nm,
V 2 104 V
优点:响应时间10-9s-用于光开关、高速摄影、
激光通讯、光速测距、脉冲激光系统(作为Q开关)
载流导线
检偏器
记录显示器
光纤电流传感器原理示意图
光纤电流传感器
y
E
P
振动面偏转角仅与电流 I 有关
V L
I
J
设:
2 r
x
检偏器方向设置
➢ 载流导线中的电流 I=0 时,线偏振光振动方向在检偏器
处的与y 轴平行,检偏器P(普通检偏器)的方位为φ;
➢ I≠0 时的方位为θ,在P上的投影(即光探测器的输出信号 强度)为J,则
自然光通过旋转的检偏器,光强不变
自然光
....
.
检偏器
双折射
各向异性介质中,一束入射光常有被分解为两束的现象
注意,这种现象不是因为不同频率的光在介质中的折射
率不同而产生的。 o光(寻常光):对于任意的入射角,其入射角的正弦与
折射角的正弦值比为一常数(即通常所说的折射率); e光(非寻常光):若其入射角的正弦与折射角的正弦值
第五章-相位调制型光纤传感器PPT课件
![第五章-相位调制型光纤传感器PPT课件](https://img.taocdn.com/s3/m/6bd53f8525c52cc58ad6be90.png)
➢ 影响相位变化的基础物理效应:
应力应变、温度
萨格纳克(Sagnac)效应
5.3 光纤相位调制机理
光波通过长度为L的光纤,出射光波的相位延迟为
2
L kL
光波在外界因素的作用下,相位的变化为
L
k
k
(
k
Lk
)
L
n
L
a
L
n
a
应变效应或
热胀效应
光弹效应或 泊松效应(灵敏度
➢ 使用方便。封闭式光路,不受外界干扰,减少了
干涉仪的长臂安装和校准的固有困难,可使干涉
仪小型化。
➢ 灵活多样。光纤本身是传感器的敏感部分,其探
头的形状可按使用要求设计成不同形状。
➢ 对象广泛。不论何种物理量,只要对干涉仪中的
光程产生影响,就可用于传感。
缺点
➢ 需相干光源,单模光纤以及高精度光电检测系统
萨格纳克(Sagnac)干涉仪
法布里-泊罗(Fabry-Perot)干涉仪
常用光纤干涉传感器是利用上述原理由光纤
实现的干涉型光纤传感器。
迈克耳逊
(A.A.Michelson)
美籍德国人
迈克耳逊在工作
因创造精密光学
仪器,用以进行
光谱学和度量学
的研究,并精确
测出光速,获
1907年诺贝尔物
理奖。
➢由激光器输出的单
2
I min
透射的干涉光强的最大值与最小值之比
I max 1 R
I min 1 R
2
反射率R越大,干涉光强越显著,分辨力越高。
应力应变、温度
萨格纳克(Sagnac)效应
5.3 光纤相位调制机理
光波通过长度为L的光纤,出射光波的相位延迟为
2
L kL
光波在外界因素的作用下,相位的变化为
L
k
k
(
k
Lk
)
L
n
L
a
L
n
a
应变效应或
热胀效应
光弹效应或 泊松效应(灵敏度
➢ 使用方便。封闭式光路,不受外界干扰,减少了
干涉仪的长臂安装和校准的固有困难,可使干涉
仪小型化。
➢ 灵活多样。光纤本身是传感器的敏感部分,其探
头的形状可按使用要求设计成不同形状。
➢ 对象广泛。不论何种物理量,只要对干涉仪中的
光程产生影响,就可用于传感。
缺点
➢ 需相干光源,单模光纤以及高精度光电检测系统
萨格纳克(Sagnac)干涉仪
法布里-泊罗(Fabry-Perot)干涉仪
常用光纤干涉传感器是利用上述原理由光纤
实现的干涉型光纤传感器。
迈克耳逊
(A.A.Michelson)
美籍德国人
迈克耳逊在工作
因创造精密光学
仪器,用以进行
光谱学和度量学
的研究,并精确
测出光速,获
1907年诺贝尔物
理奖。
➢由激光器输出的单
2
I min
透射的干涉光强的最大值与最小值之比
I max 1 R
I min 1 R
2
反射率R越大,干涉光强越显著,分辨力越高。
光纤传感原理与应用 尚盈 电子课件 第五章.光纤解调技术
![光纤传感原理与应用 尚盈 电子课件 第五章.光纤解调技术](https://img.taocdn.com/s3/m/d3c7f62d0a4e767f5acfa1c7aa00b52acfc79c97.png)
5.2 波长解调 5.2.2 滤波解调法
5.2 波长解调 5.2.2 滤波解调法
5.3 频率解调 5.3.1 频率调制基本原理
s O 光学多普勒效应原理
5.3 频率解调 5.3.2光纤多普勒流速测量技术
5.3 频率解调 5.3.2光纤多普勒流速测量技术
光束1 光束2
前方散射形成的干涉条纹
5.3 频率解调
Ⅰ
三角函数象限图
5.4 相位解调 5.4.4 I/Q解调算法
5.4 相位解调 5.4.4 I/Q解调算法
5.4 相位解调 5.4.4 I/Q解调算法
5.5 偏振态解调
5.1 强度解调
强度解调的方案结构简单,适合短距离且信噪比要求不太高的场合,受激光器相位噪声影响较小。强 度解调过程如图5.1所示,先将光信号进行光学滤波,滤除中心波长以外的其他噪声,光电探测器将光信 号转成电信号,将获得的信号进行放大,然后将信号进行滤波,保证只将有用信号进行放大。
强度解调型FBG传感器是通过测量传感FBG的光强或光功率来解调被测参量的传感器,其传感系统 通常由光源、传感头、光信号传输器件和解调模块四部分组成,而解调模块中方案的选择直接决定了系 统成本的高低和系统的精度,是传感系统的关键部分。
在零差方式下,解调电路直接将干涉仪中的相位变化转变为电信号。零差方式又包括主动零差法 (Active Homodyne Method)和被动零差法(Passive Homodyne Method)。
外差方式包括普通外差法、合成外差法和伪外差法。
1.主动零差法
在主动零差法中,需要“主动”地控制干涉仪参考臂的长度,使得干涉仪工作在正交工作点处。常 见的主动零差法包括两种,即主动相位跟踪零差法和主动波长调谐零差法。
第5章 偏振调制型传感器
![第5章 偏振调制型传感器](https://img.taocdn.com/s3/m/94ef1176f46527d3240ce002.png)
2 2
E2 1 cos(2 2 ) J E cos ( ) 2 在θ=0,φ =±45º 时,检测灵敏度最高
E2 1 sin( 2 ) J 2
sin( 2 ) 2
NxtPhase
OVT进行-18℃的测试。
(a)
(b)
BSO晶体光纤电场传感器
可构成压力、振动、位移等光纤传感器。
压力与水声传感器
折射系数与声强的关系
材料的光弹性声强检测灵敏度
n3 p 2 I S p n 2 VS3
6 2
1 2
Pyrex玻璃材料
n p M 3 VS
最小可测压差:9.5Pa(理论值为1.4Pa) 在0~500kPa:有良好的线性;测量范围可扩展至2MPa, 动态范围达86dB
光电转换
t
电子式光纤电流互感器
Rogowski Ring 电流母线I
DCБайду номын сангаас源
A/D 调制器
探测器 光源 光纤
Kerr二次电光效应
克尔效应(Kerr effect)(1875年)
克尔盒内充某种液体,如硝基本(C6H5NO2)
不加电场→液体各向同性→P2不透光 P1P2
加外电场→液体呈单轴晶体性质,光轴平行 透光 E P2
.
检偏器
自然光通过旋转的检偏器,光强不变
自然光
. . . .
.
检偏器
自然光通过旋转的检偏器,光强不变
自然光
. . . .
.
检偏器
双折射
各向异性介质中,一束入射光常有被分解为两束的现象 注意,这种现象不是因为不同频率的光在介质中的折射 率不同而产生的。 o光(寻常光):对于任意的入射角,其入射角的正弦与 折射角的正弦值比为一常数(即通常所说的折射率); e光(非寻常光):若其入射角的正弦与折射角的正弦值 比随入射角而变化。
E2 1 cos(2 2 ) J E cos ( ) 2 在θ=0,φ =±45º 时,检测灵敏度最高
E2 1 sin( 2 ) J 2
sin( 2 ) 2
NxtPhase
OVT进行-18℃的测试。
(a)
(b)
BSO晶体光纤电场传感器
可构成压力、振动、位移等光纤传感器。
压力与水声传感器
折射系数与声强的关系
材料的光弹性声强检测灵敏度
n3 p 2 I S p n 2 VS3
6 2
1 2
Pyrex玻璃材料
n p M 3 VS
最小可测压差:9.5Pa(理论值为1.4Pa) 在0~500kPa:有良好的线性;测量范围可扩展至2MPa, 动态范围达86dB
光电转换
t
电子式光纤电流互感器
Rogowski Ring 电流母线I
DCБайду номын сангаас源
A/D 调制器
探测器 光源 光纤
Kerr二次电光效应
克尔效应(Kerr effect)(1875年)
克尔盒内充某种液体,如硝基本(C6H5NO2)
不加电场→液体各向同性→P2不透光 P1P2
加外电场→液体呈单轴晶体性质,光轴平行 透光 E P2
.
检偏器
自然光通过旋转的检偏器,光强不变
自然光
. . . .
.
检偏器
自然光通过旋转的检偏器,光强不变
自然光
. . . .
.
检偏器
双折射
各向异性介质中,一束入射光常有被分解为两束的现象 注意,这种现象不是因为不同频率的光在介质中的折射 率不同而产生的。 o光(寻常光):对于任意的入射角,其入射角的正弦与 折射角的正弦值比为一常数(即通常所说的折射率); e光(非寻常光):若其入射角的正弦与折射角的正弦值 比随入射角而变化。
第四章-强度调制型光纤传感器11
![第四章-强度调制型光纤传感器11](https://img.taocdn.com/s3/m/1a539bb9afaad1f34693daef5ef7ba0d4a736d89.png)
第四章 强度调制型光纤传感器
4.2 反射式强度调制
反射面
LD
Emitting Fiber x
发射光纤像
yo
z
a
2r
PIN
Receiving Fiber
位移方向
d
确定传感器的响应(发射光纤-平面镜-接收光纤的光 路耦合)等效于计算虚光纤与接收光纤之间的耦合
假设发射光纤与接收光纤的间距为d,且都具有阶跃型折射 率分布,芯径为2r,光纤数值孔径为NA,且T tan(sin1 NA)
第四章 强度调制型光纤传感器
➢等芯错位式
4.2 反射式强度调制
✓ TF 与RF1、RF2均相同,芯径为r1、包层厚度为t1, 包层之间无间隙;
✓ TF反射端面与RF1、RF2的接收端面间错位量分 别为b1和b2。
第四章 强度调制型光纤传感器
➢等芯错位式
4.2 反射式强度调制
✓ 可抑制光源功率波动、反射率变化的影响,但对 特性曲线的线性范围、灵敏度改善不明显。
第四章 强度调制型光纤传感器
➢等芯不等间距式
4.2 反射式强度调制
✓ 光强调制特性本质上没有区别。 ✓ Ⅰ式由于光纤之间紧密排列,因而光轴间距容
易准确确定,仅由光纤芯径和包层决定;Ⅱ式 由于光纤包层之间存在间隙,因此光纤的间距 不容易准确给定,容易引入测量误差;
实际应用中采用Ⅰ式结构
第四章 强度调制型光纤传感器
第四章 强度调制型光纤传感器
4.2 反射式强度调制
第四章 强度调制型光纤传感器
4.2 反射式强度调制
第四章 强度调制型光纤传感器
4.2 反射式强度调制
发射光纤 接收光纤
反射式光纤传感器的基本结构
强度调制机理
![强度调制机理](https://img.taocdn.com/s3/m/e4ea437ccaaedd3383c4d38e.png)
• 2.赛格纳克光纤干涉仪 • 激光器输出的光由分束器分为反射和透射两部分, 这两束光由反射镜的反射形成传播方向相反的闭 合光路,然后在分束器上会合,被送入光探测器 中,同时也有一部分返回激光器。在这种干涉仪 中,把任何一块反射镜在垂直方向上移动,两光 束的光程变化都是相同的。因此,根据光束干涉 原理,在光探测器上探测不到干涉光强的变化。
• 光纤传感器技被测对象的不同、又可分为 光纤温度传感器、光纤位移传感器、光纤 浓度传感器、光纤电流传感器、光纤流速 传感器等。
5.2 强度调制机理
• 强度调制光纤传感器的基本原理是待测物 理量引起光纤中的传输光光强变化,通过 • 检测光强的变化实现对待测量的测量。一 恒定光源发出的强度为 Pi的光注入传惑 头.在传感头内,光在被测信号的作用下 其强度发生变化,即受到了外场的调制, 使得输出光强Po的包络线与被测信号的形 状一样,光电探测器测出的输出电流
第 5 章 光纤传感技术
5.1 引言
5.2 强度调制机理
5.3 相位调制机理
5.4 光纤位移传感器
5.5 光纤表面粗糙度传感器
5.6 光纤加速度传感器
பைடு நூலகம்
返回主目录
5.1 引言
光纤传感技术是伴随着光通信技术的发展而逐步形成的。
在光通信系统中,光纤被用作远距离传输光波信号的媒质。
显然,在这类应用中,光纤传输的光信号受外界干扰越小越 好。但是,在实际的光传输过程中,光纤易受外界环境因素
5.2.1 反射式强度调制
• 这是一种非功能型光纤传感器,光纤本身只起传 光作用。这里光纤分为两部分,即输入光纤和输 出光纤,亦可称为发送光纤和接收光纤。这种传 感器的调制机理是输人光纤将光源的光射向被测 物体表面,再从被测面反射到另一根输出光纤中, 其光强的大小随被测表面与光纤间的距离而变化。 在距光纤端面d的位置放有反光物体——平面反射 镜,它垂直于输入和输出光纤轴移动,故在平面 反射镜之后相距d处形成一个输入光纤的虚像。
偏振调制型传感器
![偏振调制型传感器](https://img.taocdn.com/s3/m/7c1365330912a21614792981.png)
l
d
克尔盒
Kerr盒
ne no kE 2 2
45 P1
+
P2 45
l
d
kV 2 k ne no l 2 l d
克尔盒
2
k 时,克尔盒相当于半波片-P2透光最强 硝基苯 k 1.44 10 18 m2 / V 2 ,设l =3cm,d = 0.8cm, 则λ= 600nm, V 2 104 V 优点:响应时间10-9s-用于光开关、高速摄影、 激光通讯、光速测距、脉冲激光系统(作为Q开关) 缺点:如硝基苯有毒,易爆炸,需极高纯度和高电 压,故现在很少用。
4 光弹效应
在垂直于k方向上施加应力(内应力或外来的机械应力) 双折射
F
·
P1
S
C
P2
有机玻璃
d
干涉
F
片状、插在两偏振片之间,不同地点因(no-ne)不同会 引起o光和e间不同的相位差δ干涉图样。
应力越集中地方,各向异性越强,干涉条纹越细密。 在白光照射下,则显示出彩色的干涉图样。
<10-9s,可用作超高速开关,激光调Q,显示技
术,数据处理…
Kerr二次电光效应
克尔效应(Kerr effect)(1875年)
克尔盒内充某种液体,如硝基苯(C6H5NO2)
不加电场→液体各向同性→P2不透光 透光
45 P1
加外电场→液体呈单轴晶体性质,光轴平行
+
P2 45
45 2 90
··
磁致旋光物质
研究物质结构:结构不同-其碳氢化合物的法拉第
旋转效应也不同 测电流和磁场:在电工测量中,用来测电流和磁 场,特别可制造用于测量超高压电网电流的光纤 电流传感器 磁光调制:光通信技术中,应用磁致旋光效应, 使信号电流产生的光振动面旋转,转化为光的强 度变化,这就是磁光调制
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
旋转效应也不同 测电流和磁场:在电工测量中,用来测电流和磁 场,特别可制造用于测量超高压电网电流的光纤 电流传感器 磁光调制:光通信技术中,应用磁致旋光效应, 使信号电流产生的光振动面旋转,转化为光的强 度变化,这就是磁光调制
应用:光纤电流传感器
强度H的磁场中
I
激光器 起偏器 显微物镜 光纤 光探测器
双折射晶体
o光 e光
o光和e光示意图
下图是不同的相位差对应的偏振态
0
4
2
3 4
5 4
2
7 4
2
Pockels 效应(一次电光效应)
线性电光效应 晶体中,两正交的偏振光的相位变化为:
Pockels效应
单晶电光材料
磷酸二氢钾(KH2PO4,简称KDP)
反 射 镜
对自然旋光物质,光顺磁场与逆磁场方向传播, 其振动面旋向相反。
左旋 入射光
反射镜
右旋 反射光
B
反射镜
B
磁旋光物质-光顺磁场与逆磁场方向传播, 其振动面旋向相同。
法拉第效应的应用
··
P
B
M
隔离器 应用很广泛:
45 2 90
··
磁致旋光物质
研究物质结构:结构不同-其碳氢化合物的法拉第
高双折射光纤(拍长=3.2mm)
光纤
耦合器
光纤偏振器
耦合器
光弹效应
在垂直于k方向上施加应力(内应力或外来的机械应力) 双折射
F
·
P1
S
C
P2
有机玻璃
d
干涉
F
片状、插在两偏振片之间,不同地点因(no-ne)不同会 引起o光和e间不同的相位差δ干涉图样。
应力越集中地方,各向异性越强,干涉条纹越细密。 在白光照射下,则显示出彩色的干涉图样。
2 2
E2 1 cos(2 2 ) J E cos ( ) 2 在θ=0,φ =±45º 时,检测灵敏度最高
E2 1 sin( 2 ) J 2
sin( 2 ) 2
NxtPhase
OVT进行-18℃的测试。
(a)
(b)
BSO晶体光纤电场传感器
偏振调制型光纤传感器
Lecture 8-9
内容提要
偏振、双折射与波片
偏振调制和偏振干涉
Pockles电光效应
OCT OVT
旋光效应(法拉第磁光效应)
Kerr效应 光弹效应
偏振光的干涉与光纤偏振干涉仪
压力、水声
偏振与偏振调制
概念:
线偏振光
振动面(E×K ) 偏振面:包含k、垂直于振动面
. . . .
起偏器
检偏器
偏振光通过旋转的检偏器, 光强发生变化
自然光
线偏振光
. . . .
.
起偏器
检偏器
偏振光通过旋转的检偏器, 光强发生变化
自然光
线偏振光
. . . .
.
检偏器
起偏器
偏振光通过旋转的检偏器, 光强发生变化
自然光
线偏振光
. . . .
.
检偏器
起偏器
两偏振片的偏振化方向相互垂直 光强为零
2
可探测的最小压力: f 2tp0
pmin 2 f h B 2 f eB f I 0 f rI 0
1 2 1 2
2)传感方案、探头设计
3)分析讨论
光纤电压传感器
输入激光
起偏光 纤
电场
保偏光纤 输出至 分束器和探测 器
(a) (b)
晶体
旋光效应
晶体和溶液的旋光性
P1 单轴双折射(o光和e的传播方向和波速都一 P2 样)
垂直于光轴切割出一块平行平面晶片 从偏振 c
片I透出来的线偏振光经过此晶片时偏振状态 石英的旋光现象 没有改变,在偏振片 II之后仍然消光。
BSO晶体
同时具有电光Pockels效应和磁光Faraday效
应;且其温度系数较小
光源 起偏器 电光晶体 检偏器 信号处理
系统结构
V /mV
El I 1 sin * U
光强
电光转换 0 信 号 处 理
2 0 0
4
t
电流导线
光强
0.5
双芯光缆
1.0 E /(kV· cm-1)
可构成压力、振动、位移等光纤传感器。
压力与水声传感器
折射系数与声强的关系
材料的光弹性声强检测灵敏度
n3 p 2 I S p n 2 VS3
6 2
1 2
Pyrex玻璃材料
n p M 3 VS
最小可测压差:9.5Pa(理论值为1.4Pa) 在0~500kPa:有良好的线性;测量范围可扩展至2MPa, 动态范围达86dB
E EL t=0 ER EL E
wt
-wt
ER
(a)
(b)
图6.6-2 同频率左右圆偏振光的叠加
偏振光的干涉
平行偏振光的干涉 汇聚偏振光的干涉
光纤偏振干涉仪
原理:单根高双折射单模光纤-两正交偏振 模式-相移差 比较:
探测器 测温:灵敏度 2.5rad/ (℃· m)<< MZ的~100rad/(℃· m) 信号处理 LED 仪器装置简单,压力灵敏度为M-Z干涉仪的 1/7300,因此有较强的压力去敏作用
设计举例:医用体压计
设计要求
压力范围内:-50~+300mmHg 灵敏度:1mmHg 频率范围:dc~100Hz
解决方案
调研综述 光弹传感器及探头的设计 分析与讨论
1)调研综述、方案确定
探测器端:
t p 2 I I 0 sin p I 0 sin f 2 p0 物质的光弹系数:
人工方法产生旋光性法拉第旋 转(Faraday rotation) 1846年,法拉第发现
隔离器-非互易性即只允许 光从一个方向通过,而不能从 反方向通过的光阀门。在激光 的多级放大装置中 水、二硫化碳、食盐、乙醇等 都是磁致旋光物质
应用
磁光材料
左旋 入射光
反射光
左旋
反 射 镜
I H 2 r
载流导线
检偏器
记录显示器
光纤电流传感器原理示意图
y
光纤电流传感器
振动面偏转角仅与电流 I 有关 设:
E
P
VL I 2 r
J
x
检偏器方向设置
载流导线中的电流 I=0 时,线偏振光振动方向在检偏器 处的与y 轴平行,检偏器P(普通检偏器)的方位为φ; I≠0 时的方位为θ,在P上的投影(即光探测器的输出信号 强度)为J,则
no=1.51,λ=546nm时,半波电压 V 7.6 103 V 比克尔盒要求的电压低得多
磷酸二氢胺(NH4H2PO4,ADP)
开关响应时间也极短
<10-9s,可用作超高速开关,激光调Q,显示技
术,数据处理…
旋光效应-磁致旋光效应
磁致旋光(magnetic opticity)
Kerr盒
ne no kE 2 2
45 P1
+
P2 45
l
d
kV 2 k ne no l 2 l d
克尔盒
k 时,克尔盒相当于半波片-P2透光最强 硝基苯 k 1.44 10 18 m2 / V 2 ,设l =3cm,d = 0.8cm, 则λ= 600nm, V 2 104 V 优点:响应时间10-9s-用于光开关、高速摄影、 激光通讯、光速测距、脉冲激光系统(作为Q开关) 缺点:如硝基苯有毒,易爆炸,需极高纯度和高电 压,故现在很少用。
圆偏振光、椭圆偏振光 部分偏振光、全偏振光 常用:电光、磁光、光弹等物理效应进行调制。 注:光的振动方向通常是指电场矢量 E的方向
偏振调制传感器
偏振光通过旋转的检偏器, 光强发生变化
自然光 线偏振光
.
. . . .
起偏器
检偏器
偏振光通过旋转的检偏器, 光强发生变化
自然光
线偏振光
.
' Cd
' 溶液的比旋光率
应用:在制糖、制药和化工等方面
例:糖度分析仪
糖量计(saccharimeter)
测定糖溶液浓度
根据糖溶液的旋光性而设计的一种仪器 在一定的温度和波长下,事先测得比旋长率αˊ 然后再测出未知浓度溶液使振动面偏转的角度ψ
旋光效应的解释
起偏器
c
用石英晶体实验时发现:要使偏振片II之后消
光,必须将偏振片II的透振方向向左或向右旋 转一个角度ψ
3-7
旋光效应
旋光现象、旋光性(optical activity)与旋光物质
旋光物质
d
晶体:振动面旋转角度ψ与晶片厚度d 成正比
d
:晶体旋光率,与 有
溶液:ψ还与溶液的浓度C成正比,即
自然光通过旋转的检偏器,光强不变
自然光
.
. . . .
检偏器
自然光通过旋转的检偏器,光强不变
自然光
.
. . . .
检偏器
自然光通过旋转的检偏器,光强不变
自然光