我们知道一个圆是轴对称图形

合集下载

(常考题)新人教版小学数学六年级上册第五单元《圆》检测卷(包含答案解析)(1)

(常考题)新人教版小学数学六年级上册第五单元《圆》检测卷(包含答案解析)(1)

(常考题)新人教版小学数学六年级上册第五单元《圆》检测卷(包含答案解析)(1)一、选择题1.圆是轴对称图形,它有()条对称轴。

A. 一B. 两C. 无数D. 四2.将半径分别为2厘米和3厘米的两个半圆如图那样放置,则阴影部分的周长是()A. 18.7厘米B. 19厘米C. 10厘米D. 19.7厘米3.已知一个圆的半径是R,且R满足3:R=R:4,则这个圆的面积为()A. 7πB. 7C. 12πD. 无法求出4.半径是3cm的圆,下列关于这个圆的数据正确的是()A. 直径9cmB. 周长18.84cmC. 周长9.42cmD. 面积113.04cm25.下图中,正方形的面积是16平方厘米,圆的面积是()cm2。

A. 50.24B. 47.1C. 43.98D. 37.68 6.下面图()中的阴影部分可能是圆心角为100°的扇形.A. B. C.D.7.已知圆的周长是18.84厘米,它的直径是()A. 6厘米B. 12.56厘米C. 12厘米8.东方公园有一个圆形的喷水池,经测量得出这个喷水池的周长是37 .68m。

这个喷水池占地()m2。

A. 37.68B. 113.04C. 452.169.半圆的周长是直径的()。

A. π倍B. π倍C. (π+1)倍10.两个圆的周长之比是2:5,则它的面积之比是()。

A. 2:5B. 5:2C. 4:25D. 25:4 11.大圆的半径是小圆半径的3倍,则大圆面积是小圆面积的()。

A. 3倍B. 4倍C. 6倍D. 9倍12.将圆的半径按3:1放大后,面积将扩大到原来的()。

A. 9倍B. 6倍C. 3倍二、填空题13.如图所示的图形由1个大半圆弧和6个小半圆弧组成,已知最大半圆弧的直径是20,这个图形的周长为________。

(圆周率用π表示)14.如图,正方形的面积是20平方厘米,则圆的面积是________平方厘米。

15.半径为4cm的圆比直径为6cm的圆周长多________cm;面积多________cm2.16.在一个周长为40cm的正方形纸片内,要剪一个最大的圆,那么这个圆的半径是________cm,面积是________cm2。

人教版九年级数学上册《第一单元_课时2_圆的轴对称性—垂径定理》名师教学设计

人教版九年级数学上册《第一单元_课时2_圆的轴对称性—垂径定理》名师教学设计

《圆的轴对称性——垂径定理》教学设计一、教学内容分析小学时,我们已经知道,圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴.也就是说,将圆沿着直径所在的直线对折,直线两侧的部分完全重合.这点学生通过动手操作不难理解,但是该如何证明呢?这是本课时首先要解决的问题.教科书中提供了一种证明轴对称的常用方法,即在圆上任意选取一点,证明该点关于给定对称轴(直径所在直线)的对称点也在圆上,这种证明轴对称的方法需要学生理解掌握.垂径定理将圆的轴对称性具体化、符号化,我们可以由下面这个问题引入垂径定理.如果我们在⊙O 中任意画一条弦AB ,观察图形(见下),它还是轴对称图形吗?若是,你能找到它的对称轴吗?有几条呢?同学们通过动手实验不难得出,此时只要作出垂直于弦AB 的直径,沿着直径所在直线对折,图形的左右两边就可以完全重合,即图形关于该直径所在直线成轴对称.显然,我们只能找到一条这样的直径,因此图形只有一条对称轴.我们不妨设直径CD 与弦AB 垂直相交于点P (如图),观察图形,想想你能找出图中隐含的哪些相等关系.如图所示,通过动手操作发现:将⊙O 沿直径CD 所在的直线对折,CD 两侧的半圆重合,点A 与点B 重合,C A =BC ,D A = BD ,AP=BP.根据轴对称的性质,对称轴垂直平分对应点的连线段,我们可以得到,直线CD 是弦AB 的中垂线.学生通过直观感受总结出垂径定理的内容,接下来要引导学生通过严谨的逻辑推理来验证结论的正确性,这也体现了探究图形性质的科学过程.让学生分组讨论证明方法,引导学生构造辅助线,通过全等的知识证明垂径定理.上述图形结构特征可以概括为:(1)直径(半径或过圆心的直线); (2)垂直于弦; (3)平分弦; (4)平分优弧; (5)平分劣弧.可以证明:由(1)(2)可以推出(3)(4)(5). 即垂直于弦的直径平分弦,并且平分弦所对的两条弧.我们把圆的这个性质叫做垂径定理. 符号语言:如右图,∵直径CD ⊥AB 于P , ∴C A =BC ,D A = BD ,AP=BP.引发学生思考:由(1)(3)是否可以推出(2)(4)(5)呢? 即平分弦(非直径)的直径垂直弦,并且平分弦所对的两条弧. 上述结论可以通过全等三角形的知识证明,我们把圆的这个性质叫做垂径定理的推论.此处一定强调“非直径”,因为任意两条直径都是互相平分的,但并不一定都垂直.符号语言:如右图,∵直径CD 与弦AB 相交于P ,且AP=BP , ∴C A =BC ,D A = BD ,CD ⊥AB.通过类比学习,引导学生思考:知道上述5个条件中两个条件是否就可以推导出其他3个结论呢?总结为“知二推三”,也就是说垂径定理有9个推论,这个可以留给学生课后分组讨论研究. 二、学情分析学生在七、八年级已经学习过轴对称图形的有关概念和性质、等腰三角形的对称性,以及证明垂径定理要用到的三角形全等的知识,并且在小学已初步了解了圆的对称性,具备了学习这节课的知识基础;学生通过学习平行四边形、角平分线、中垂线等几何内容,已经掌握了探究图形性质的不同手段和方法,具备了几何定理的分析探索和证明能力.但是垂径定理及其推论的条件和结论复杂,学生难以理解并应用. 三、教学目标1.通过观察、实验,使学生理解圆的轴对称性.2.掌握垂径定理,理解其证明过程,并会用它解决有关的证明与计算问题.3.掌握垂径定理的推论,理解其证明过程,并会用其解决有关的证明与计算问题.4.通过对定理的探究,提高观察、分析和归纳概括能力. 重点难点垂径定理及其推论的内容与证明是本节课学习的重点和难点. 四、评价设计.学习评价量表标准等级会用文字语言、图形语言、符号语言描述垂径定理 A 会用文字语言、图形语言、符号语言描述垂径定理的推论 A 会证明垂径定理及其推论 C 能利用垂径定理及其推论解决简单的计算问题B能利用垂径定理及其推论解决简单的证明问题C五、教学活动设计教学环节教学活动设计意图教师活动学生活动导入新知问题1 约1400年前,我国隋代建造的赵州石拱桥(如图)主桥拱是圆弧形,它的跨度(弧所对的弦长)是37 m,拱高(弧的中点到弦的距离)为7.23 m,求赵州桥主桥拱的半径(结果精确到0.1 m).1.分析实际问题,将其转化为数学模型.赵州桥的桥拱呈圆弧形,如图,C为弧AB的中点,且CD⊥AB.已知CD=7.23 m,AB=37m,求该圆的半径.学生猜测(1):AD=BD.学生猜测(2):CD过圆心.不过该如何证明呢?带着这个问题进行本节课的学习.通过实际问题导入新知,引发学生思考,激发学习兴趣.探究新知问题 2 请拿出准备好的圆形纸片,沿着它的直径对折,重复做几次,你发现了什么?由此你能猜想哪些线段相等?哪些弧相等?2.(1)沿着直径将圆翻折,圆的直径两边的部分能够完全重合.圆是轴对称图形,直径所在直线为圆的对称轴,所以圆有无数条对称轴.(2)连接关于直径所在直线对称的两个点所形通过动手操作——沿着直径折叠圆,让学生直观感受圆的轴对称性,体会观察、实验在选定一条直径,在圆上任取一点,证明该点关于已知直径所在直线的对称点也在圆上.3.(1)作AB⊥CD,交⊙O 于B点,若能证明AP=BP即可.(2)连接OA,OB,通过三角形全等可以得到AP=BP.所以B为A的对称点.A B.=BC,D=D(2)可以从圆的轴对称性质出发证明,只要证明A和B是关于直线CD的对称点即可.连接OA,OB,通过证明△OAP与△OBP 全等,得到AP=BP,说明DC所在直线为线段AB的对称轴根据圆的轴对称性得到:AC=BC,A B.D=D(2)可以从圆的轴对称性质出发证明,只要证明A和B为关于直线CD的对称点即可.(3)此处强调非直径的弦,因为圆的所有直径都是互相平分的,但不一定垂直.(4)垂径定理还有别的推论吗?需要继续研究.论.解决问题提问1:对于活动1提出的问题,你现在有思路了吗?请大家小组讨论,给出问题的计算过程.如图,赵州桥的桥拱呈圆弧形,C为AB的中点,且CD⊥AB,已知CD=7.23 m,AB=37m,求该圆的半径.提问2:应用垂径定理解决问题的一般思路是什么?1.根据垂径定理的推论,可知CD的延长线必定过O点,且AD=BD.设半径为r,则OB=r,OD=r-7.23,BD=18.5,根据勾股定理列方程为:222r18.5=r(-7.23).一般思路:垂径定理构造直角三角形勾股定理建立方程.帮助学生进行知识迁移,熟练运用垂径定理及其推论解决计算问题.重要辅助线:过圆心作弦的垂线.典型例题例1 如图,AB是⊙O的直径,弦CD⊥AB于点E,点 M在⊙O上,MD恰好经过圆心O,连接MB,若CD=16,BE=4,求⊙O的直径.例2 H5N1亚型高致病性禽流感是一种传染速度很快的疾病,为防止禽流感蔓延,政府规定:离疫点3 km范围内为扑杀区,所有禽类全部扑杀;离疫点3~5 km范围内为免疫区,所有禽类强制免疫.同时,对扑杀区和免疫区内的村庄、道路实行全封闭管理.现有一条笔直的公路AB通过禽流感疫区,如图所示,O为疫点,在扑杀区内公路CD长为4 km.问:这条公路在免疫区内有多少千米?例1 解设半径为R,因为CD=16,直径AB⊥CD,根据垂径定理得AB平分CD,所以DE=8.因为BE=4,所以OE=R-4.根据勾股定理列方程得:222R8=R(-4).解得R=10,则直径等于20.例2 分析:利用垂径定理解决实际问题,首先需要理解题意,将实际问题抽象为数学模型.如图,过点O作OE⊥CD交CD于E,连接OC,OA,在Rt△OCE中就可以求出OE,在Rt△OAE中求出AE,进而求出AC,最后求出结论.帮助学生进行知识迁移,学以致用,熟练运用垂径定理及其推论解决计算及证明问题.利用垂径定理的关键是:熟悉基本图形,会过圆心作弦的垂线,熟悉连接半径等辅助线的作法,能够结合勾股定理、设参法等知识或方法解决问题.例3 如图,已知AB是圆O的直径,弦CD交AB于点E,∠CEA=30°,OE=4,DE=53,求弦CD及⊙O的半径.例4如果圆中两条弦互相平行,那么两条弦所夹的弧相等吗?例3 解如图,作OM⊥CD. ∵OE=4 cm,∠CEA=30°,∴OM=2 cm,EM=23cm DE=53 cm,∴D M=33 cm.∴OD=31 cm,即⊙O的半径为31 cm.OM⊥CD,∴CD=63 cm(根据垂径定理)例4 解通过画图可知,有三种情况.下图所示.在图(1)中,作 MN⊥AB 交圆于 M,N点,充分利用垂径定理即可解决此问题.∵ MN⊥AB,∴M=MA B.∵CD∥AB,∴ MN⊥CD.∴MC=MD.∴M MCA-=MB MD-∴=DAC B.同理:在其他两个图形中AC B的结也能得到=D论.六、板书设计圆的轴对称性——垂径定理七、达标检测与作业A级1.如图,在⊙O中,直径AB⊥CD于M.(1)AB=10,CD=8,求OM的长;(2)CD=8,OM=3,求AB的长;(3)CD=8,BM=2,求AB的长.2.如图,是一条直径为2 m的通水管道横截面,其水面宽1.6 m,则这条管道中此时水最深为 m.B级3.如图,AB是⊙O的弦,P是AB上一点,AB=10,BP:PA=4:1.若⊙O的半径为7,求线段OP 的长.4.如图,AB为⊙O的直径,P为OB的中点,∠APC=30°.若AB=16,求CD的长.5.如图,AB,CD是⊙O的弦,M,N分别为AB,CD的中点,且∠AMN=∠CNM.求证:AB=CD.6.某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径.如图是水平放置的破裂管道有水部分的截面,若这个输水管道此时的水面宽为16c m,且水最深高度为4c m,求这个圆形截面的半径.C级7.已知AB,CD为⊙O的两条平行弦,⊙O的半径为5 cm,AB=8 cm,CD=6 cm,求AB,CD之间的距离.8.有一石拱桥的桥拱呈圆弧形.如图所示,正常水位时水面宽AB=60 m,水面到拱顶距离CD=18 m;当洪水泛滥时,水面宽 MN=32 m时,高度为5 m的船此时能否通过该桥?请说明理由.八、教学反思本节课遵循研究几何图形的一般过程:提出问题、猜想、实验、证明、得出结论、应用.研究过程中将直观感知、动手实验、逻辑推理有机结合,全面提高学生的数学核心素养.从以赵州桥为背景的实际问题出发,创设学习氛围,激发学生的学习兴趣,引发学生的探究欲望;接着通过实验操作让学生直观感受圆轴对称的性质;引导学生证明圆的轴对称性,并指出证明图形轴对称的一般方法,便于学生积累几何证明方法,产生学习迁移;利用圆的轴对称性和全等三角形的知识证明本节课的重点和难点——垂径定理及其推论;最后运用垂径定理及其推论解决赵州桥问题和平行弦所夹弧等问题.整个过程层层铺垫,环环相扣.本节课渗透研究问题的方法.比如在证明垂径定理的过程中,向学生渗透“先由特殊到一般,再由一般到特殊”的基本思想方法.由动手操作、逻辑推理得到圆的轴对称性,这是由特殊到一般;再利用圆的轴对称性证明垂径定理及其推论,这是由一般到特殊.教师作为引导者,课堂上尽管给了学生充足的思考时间,但还没有完全放开.比如,在“提出问题”环节,可以让学生给出各种问题形式,而不是由老师给出问题或者例题.在探究垂径定理的证明时,应引导学生进行充分的讨论交流等.11/ 11。

圆的概念,常识

圆的概念,常识

1 在同一平面内,到定点的距离等于定长的点的集合叫做圆(circle)。

这个定点叫做圆的圆心。

图形一周的长度,就是圆的周长。

2 连接圆心和圆上的任意一点的线段叫做半径,字母表示为r(radius)。

3 通过圆心并且两端都在圆上的线段叫做直径,字母表示为d(diameter)。

直径所在的直线是圆的对称轴。

4 连接圆上任意两点的线段叫做弦(chord).最长的弦是直径。

5 圆上任意两点间的部分叫做圆弧,简称弧(arc).大于半圆的弧称为优弧,优弧是用三个字母表示。

小于半圆的弧称为劣弧,劣弧用两个字母表示。

半圆既不是优弧,也不是劣弧。

优弧是大于180度的弧,劣弧是小于180度的弧。

圆的周长公式=C=πd=2πr≈6.28r[1]圆的面积公式=S=π×r×r[2](以此类推,半圆的周长公式=C/2+d=πr+2r 面积=S/2=π×r×r÷2)6 由两条半径和一段弧围成的图形叫做扇形(sector)。

7 由弦和它所对的一段弧围成的图形叫做弓形。

8 顶点在圆心上的角叫做圆心角(central angle)。

9 顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

10 圆周长度与圆的直径长度的比值叫做圆周率。

它是一个无限不循环小数,通常用π表示,π=3.14159265……在实际应用中,一般取π≈3.14。

11圆周角等于相同弧所对的圆心角的一半。

12 圆是一个正n边形(n为无限大的正整数),边长无限接近0但不等于0。

圆—⊙ ;半径—r或R(在环形圆中外环半径表示的字母);弧—⌒ ;直径—d ;扇形弧长—L ;周长—C ;面积—S。

1.圆的周长C=2πr=或C=πd2.圆的面积S=πr²3.扇形弧长L=圆心角(弧度制)* r = n°πr/180°(n为圆心角)4.扇形面积S=nπ r^2/360=Lr/2(L为扇形的弧长)5.圆的直径 d=2r6.圆锥侧面积 S=πrl(l为母线长)7.圆锥底面半径r=n°/360°L(L为母线长)(r为底面半径)点和圆位置关系①P在圆O外,则 PO>r。

第五单元 圆(期末复习讲义)六年级数学上册重难点知识点(人教版)

第五单元 圆(期末复习讲义)六年级数学上册重难点知识点(人教版)

人教版六年级数学上册期末复习重难点知识点第五单元圆同学们,经过一个学期的学习,你一定进步了吧!今天,让我们共同回顾一下本学期的知识吧,并且通过完成这些练习,看看自己在哪些方面做得还真不错,以便继续发扬;哪些方面存在不足,需要在今后的学习中注意赶上。

每个人的成功都要经历无数次历练,无论成功还是失败对我们都十分重要。

加油!知识点一:圆的认识1.连接圆心和圆上任意一点的线段叫做半径。

2.通过圆心并且两端都在圆上的线段叫做直径。

3.一个圆有无数条半径,无数条直径。

4.圆是轴对称图形,它有无数条对称轴,任意一条直径所在的直线都是它的对称轴。

5.同一圆内,所有的半径都相等,所有的直径都相等,直径的长度是半径长度的2倍。

把圆沿任意一条直径对折,两边可以重合。

6.圆心确定了,圆的中心位置就确定了。

半径决定了圆的大小。

7.画圆的方法:定好圆心;确定半径的长度;画圆的时候注意线条的流畅。

知识点二:圆的周长1.其实,早就有人研究了周长与直径的关系,发现任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率,用字母π表示。

它是一个无限不循环小数,π=3.1415926535……但在实际应用中常常只取它的近似值,例如π≈3.14。

2.围成圆的曲线的长是圆的周长。

3.圆的周长=直径×圆周率。

4.C=πd 或C=2πr 。

知识点三:圆的面积1.圆的面积公式是由长方形的面积公式推导出来的。

2.圆的面积 S=πr ²。

知识点四:圆的面积公式的应用已知圆的直径求圆的面积时,可以根据公式S=π(2d )²直接求解。

知识点五:圆环的面积S 环=πR 2−πr 2S 环=π(R 2−r 2)知识点六:不规则图形的面积1.外方内圆的图形称为圆外切正方形。

2.外圆内方的图形称为圆内接正方形。

3. 知识点七:扇形1.圆上A 、B 两点之间的部分叫做弧,读作“弧AB ”。

2.一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。

六年级数学《认识圆》教案

六年级数学《认识圆》教案

六年级数学《认识圆》教案六年级数学《认识圆》教案1教学目标1、通过折纸活动,探索并发现圆是轴对称图形,理解同一个圆里半径和直径的关系2、进一步理解轴对称图形的特征,体会圆的对称性。

3、在折纸找圆心验证圆是轴对称图形等活动,发展空间观念。

教材分析重点理解同一个圆的半径都相等,同一个圆里半径和直径的关系,并体会圆的对称性。

难点在折纸的过程中体会圆的特征教具教学圆规电化教具课件一、创设情境:亮亮借助光盘画了一个圆,剪出了一个圆纸片,这个圆的圆心在哪里呢?他很快找出来了。

你有办法找出来吗?二、探索活动:1、引导学生开展折纸活动,找到圆心。

(1)自己动手找到圆心。

(2)汇报交流找圆心的过程,并说出这样做的想法。

2、通过折纸你发现了什么?理解圆的对称性。

(1)欣赏美丽的轴对称图形。

(2)再折纸,体会圆的轴对称性,画出圆的对称轴。

(3)圆有无数条对称轴。

对称轴是直径所在的直线。

3、通过折纸你还发现了什么?理解同一个圆里直径和半径的关系。

(1)边折纸边观察思考同一个圆里的半径有什么特点?(2)边折纸边观察思考,同一圆里的直径与半径有什么关系?(3)引导学生用字母表示一个圆的直径与半径的关系。

三、课堂练习。

1、让学生独立完成试一试做完后交流汇报。

2、完成练一练进一步巩固圆的半径与直径的关系。

3、完成填一填让学生独立观察思考并试着填一填,有困难的向老师或同桌请教。

汇报交流,说答题根据。

4、完成书后第3题。

四、课堂小结。

引导学生小结本节内容。

学生利用经验很容易找到圆心,如果让学生说一说为什么对折再对折就可以找到圆心学生很难说清楚。

教学中通过折纸观察思考,找到答案。

交流汇报,从中进一步理解圆的轴对称,一个圆的半径都相等。

欣赏美丽的对称图形引导学生对以学过的轴对称图形进行整理,进一步理解轴对称图形的特征,在对比中发现这些轴对称图形的不同特点,从而突出圆具有很好的轴对称性。

多次折纸的过程中探索,发现,验证。

操作中体会交流,体会圆的特征,发展空间观念。

轴对称图形

轴对称图形





4、下列图形中,只有一条对称轴的是( C )
A
B
C
D
5、把一圆形纸片两次对折后,得
到右图,然后沿虚线剪开,得到
两部分,其中一部分展开后的平
面图形是( B )
A
B
C
D
三、画出下列图形的对称轴
9、 国旗是国家的一个象征,观察下面的国旗,哪些是 轴对称图形?试找出它们的对称轴。
加拿大
以色列
7、找规律填空:
8、观察下列各种图形,判断是不是轴对称图形?并找出 该轴对称图形的对称轴?
五、成轴对称练习题
1、下面给出的每幅图形中的两个图案是轴对称吗?如 果是,试着找出它们的对称轴,并找出一对对应点.
喜喜
图形 长方形 名称 有几 2条 条对 称轴
试一试
我们学过的图形中哪些是轴对称图形? 分别有几条对称轴?
图形 长方形 正方形 名称 4条 有几 2条 条对 称轴
试一试
我们学过的图形中哪些是轴对称图形? 分别有几条对称轴?
图形 长方形 正方形 等腰 三角形 名称 4条 1条 有几 2条 条对 称轴
试一试
2、生活中的例子
二、两个图形关于某直线对称
2、概念
m
把一个图形沿着某一条直线翻折过去,如果它能够 与另一个图形重合,那么就说这两个图形成轴对称 这条直线就是对称轴
两个图形中的对应点(即两个图形重合时互相重合 的点)叫做对称点
二、两个图形关于某直线对称
2、概念
m
把一个图形沿着某一条直线翻折过去,如果它能够 与另一个图形重合 D C
a
6、如图,将一块正方形纸片沿对角线折叠一次,在得到的三 角形的三个角上各挖去一个圆洞,最后将正方形纸片展开, 得到的图案是( ) C

六年级数学教案圆的认识

六年级数学教案圆的认识

六年级数学教案圆的认识六年级数学教案圆的认识1义务教育课程标准北师大版试验教材六年级上册第一单元第6、7页圆的认识二。

1、通过折纸活动,探索并发现圆是轴对称图形,理解同一个圆里半径与直径的关系。

2、进一步理解轴对称图形的特征,体会圆的特征。

3、在折纸找圆心、验证圆是轴对称图形等活动中,发展空间观念。

1、圆的`特征。

2、同一个圆里半径与直径的关系。

1、三角尺、直尺、圆规。

2、教学课件。

教学过程教学过程说明一、实践操作。

1、折一折。

每人准备一个圆,请同学们想办法找出圆心。

2、小组活动:剪几个圆,折一折,你发现了什么?小组交流。

3、汇报:沿着任意一条直径对折,都能完全重合。

4、小结:圆是轴对称图形,直径所在的直线是圆的对称轴。

圆有无数条对称轴。

在同一个圆里,直径的长度是半径的2倍,可以表示为d=2rr=d/2。

二、尝试练习。

1、说一说学过的图形中哪些是轴对称图形?分别有几条对称轴?正方形:4条长方形:2条等腰三角形:1条等边三角形:3条圆:无数条2、要求学生剪出书本第7页做一做的三幅图,沿中心点A转动,同学们发现了什么?三、巩固练习。

1、练一练第一题。

学生在书上填写,集体交流。

2、练一练第二题。

学生在书上填写,集体交流。

3、练一练第三题。

学生画出对称轴,集体交流。

4、练一练第四题。

学生实际测量,集体交流。

5、练一练第五题。

学生在书上填写,集体交流。

使学生通过折纸活动进一步理解同一个圆的半径都相等的特征,以及圆的轴对称性和同一个圆里半径和直径的关系。

引导学生整理已学过的轴对称图形。

让学生在活动中体会图形的旋转对称性,以及圆是一个任意旋转对称图形。

通过练习,进一步巩固所学知识。

四、全课小结。

学生在掌握圆的特征的基础上,进一步认识圆,知道圆是一个轴对称图形,而且有无数条对称轴。

存在问题:对于画对称轴,学生掌握得层次不齐。

需要进一步练习巩固!六年级数学教案圆的认识2教学内容:教材第59页及相关题目。

教学目标:1、在前面所学轴对称图形的基础上,进一步认识圆的轴对称特性。

圆的对称性教学设计及知识结构图

圆的对称性教学设计及知识结构图

28.1.2 圆的对称性新航中学郝红伟教学目标1. 使学生知道圆是中心对称图形和轴对称图形, 并能运用其特有的性质推出在同一个圆中, 圆心角、弧、弦之间的关系,2. 能运用这些关系解决问题,培养学生善于从实验中获取知识的科学的方法。

教材分析:重点:由实验得到同一个圆中,圆心角、弧、弦三者之间的关系。

难点: 运用同一个圆中,圆心角、弧、弦三者之间的关系解决问题。

教学方法:自主学习,合作探究教学设备及辅助工具多媒体CAI 课件教学过程:一、创设情境,导入新课上一节课我们学习了圆的基本元素,本节我们学习圆的对称性的第一课时(板书课题)二、揭示目标(投影展示学习目标)能运用同一个圆中,圆心角、弧、弦三者之间的关系解决实际问题三、进行新课(一)自学指导阅读教材九年级下册P35-361、圆是对称图形吗?它有哪些对称性?能否用手中的圆演示出它的各种对称性呢?圆的对称轴在哪里,对称中心和旋转中心在哪里?(学生动手操作总结出圆既是轴对称图形,又是中心对称图形也是旋转对称图形。

旋转角度可以是任意度数。

对称轴是过圆心任意一条直线,圆心是圆的对称中心和旋转中心)2、探究在同一个圆中圆心角、弧、弦之间有什么关系?(学生 动手操作总结出在同一个圆 中,如果圆心角相等,那么它所对的弧 相等、所对的弦相等。

在同一个圆中,如果弧相等,那么所对的圆心 角相等、所对的弦相等。

在同一个圆中,如果弦相等,那么所对的圆心角相等、圆心角所对的弧相等。

学生回答后教师进行总结(二)考(自学检测性考试)试一试你的能力1、 相等的圆心角所对的弧相等。

2、 相等的弧所对的弦相等。

(3、 相等的弦所对的弧相等。

(4、 如图,O O 中,AB 二CD 乂1 =N 2 = ____5、 你会做吗?如图,在。

O 中,AC=BD ) z 1=求/2的度数,解:T AC=BD二AC-BC 二BD-BC 等式的性质) ••• AB=CD1 = Z2 = 45°(在同圆中,相等的弧所对的圆心角相等)(过程由学生版演后进行纠正)四、课后练习1. 如图,在O 0中,AB=AC / B= 70° 求/C 度数.解:T AB= AC••Z C =Z B = 70°• AB= AC (在同一个圆 中,如果弧相等,那么它所对的弦相等。

认识圆优秀教案5篇

认识圆优秀教案5篇

认识圆优秀教案5篇教案的编写能够让教师更好地掌握课程内容的重点和难点,教案是教师教学的重要工具和指南,以下是本店铺精心为您推荐的认识圆优秀教案5篇,供大家参考。

认识圆优秀教案篇1教学内容:教材第5~6页的内容。

教学目标:1、通过折纸活动,探究并发现圆是轴对称图形,体会圆的对称性,并进一步理解同一个圆里半径和直径的关系。

2、整理已学过的轴对称图形,进一步理解轴对称图形的特征。

3、在活动过程中发展学生的空间观念。

教学重点:进一步理解同一个圆的半径和直径的关系,并体会圆的对称性。

教学难点:在折纸过程中体会圆的特征。

教学准备:教学课件、学生课前剪的圆、长方形等纸片。

教学过程:学生活动(二次备课)一、情境导入师:阳阳利用杯盖画了一个圆,并剪了下来,这个圆的圆心在哪里呢?他想快速找出来,你有什么办法吗?要想解决这个问题,我们还是要看看圆还有哪些特点。

二、预习反馈点名让学生汇报预习情况。

(重点让学生说说通过预习本节课要学习的内容,学到了哪些知识,还有哪些不明白的地方,有什么问题)三、探索新知1、动手操作,体会圆是轴对称图形。

组织学生拿出课前准备的圆形纸片,沿直径对折,观察是否完全重合。

再沿另一条直径对折看看。

让学生多对折几次后,提问:你发现什么了?生:沿任意一条直径对折,对折的两部分都能完全重合,可知圆是轴对称图形,对称轴是直径所在的直线,而且圆有无数条对称轴。

(可能学生说对称轴时容易说成:直径是圆的对称轴。

教师应引导学生知道对称轴是直线,而直径只是一条线段)教师和学生回顾圆的半径、直径知识,找到所折圆的直径和半径,让学生通过折纸进一步理解:同一圆的半径都相等,直径都相等,直径是半径的2倍。

2、总结学过的图形中哪些是轴对称图形?有几条对称轴?组织学生利用课前准备的长方形、正方形等纸片折一折,将结果填到教材第5页表格中。

然后让学生汇报。

(1)正方形是轴对称图形,有4条对称轴;(2)长方形是轴对称图形,有2条对称轴;(3)一般三角形不是轴对称图形,等腰三角形和等边三角形是轴对称图形,等腰三角形有1条对称轴,等边三角形有3条对称轴;(4)一般梯形不是轴对称图形,等腰梯形是轴对称图形,它有1条对称轴;(5)教师利用平行四边形纸片折叠演示强调:虽然平行四边形被对角线分成了2个三角形,它们的形状、大小都相同,但它们不能完全重合,所以一般平行四边形不是轴对称图形。

圆是轴对称图形吗

圆是轴对称图形吗

圆是轴对称图形吗
圆是轴对称图形。

圆是轴对称图形,并且有无数条对称轴,每条直径所在的直线都是圆的对称轴。

圆是一种几何图形。

根据定义,通常用圆规来画圆。

同圆内圆的直径、半径的长度永远相同,圆有无数条半径和无数条直径。

圆是轴对称、中心对称图形。

对称轴是直径所在的直线。

同时,圆又是“正无限多边形”,而“无限”只是一个概念。

当多边形的边数越多时,其形状、周长、面积就都越接近于圆。

所以,世界上没有真正的圆,圆实际上只是一种概念性的图形。

六年级数学圆的认识知识点

六年级数学圆的认识知识点

六年级数学圆的认识知识点六年级数学圆的认识知识点在我们的学习时代,很多人都经常追着老师们要知识点吧,知识点也可以通俗的理解为重要的内容。

你知道哪些知识点是真正对我们有帮助的吗?下面是店铺为大家整理的六年级数学圆的认识知识点,欢迎阅读,希望大家能够喜欢。

六年级数学圆的认识知识点一、认识圆形1、圆的定义:圆是由曲线围成的一种平面图形。

2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

一般用字母O表示。

它到圆上任意一点的距离都相等.3、半径:连接圆心到圆上任意一点的线段叫做半径。

一般用字母r表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

4、直径:通过圆心并且两端都在圆上的线段叫做直径。

一般用字母d表示。

直径是一个圆内最长的线段。

5、圆心确定圆的位置,半径确定圆的大小。

6、在同一个圆内或等圆内,有无数条半径,有无数条直径。

所有的半径都相等,所有的直径都相等。

7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的1/2。

用字母表示为:d=2r或r=d/28、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。

折痕所在的这条直线叫做对称轴。

9、长方形、正方形和圆都是对称图形,都有对称轴。

这些图形都是轴对称图形。

10、只有1条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

只有2条对称轴的图形是:长方形;只有3条对称轴的图形是:等边三角形;只有4条对称轴的图形是:正方形;有无数条对称轴的图形是:圆、圆环。

11、画对称轴要用铅笔画,同时要用尺子(三角板)画出虚线,这条虚线两端要超出图形一点。

二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。

用字母C表示。

2、圆周率实验:(滚动法)在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,得到圆的周长。

或者用线围绕圆形纸片一周量出线的长度就是圆的周长(测绳法)。

发现,圆周长与它直径的比值(圆周长除以直径)是一个固定数即3倍多一点,我们把它叫做圆周率用字母π表示。

第一单元第2课时《圆的认识(二)》示范课教案【北师大六年级数学上册】

第一单元第2课时《圆的认识(二)》示范课教案【北师大六年级数学上册】

1/ 10第一单元 圆 第2课时 圆的认识(二)教材分析:本课时主要使学生认识到圆的轴对称性,与其他平面图形相比,圆具有很好的对称性:它是一个轴对称图形,任意一条直径所在的直线都是它的对称轴。

本课时首先,通过折纸活动使学生认识到圆的对称轴必须经过圆心,直径所在的直线就是对称轴,因此圆有无数条对称轴。

接着,梳理已经学过的轴对称图形,与圆形进行比较,深刻认识圆的独特性:只有圆有无数条对称轴。

通过折纸活动找出圆心,认识到两条直径的交点就是圆心,并通过找圆心的方法培养学生的普遍化思维策略。

最后,通过找组合图形的对称轴体会正多边形的对称轴一定是圆的对称轴,这也是组合图形的对称轴,进一步体会圆的完美的对称性。

教学目标:1.通过折纸活动,探索并发现圆是轴对称图形。

2.进一步理解轴对称图形的特征,体会圆的对称性。

3.在折纸找圆心,验证圆是轴对称图形等活动中,发展空间观念。

教学重点:认识圆是轴对称图形及区别于其他轴对称图形的特点。

教学难点:通过折纸活动找出圆的圆心,从而培养学生普遍化的思维策略。

2/ 10教学过程:【情境导入】展示图形,提出问题。

师:你知道下面图形中哪些是轴对称图形吗?课件出示:师:学生边讨论边回答再提出问题:什么是轴对称图形?引发学生思考。

师:(教师手持圆形卡片)那么我们新认识的伙伴“圆”是不是轴对称图形呢?它有什么不同于其他轴对称图形的特性?这节课我3/ 10一、探究圆的对称性请同学们拿出圆形纸片,动手试一试!师:圆是轴对称图形吗?有几条对称轴?用一个圆形纸片,折一折。

课件展示折叠过程:继续沿着不同的方向折线,你们还发现了什么?然后小组讨论,找一找他们的对称轴。

课件展示:师:通过折纸活动,同学们能说一说圆有哪些特性吗?归纳:①圆是轴对称图形;4/ 10②直径所在的直线是圆的对称轴;③圆有无数条对称轴。

师:同学们,说的真好!那你们知道图形中哪些是轴对称图形?分别有几条对称轴?小组讨论,说说自己的想法。

《圆的认识》教案(优秀8篇)

《圆的认识》教案(优秀8篇)

《圆的认识》教案(优秀8篇)小学六年级数学教案《认识圆》篇一教学目标1、通过折纸活动,探索并发现圆是轴对称图形,理解同一个圆里半径与直径的关系。

2、进一步理解轴对称图形的特征,体会圆的特征。

3、在折纸找圆心、验证圆是轴对称图形等活动中,发展空间观念。

教学重难点教学重、难点:1、圆的特征。

2、准确画圆3、同一个圆里半径与直径的关系。

教学过程一、师生谈话,导入新课课件出示图:师提问:同学们看,这是什么图形?在我们的生活周围,你还知道哪些物体的形状是圆形的?学生举例说。

(硬币、茶杯盖的形状、玻璃器皿的外形等等)课件出示图,这些都是由什么图形构成的?师:现在我们来做一个游戏:老师这里有一个布口袋,里面有很多的东西。

我请大家来摸一个圆形?看谁能一下子摸出来。

指名学生上台操作。

提问:你是怎么判断出来的?学生回答后,教师提问:那么,什么叫圆呢?它与我们以前学过的平面图形有什么不同?学生回答后,教师进行小结:圆是平面上的一种曲线图形。

二、动手操作,研究特征师:刚才大家已经认识了圆,那么,想不想把它画出来看一看呢?请你在白纸上画一个圆。

学生自由画,稍后,教师讲评学生的作业:说说你是怎么画的?用了什么方法?比较一下,谁的方法画的圆比较好?大家一致同意用圆规的方法比较精确。

教师讲解画圆的方法。

现在就请每个同学用圆规在第二张白纸上画一个圆。

学生开始操作,几分钟后,学生全部完成了作业。

老师让大家四人一组,把四个人的圆放在一块,相互欣赏一分钟,可以说一句表扬的话。

师:欣赏完了刚才四个同学画的圆以后,你发现四个人的作品有什么不一样啊?学生说:我发现了四个圆的大小不一样,画在纸上的位置也不一样。

老师提问:那么,你们知道为什么圆的位置会不一样?生说:我们把圆规的针尖放在纸的位置不一样。

师:对呀。

你知道这个点叫什么吗?它就是圆心。

找出自己画的圆的圆心。

并写上字母O。

师:现在大家都明白了,是谁决定了圆的位置?那么,又是谁决定了圆的大小呢?学生讨论后,得出了圆规两只脚拉开的大小就决定了圆的大小。

六年级数学上册 第一单元 圆的认识二精品教学PPT课件2 北师大版

六年级数学上册 第一单元 圆的认识二精品教学PPT课件2 北师大版

折一折

圆是轴对称图形
折一折
沿任意一条 直径对折, 都能完全重 合。
折一折
圆有无数条 对称轴,每 条直径所在 的直线都是 它的对称轴。
折一折
亮亮用纸剪出了一个圆,这个圆的圆心在哪 里呢?你有办法找出来吗?
活动二
• 我们学过的图形中那些事轴对称图形 各有多少条对称轴?从少到多填,小 组合作讨论。
圆的认识二
同学们,在学习新课之前请大家仔细观 察这几副图,这几幅图有什么特点?
• 我们现在学的圆是不是轴 对称图形呢?
圆的认识(二)
• 认识圆是轴对称图形

活动一
• 折一折 • 你发现了什么?
小组讨论
• • • • 1、圆是轴对称图形吗? 2、圆的对称轴都经过什么? 3、圆有几条对称轴? 3、圆心在哪里?你能找到吗?
图形名称
有几条对 称轴
画出下列图形的对称轴。
4条
பைடு நூலகம்1条
无数条
2条
活动二
• 我们学过的图形中那些事轴对称图形 各有多少条对称轴?从少到多填,小 组合作讨论。
图形名称 等腰三角 等腰 形 梯形 有几条对 称轴
长方 形
等边三 角形
正方形

活动三
请找出下列各图形的对称轴,与同伴进行交流。
活动四
下列图形是轴对称图形吗?说出他们各 有多少条对称轴,小组合作讨论
下列图形中,哪些是轴对称图形 各,有机条对称轴,你能画出他 们的对称轴吗?
这节课你学到了什么?
一个穷困潦倒的青年,流浪到巴黎,期望父亲的朋友能帮助自己找到一份谋生的差事。 "数学精通吗"父亲的朋友问他。青年摇摇头。"历史,地理怎样?"青年还是摇摇头。"那法律呢?"青年窘迫地垂下头。父亲的朋友接连发问,青年只能摇头告诉对方------自己连丝毫的优点也找不出来。"那你先把住址写下来吧。"青年写下了自己的住址,转身要走,却被父亲的朋友一把拉住了:"你的名字写的很漂亮嘛,这就是你的优点啊,你不该只满足找一份糊口的工作。"数年后,青年果然写出享誉世界的经典作品。他就是家喻户晓的法国18世纪著名作家大仲马。 世间许多平凡之辈,都要一些小优点,但由于自卑常被忽略了。其实,每个平淡的生命中,都蕴涵着一座丰富金矿,只要肯挖掘,就会挖出令自己都惊讶不已的宝藏……爱因思念而美丽 我曾以为,爱一个人 可以是在心里暗暗的 并不需要对方清楚 我发誓,要把这份美好的感情 珍藏在记忆中,只是记忆 若不是,想到可能永远失去你 永远失去,这份自已如此看重的感情 若不是,又一次在梦中呼喊你的名字 并且从梦中惊醒,或许 这份感情会永远是一个秘密 在默默地想念和为你祝福之中 我从来都是幸福的 等待,我不清楚这样的结果是什么 或许,根本就没有去考虑什么结果 我一直希望 能以一种默默等待的姿势告诉你 我对你的感情是认真的 可以经受时间和距离的考验 那些过往的曾经共同拥有的细节 一一变得无比清晰 仿佛触手可摸,却明明相隔万里 是不是藏得越久 感情就会更加浓呢? 你不在的日子里 思念象野草一般疯狂生长 也许是因为终于不甘这样失去可能的机会 终于不甘刻骨铭心的思念和等待 会随岁月的流逝而染上灰尘 我鼓励自已说,释放自已 我不相信 从物理的距离到心灵的距离只是一瞬间的事情 我不相信 经过岁月沉淀以后的爱依旧不堪一击 我不相信 默默的等待是一场默默的徒劳 若付出必有回报,投入必有结果 那是不是,我还没有投入 是不是付出太少,我默默等待 默默考量自已的信心和爱的程度的做法 是否令我错过适当的机会? 愿你今夜能有一个好梦 如果你在梦中也露出甜美的笑容 那是我托明月清风祝福你 爱上你,毕竟也是淡淡的哀愁

圆的定义及对称性

圆的定义及对称性

ABC 圆的定义与圆的对称性【知识要点】(一)圆的有关概念 1.圆的基本概念定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆。

固定点O 叫做圆心;线段OA 叫做半径;圆上各点到定点(圆心O )的距离都等于定长(半径r);反之,到定点的距离等于定长的点都在同一个圆上(另一定义); 以O 为圆心的圆,记作“⊙O ”,读作“圆O ” 2.圆的对称性及特性:(1)圆是轴对称图形,圆的对称轴是任意一条经过圆心的直线,它有无数条对称轴;(2)圆也是中心对称图形,它的对称中心就是圆心.(3)一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.这是圆特有的一个性质:圆的旋转不变性 3.弦:连接圆上任意两点的线段叫做弦。

4.弦心距:圆心到弦的距离叫做弦心距. 5.直径:经过圆心的弦叫直径。

注:圆中有无数条直径 6.圆弧:(1)圆上任意两点间的部分,也可简称为“弧” 以A,B 两点为端点的弧.记作AB ⋂,读作“弧AB”. (2)圆的任意一条直径的两个端点把圆分成两条弧,其中每一条弧都叫半圆。

如弧AD.(3)小于半圆的弧叫做劣弧,如记作AB ⋂(用两个字母). 7.圆心角:顶点在圆心,两边和圆相交的角叫做圆心角。

说明:(1)直径是弦,但弦不一定是直径,直径是圆中最长的弦。

(2)半圆是弧,但弧不一定是半圆。

(3)等弧只能是同圆或等圆中的弧,离开“同圆或等圆”这一条件不存在等弧。

(4)等弧的长度必定相等,但长度相等的弧未必是等弧。

(二)弦、弧、弦心距、圆心角的关系定理:在同圆或等圆中,弦、弧、弦心距、圆心角四组量中只要有一组量相等,则其余三组量也相等。

(三)点和圆的位置关系:设⊙O 的半径为r ,点P 到圆心的距离为d 。

则:(1)若rd=,则点P在圆上;(3)若rd<,d>,则点P在圆外;(2)若r则点P在圆内。

说明:点和圆的位置关系与点到圆心的距离和半径大小的数量关系是对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系。

北师大版数学九年级下册3.2《圆的对称性》说课稿

北师大版数学九年级下册3.2《圆的对称性》说课稿

北师大版数学九年级下册3.2《圆的对称性》说课稿一. 教材分析《圆的对称性》这一节的内容是北师大版数学九年级下册第三章第二节的内容。

本节课的主要内容是让学生了解圆的对称性,包括圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线,以及圆的对称性在实际问题中的应用。

二. 学情分析九年级的学生已经学习了平面几何的基本知识,对轴对称图形和中心对称图形有了初步的认识。

但是,对于圆的对称性的理解还需要进一步的引导和培养。

因此,在教学过程中,我将会以学生的已有知识为基础,通过实例和问题,引导学生深入理解圆的对称性。

三. 说教学目标1.知识与技能:学生能够理解圆的对称性,知道圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线。

2.过程与方法:通过观察、思考、交流等活动,学生能够发现圆的对称性,并能够运用圆的对称性解决实际问题。

3.情感态度与价值观:学生能够培养对数学的兴趣,提高对几何图形的审美能力。

四. 说教学重难点1.教学重点:学生能够理解圆的对称性,知道圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线。

2.教学难点:学生能够发现圆的对称性,并能够运用圆的对称性解决实际问题。

五. 说教学方法与手段在本节课的教学过程中,我将采用问题驱动法和实例教学法。

通过提出问题,引导学生思考和探索,从而发现圆的对称性。

同时,我会利用多媒体教学手段,展示相关的几何图形和实例,帮助学生更好地理解和掌握圆的对称性。

六. 说教学过程1.导入:通过提出问题,引导学生思考和探索圆的对称性。

2.新课导入:介绍圆的对称性,让学生了解圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线。

3.实例讲解:通过展示相关的实例,让学生深入理解圆的对称性。

4.练习与讨论:让学生进行相关的练习,并通过讨论交流,巩固对圆的对称性的理解。

5.总结与拓展:总结本节课的主要内容,并进行拓展,引导学生思考圆的对称性在实际问题中的应用。

圆的对称性教学设计

圆的对称性教学设计

圆的对称性教学设计圆是一种生活中最常见的平面图形,也是最简单的曲线图形。

下面是给大家分享的圆的对称性教学设计,供大家参考,阅读。

希望大家能够喜欢!圆的对称性教学设计1一、教学内容:二、教学目标:1、通过观察、操作活动,让学生初步认识轴对称图形的基本特征;能够判断哪些图形是对称的,并画出对称轴。

2、使学生的观察能力,想象能力得到培养,同时感受对称图形的美。

三、教具、学具准备:课件、长方形、正方形和圆的各色彩纸。

四、教学重难点:能够辨认对称图形,并能画出对称轴。

五、教学过程:(一)情景引入(听小故事)(二)认识对称图形1、认识轴对称图形的特征(当学生说出两边一样时,再出现课件演示,一个图形对折后,左右两边完全重合,象这样的图形就叫对称图形)今天我们就来学习对称图形,这里还有一些对称图形,还有一些剪出来的。

(飞机、鱼、龟)2、动手剪对称图形(讨论怎样才能剪出对称图形)a、师示范剪对称图形(一张长方形的纸,并对折,画出一半的形状,剪下来,打开,左右两边完全一样它是对称图形吗?b、学生动手剪对称图形,(画一画、剪一剪,剪出一个自已喜欢的对称图形)c、学生展示自已剪的对称图形(三)认识对称轴认识对称轴(每个对称图形中间都有一条折痕,你能不能给这条折痕取一个名字?)对称轴(师画虚线)(四)巩固练习1、欣赏对称图形(你能列举生活上的对称图形吗?)2、P68(做一做)这里还有一些图形,请你判断;画出它们的对称轴。

(小鱼的对称轴在那)对称轴有横的、还有竖的)3、P70第2题(4人小组)折正方形、长方形、圆形各有几条对称轴?并画出来。

4、P70第3题,画出对称图形的另一半。

(五)总结:这节课的学习,你学习到了什么?圆的对称性教学设计2教学目标1、知道镜像对称图形的特点。

2、通过学生活动,正确体会镜像对称的相对性。

3、培养学生的合作意识,让学生在合作中交流、学习、互动。

教学重难点体会镜像对称的相对性。

教学具准备镜子、教科书第71页的开放题、卡片教学过程一、玩一玩镜子,创设情境小朋友们,今天这节课我们来玩一玩镜子,好吗?(每人一面小镜子) 师:你在镜子里看到了什么?生:我看到了自己;我看到了书;我看到了黑板……师:这是怎么回事?二、引导探索,体验镜像对称的特点1、出示教科书第69页的主题图,请学生仔细观察。

没有刻度的直尺判断轴对称的题

没有刻度的直尺判断轴对称的题

没有刻度的直尺判断轴对称的题一、题型分析用没有刻度的直尺判断轴对称,这就需要我们对轴对称图形的概念有超级透彻的理解。

轴对称图形就是沿着一条直线对折后,直线两侧的部分能够完全重合的图形。

那用没有刻度的直尺呢,主要就是看图形的边、角等元素是否能通过直尺的辅助来判断是否对称。

二、题目设置1. (5分)判断一个等腰三角形是否为轴对称图形,如何用没有刻度的直尺来验证?答案:等腰三角形是轴对称图形。

用没有刻度的直尺,可以将直尺沿着等腰三角形的底边上的高放置,如果三角形的两腰能够完全重合,那就说明它是轴对称图形。

因为等腰三角形底边上的高所在的直线就是它的对称轴。

2. (5分)对于一个长方形,用没有刻度的直尺判断它是轴对称图形的方法是什么?答案:长方形是轴对称图形。

用直尺可以沿着长方形的两条对边中点连线放置,或者沿着两条对角线放置,都能发现直线两侧的图形能够完全重合。

这两条对边中点连线和对角线所在的直线就是长方形的对称轴。

3. (5分)一个不规则的四边形,四条边长度分别为3cm、4cm、3cm、4cm,它的相邻角分别为100°和80°,用没有刻度的直尺判断它是否为轴对称图形?答案:不是。

因为用直尺无论怎么尝试去对折这个四边形,都无法使直线两侧的图形完全重合。

虽然它的对边相等,但角的关系不满足轴对称图形的要求。

4. (5分)一个圆形,如何用没有刻度的直尺判断它是轴对称图形?答案:圆形是轴对称图形。

用直尺可以任意过圆心画一条直线,然后将圆形沿着这条直线对折,会发现圆的两部分完全重合。

因为过圆心的任意一条直线都是圆的对称轴。

5. (5分)一个正六边形,用没有刻度的直尺怎么判断它是轴对称图形?答案:正六边形是轴对称图形。

用直尺可以沿着正六边形的对边中点连线或者对角线放置,都能发现直线两侧的图形完全重合。

正六边形有6条对称轴。

6. (5分)有一个三角形,三条边长度分别为5cm、6cm、7cm,用没有刻度的直尺判断它是否为轴对称图形?答案:不是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
观察所画两圆具有什么样的位置关系?
知识汇总: 位置名称 外离 外切 相交
内切 内含
圆心距和半径的关系
d>R+r d=R+r
R-r<d<R+r (R>r)
d=R-r(R>r) 0≤ d<R-r
例题一:
已知两圆的半径分别是6cm和10cm, ①当圆心距为3cm时,两圆的位置 关系如何 内含 ? ②当圆心距为19cm时,两圆的位置 关系如何 外离 ? ③当圆心距为6cm时,两圆的位置 关系 如何 相交 ?
Rr
O1
O2
Rr
O1
O2
Rr O1 O2
外离 d > R+r 外切 d = R+r 相交 R-r < d <R+r
R
O1 O2r
R
O1 O2r
R
O
1O
r
2
内切 d = R-r 内含 0≤ d <R-r 由圆圆两心心圆距距的与与位半半置径径关之之系间间可的的推数数出量量关关系系 可圆既推心是出距性两与质圆半定的径理位之又置间是关的判系数定量定关理系.
答: ⊙B的半径为6cm
②设⊙B的半径为R. ∵两圆内切
③要考虑外切,内切两种情况。 解略。
∴d= |R-4|=10
R=-6(舍去),R=14
答: ⊙B的半径为14cm
反馈练习
1.两个圆的半径的比为2 : 3 ,内切时圆心距等于 8cm,那么这两圆相交时, 圆心距d的取值 范围是多少?
2.相切两圆的圆心距为12cm ,其中一个圆的半径为7cm ,则另一个圆的半径
例题二:
①:⊙A,⊙B外切,圆心距AB=10cm,其中⊙A的半径为4cm, 求⊙B的半径。
②:⊙A,⊙B内切,圆心距AB=10cm,其中⊙A的半径为4cm, 求⊙B的半径。
③:⊙A,⊙B相切,圆心距AB=10cm,其中⊙A的半径为4cm, 求⊙B的半径。
A
B
B A
解: ①设⊙B的半径为R. ∵两圆外切, ∴ d=10=4+R ∴ R=6
同心圆 (一种特殊的内含)
d=0
畅所欲言 总结新知
谈一谈在这节课中, • 学到了······ • 体会到······
2007-12-27
2008
新北京 新奥运
圆与圆的位置关系
初三数学组
动 请同学在纸上画一个较大的圆,取一个一
手 做 一
元硬币,在纸上移动这枚硬币,观察两圆 公共点的个数及相应两圆的位置关系。


没 有

公 共
圆点

唯 一

个 公

共 点
关 系两
个 公 共 点
外离

内含

外切

内切

相交Βιβλιοθήκη 相 交想一想,做一做:
●我们知道一个圆是轴对称图形,有两个圆 组成的组合图形是轴对称图形吗?如果是, 对称轴是怎样的直线?
两圆圆心距与两圆半径之间的数量关系


O1
O2
R-r<d<R+r
两圆圆心距与两圆半径之间的数量关系

r

O1
O2
d>R+r
两圆圆心距与两圆半径之间的数量关系
内 含
R O1 O2 r d<R-r
动手做一做:
已知:线段AB=4cm.画⊙A,半径是Rcm; 画⊙B,半径是rcm。 (1)R=2cm,r=1cm. 外离 (2)R=3cm,r=1cm. 外切 (3)R=3cm,r=2cm. 相交 (4)R=6cm,r=2cm. 内切 (5)R=6cm,r=1cm. 内含
我们把经过两圆圆心的直线 叫做连心线
讨论:两圆相切时的连心线与切点的位置关系如何?
.. .
01
02
T
. . . T
01 02
相切两圆的连心线必过切点
两圆圆心连线段的长度叫做圆心距
两圆圆心距与两圆半径之间的数量关系


R
O1
r
O2
d=R+r
两圆圆心距与两圆半径之间的数量关系
内 切
R O1 O2 r d=R-r


3.已知两圆内切时圆心距为7,外切时圆心距为23 ,则两圆的半径分别


4.两圆的半径比是5:3, 外切时圆心距是32cm, 当两圆内切时, 圆心距

cm.
5.相交的两圆的半径分别为3 和 4,圆心距为x ,求 x 的取值范围。
小结:圆和圆的五种位置关系
R为⊙O1的半径, r为⊙O2半径, 圆心距d= O1 O2
相关文档
最新文档