定向井施工中常用计算方法

合集下载

定向井井眼轨迹计算

定向井井眼轨迹计算

e1 cos1 eH sin 1 cos1 eN sin 1 sin 1 eE
• 2点的井眼方向单位矢量为:
e2 cos 2 eH sin 2 cos2 eN sin 2 sin 2 eE
• 两矢量夹角的余弦为:
2、第二套计算公式(证明)
再对上式求导,令:
d d K , K dL dL
则得:
d 2H K sin 2 dL d 2N K cos cos K sin sin 2 dL d 2E K cos sin K cos sin 2 dL
cos cos1 cos 2 sin 1 sin 2 cos
e1 e2 e1 e2 e1 e2 cos cos e1 e2 e1 e2
3、第二套计算公式
根据空间微分几何原理推导而来。
2 K sin c L L
定向井井眼轨迹计算
本章内容提要
§2-1 井眼曲率计算方法 §2-2 井眼轨迹计算方法
§2-3 井眼轨迹质量评价方法
§2-4 井眼轨迹的内插方法(补充)
§2-1 井眼曲率计算方法
1、井眼曲率( K) 平均曲率:单位长度井段内“狗腿角”,或“全角变化”的大 小。 两种计算方法:狗腿严重度(狗腿度)、全角变化率。
K

L
2、第一套计算公式
cos cos1 cos 2 sin 1 2 cos
K

L

Lubinsky先生根据空间平面圆弧曲线推导的。

假定测段是斜面圆弧曲线,则测段的狗腿角γ可由上面第一
式计算得到,狗腿角γ除以段长ΔL就得到该段曲率。

定向井轨迹计算

定向井轨迹计算

Orion – Expert of CBM/CMM Development
Beijing Orion Energy Technology Development Corp.
三、测斜计算方法
2.对测斜计算数据的规定
[例1-2]计算以下两测段的方位角增量和平均井斜方位角: (1)上测点井斜方位角350,下测点井斜方位角2550; (2)上测点井斜方位角3350,下测点井斜方位角250;
Beijing Orion Energy Technology Development Corp.
三、测斜计算方法
1.测斜计算概述
➢ 测斜计算的意义 指导施工:将计算结果绘图,及时掌握井眼轨迹发展的趋势, 及时采取有效措施; 资料保存:井眼轨迹的数据,是一口井的最重要数据之一,对 钻井、采油、修井、开发,都有重要意义。
➢ 用于计算全井轨迹的计算数据必须是测斜仪测 得的数据.
➢ 磁性测斜仪测得的方位角数据,须根据当地当 年的磁偏角,进行校正.
➢ 测点中若有一测点井斜角为零,则该点方位角 等于相邻测点的方位角.
➢ 方位角变化,在一个测段内不超过180°。若方 位角变化的绝对值大于180°,应按反转方向计 算。
2020/5/24
假设测段形状
2
tg 1 90
E2
270
N2
tg 1E2 N2 180
N2 0 N2 0, E2 0 N2 0, E2 0 N2 0
II. 计算测段的坐标增量(ΔH, ΔN,ΔE)、水平长度增量(ΔS)和井
眼曲率(K)
III. 根据测段增量计算测点坐标参数和其他参数,包括:H,N,E,
S,A,θ,V,共计七项。
H2 H1 H S2 S1 S N2 N1 N E2 E1 E

定向井施工中常用计算方法

定向井施工中常用计算方法

定向井施工中常用计算方法一、定向井剖面专业术语1、井深:井眼轴线上任一点,到井口的井眼长度,称为该点的井深,也称该点的测量井深或斜深。

2、垂深:井眼轴线上任一点,到井口所在水平面的距离。

3、水平位移:井眼轨迹上任一点,与井口铅垂线的距离。

也称该点的闭合距。

4、井斜角:井眼轴线上任一点的井眼方向,与通过该点的重力线之间的夹角。

5、最大井斜角:全井井斜角的最大值。

6、方位角:在以井眼轨迹上任一点为原点的平面坐标系中,以通过该点的正北方向为始边,按顺时针方向旋转至该点处井眼方向线在水平面上的投影线为终边,其所转过的角度称为该点的方位角。

7、造斜点:在定向井中,开始定向造斜的位置叫造斜点。

通常以开始定向造斜的井深来表示。

8、井斜变化率:单位井段内井斜角的变化值。

通常以两测点间井斜角的变化量与两测点间的井段的长度的比值表示。

9、方位变化率:单位井段内方位角的变化值。

通常以两测点间方位角的变化量与两测点间的井段的长度的比值表示。

10、造斜率:表示造斜工具的造斜能力。

11、全角变化率:在单位井段内井眼前进的方向在三维空间内的角度变化。

12、增斜段:井斜角随井深增加的井段。

13、稳斜段:井斜角保持不变的井段。

14、降斜段:井斜角随井深增加而逐渐减小的井段。

15、目标点:设计规定的必须钻达的地层位置。

通常以地面井口为坐标原点的空间坐标系的坐标来表示。

16、靶区半径:允许实钻井眼轨迹偏离设计目标点的水平距离。

17、靶心距:在靶区平面上,实钻井眼轴线与目标点之间的距离。

18、工具面:在造斜钻具组合中,由弯曲工具的两个轴线所决定的那个平面。

19、反扭角:使用井底马达带弯接头进行定向造斜或扭方位时,动力钻具启动前的工具面与启动后且加压钻进时工具面之间的夹角。

反扭角总是工具面逆时针转动。

20、高边:定向井的井底是一个呈倾斜状态的圆平面,称为井底圆。

井底圆上的最高点称为高边。

从井底圆心至高边之间的连线所指的方向,称为井底高边方向。

定向井技术(第五章第一节)

定向井技术(第五章第一节)

扫描距离就是P点和M点之间的距离,扫描角是以Pቤተ መጻሕፍቲ ባይዱ处设计轨 道的井眼高边为基准,绕其井眼切线顺时针转至M点所形成的角度。 对于每一个P点,都可以计算出扫描距离和扫描角,将这两个参
数分别作为极径和极角,便可确定出极坐标下的M点位置。这样在整
个设计轨道上扫描就可得到M点相对于P点的动态关系曲线。见极坐标 扫描图。
为相邻两测A间的井段为一直线,该直线的方向与下测
点处的井眼方向一致。
5.1 实钻井眼轨道的监测方法
5.1.1 测斜计算方法
一、正切法
测段计算公式如下 :
H L cos 2
S L sin 2
N S cos2 L sin 2 cos 2
E S cos2 L sin 2 sin 2
2 1
1 2
其中: R=
180
2 1 2 L(cos1 cos 2 ) 180 r=

L

2 1
5.1 实钻井眼轨道的监测方法
5.1.1 测斜计算方法
四、圆柱螺线法(曲率半径法) (2)第二种表达形式
2
c φ c ——平均井斜方位角,
1 2
2
5.1 实钻井眼轨道的监测方法
5.1.1 测斜计算方法
三、平衡正切法 平衡正切法假定二测点间的井段为两段各等于测段长 度一半的直线构成折线,它们的方同分别与上、下二测点
处的井眼方向一致。
5.1 实钻井眼轨道的监测方法
5.1.1 测斜计算方法
第五章 定向井井眼轨道实时监测及控制
5.1
实钻井眼轨道的监测方法
5.1.1 测斜计算方法 5.1.2 实钻轨迹偏差分析 5.1.3 邻井间的最近距离

3定向方法及其有关计算

3定向方法及其有关计算

井底定向法
方法 间接定向法之二): 方法5(间接定向法之二 : 间接定向法之二
– 组成:氟氢酸测斜仪+定向齿 组成:氟氢酸测斜仪 定向齿 刀标记; 刀标记; – 使用条件: 使用条件: 下钻前,先在裸眼井内进行测斜; 下钻前,先在裸眼井内进行测斜; 无严重“井铁”磁性干扰;地区或地层 无严重“井铁”磁性干扰; 磁场无异常; 磁场无异常; 井斜角不能等于零(>30); 井斜角不能等于零( 没有无磁钻铤; 没有无磁钻铤; – 评价:这是早期既没有无磁钻铤,也没有 评价:这是早期既没有无磁钻铤 既没有无磁钻铤, 照相测斜仪条件下的定向方法 条件下的定向方法。 照相测斜仪条件下的定向方法。
井底定向法: 井底定向法:工具面的标记
既可用于用磁性测斜仪测量,也可 既可用于用磁性测斜仪测量, 用于陀螺测斜仪测量; 用于陀螺测斜仪测量; 定向接头内有一个定向键。定向键 定向接头内有一个定向键。 所在的母线就标志着工具面的方位。 所在的母线就标志着工具面的方位。 测量仪器的罗盘面上有一个“发 测量仪器的罗盘面上有一个“ 线”,在测量仪器的最下面有一个 定向鞋” 定向鞋上有一个“ “定向鞋”,定向鞋上有一个“定 向槽”,在仪器安装时使“发线” 向槽” 在仪器安装时使“发线” 定向槽”在同一个母线上对齐。 与“定向槽”在同一个母线上对齐。 仪器下到井底时,定向鞋的特殊曲 仪器下到井底时, 线使定向槽自动卡在定向键上, 线使定向槽自动卡在定向键上,使 罗盘面上的发线方位就标志了工具 面的方位。 面的方位。 在照相底片上罗盘的指针标志着井 斜方位,发线标志了工具面的方位。 斜方位,发线标志了工具面的方位。 所以可求得工具面在井下的实际方 位。
井底定向法: 井底定向法:工具面的标记
定向磁铁标记法: 定向磁铁标记法:

定向井施工中常用计算方法

定向井施工中常用计算方法

定向井施工中常用计算方法一、方位角计算在定向井施工中,方位角是指井眼对准目标方向所需要的角度。

1.使用正弦定理计算方位角:若知道当前位置与下一目标位置的距离d,当前方位角Φ和井斜角I,以及投影角度A,可以使用正弦定理计算出目标方位角B。

B = Φ - arcsin(sin(A) * sin(I) / sin(d))二、井斜角计算在定向井施工中,井斜角是指井斜的角度。

1.使用三角函数计算井斜角:若知道当前位置与下一目标位置的距离d和目标方位角B,可以使用三角函数计算出井斜角I。

I = arcsin(sin(B - Φ) * sin(d))三、井斜距计算在定向井施工中,井斜距是指井眼移动的水平距离。

1.使用三角函数计算井斜距:若知道井斜角I和距离d,可以使用三角函数计算出井斜距T。

T = d * cos(I)四、投影距离计算在定向井施工中,投影距离是指井眼投射到垂直平面的水平距离。

1.使用三角函数计算投影距离:若知道井斜角I和距离d,可以使用三角函数计算出投影距离H。

H = d * sin(I)五、井身长度计算在定向井施工中,井身长度是指井身的长度。

1.使用勾股定理计算井身长度:若知道井斜距T、投影距离H和当前深度d,可以使用勾股定理计算出井身长度L。

L = sqrt(H² + T²) + d综上所述,定向井施工中常用的计算方法包括方位角计算、井斜角计算、井斜距计算、投影距离计算和井身长度计算等。

这些计算方法可以帮助工程师在实际施工中准确地控制井眼的方向和位置,保证井眼穿越目标地层,并实现成功的定向井施工。

定向井井身参数和测斜计算

定向井井身参数和测斜计算

定向井井身参数和测斜计算第一节定向井井身参数和测斜计算一.定向井的剖面类型及其应用定向钻井就是“使井眼按预定方向偏斜,钻达地下预定目标的一门科学技术”。

定向钻井的应用范围很广,可归纳如图9-l所示。

定向井的剖面类型共有十多种,但是,大多数常规定向井的剖面是三种基本剖面类型,见图9-2,称为“J”型、“S”型和连续增斜型。

按井斜角的大小范围定向井又可分为:常规定向井井斜角<55°大斜度井井斜角55~85°水平井井斜角>85°(有水平延伸段)二.定向井井身参数实际钻井的定向井井眼轴线是一条空间曲线。

钻进一定的井段后,要进行测斜,被测的点叫测点。

两个测点之间的距离称为测段长度。

每个测点的基本参数有三项:井斜角、方位角和井深,这三项称为井身基本参数,也叫井身三要素。

1.测量井深:指井口至测点间的井眼实际长度。

2.井斜角:测点处的井眼方向线与重力线之间的夹角。

3.方位角:以正北方向线为始边,顺时针旋转至方位线所转过的角度,该方向线是指在水平面上,方位角可在0—360°之间变化。

目前,广泛使用的各种磁力测斜仪测得的方位值是以地球磁北方位线为准的,称为磁方位角。

磁北方向线与正北方向线之间有一个夹角,称磁偏角,磁偏角有东、西之分,称为东或西磁偏角,真方位的计算式如下:真方位=磁方位角十东磁偏角或真方位=磁方位角一西磁偏角公式可概括为“东加西减”四个字。

方位角也有以象限表示的,以南(S)北(N)方向向东(E)西(W)方向的偏斜表示,如N10°E,S20°W。

在进行磁方位校正时,必须注意磁偏角在各个象限里是“加上”还是“减去”,如图9-3所示。

4.造斜点:从垂直井段开始倾斜的起点。

5.垂直井深:通过井眼轨迹上某点的水平面到井口的距离。

6.闭合距和闭合方位(l)闭合距:指水平投影面上测点到井口的距离,通常指靶点或井底的位移,而其他测点的闭合距离可称为水平位移。

定向井轨迹设计计算方法探析

定向井轨迹设计计算方法探析

1.井眼轨迹的基本概念1.1定向井的定义定向井是按预先设计的井斜角、方位角及井眼轴线形状进行钻进的井。

(井斜控制是使井眼按规定的井斜、狗腿严重度、水平位移等限制条件的钻井过程)。

1.2井眼轨迹的基本参数所谓井眼轨迹,实指井眼轴线。

测斜:一口实钻井的井眼轴线乃是一条空间曲线。

为了进行轨迹控制,就要了解这条空间曲线的形状,就要进行轨迹测量,这就是“测斜”。

测点与测段:目前常用的测斜方法并不是连续测斜,而是每隔一定长度的井段测一个点。

这些井段被称为“测段”,这些点被称为“测点”。

基本参数:测斜仪器在每个点上测得的参数有三个,即井深、井斜角和井斜方位角。

这三个参数就是轨迹的基本参数。

井深:指井口(通常以转盘面为基准)至测点的井眼长度,也有人称之为斜深,国外称为测量井深(Measure Depth)。

井深是以钻柱或电缆的长度来量测。

井深既是测点的基本参数之一,又是表明测点位置的标志。

井深常以字母L表示,单位为米(m)。

井深的增量称为井段,以ΔL表示。

二测点之间的井段长度称为段长。

一个测段的两个测点中,井深小的称为上测点,井深大的称为下测点。

井深的增量总是下测点井深减去上测点井深。

井斜角:井眼轴线上每一点都有自己的井眼前进方向。

过井眼轴线上的某点作井眼轴线的切线,该切线向井眼前进方向延伸的部分称为井眼方向线。

井眼方向线与重力线之间的夹角就是井斜角。

井斜角常以希腊字母α表示,单位为度(°)。

一个测段内井斜角的增量总是下测点井斜角减去上测点井斜角,以Δα表示。

井斜方位角:井眼轴线上每一点,都有其井眼方位线;称为井眼方位线,或井斜方位线。

井眼轴线上某点处的井眼方向线投影到水平面上,即为该点的井眼方位线(井斜方位线)以正北方位线为始边,顺时针方向旋转到井眼方位线(井斜方位线)上所转过的角度,即井眼方位角。

井斜方位角常以字母θ表示,单位为度(°)。

井斜方位角的增量是下测点的井斜方位角减去上测点的井斜方位角,以Δθ表示。

定向井中常用计算方法

定向井中常用计算方法

定向井施工中常用计算方法钻井一公司赵相泽编内部资料..讲课用,错误难免,请误外传一.定向井剖面专业术语1.井深:井眼轴线上任一点,到井口地井眼长度,称为该点地井深,也称该点地测量井深或斜深.2.垂深:井眼轴线上任一点,到井口所在水平面地距离.3.水平位移:井眼轨迹上任一点,与井口铅垂线地距离.也称该点地闭合距.4.井斜角:井眼轴线上任一点地井眼方向,与通过该点地重力线之间地夹角.5.最大井斜角:全井井斜角地最大值.6.方位角:在以井眼轨迹上任一点为原点地平面坐标系中,以通过该点地正北方向为始边,按顺时针方向旋转至该点处井眼方向线在水平面上地投影线为终边,其所转过地角度称为该点地方位角.7.造斜率:在定向井中,开始定向造斜地位置叫造斜点.通常以开始定向造斜地井深来表示.8.井斜变化率:单位井段内井斜角地变化值.通常以两测点间井斜角地变化量与两测点间地井段地长度地比值表示.9.方位变化率:单位井段内方位角地变化值.通常以两测点间方位角地变化量与两测点间地井段地长度地比值表示.10.造斜率:表示造斜工具地造斜能力.11.全角变化率:在单位井段内井眼前进地方向在三维空间内地角度变化.12.增斜率:井斜角随井深增加地井段.13.稳斜段:井斜角保持不变地井段.14.降斜段:井斜角随井深增加而逐渐减小地井段.15.目标点:设计规定地必须钻达地地层位置.通常以地面井口为坐标原点地空间坐标系地坐标来表示.16.靶区半径:允许实钻井眼轨迹偏离设计目标点地水平距离.17.靶心距:在靶区平面上,实钻井眼轴线与目标点之间地距离.18.工具面:在造斜钻具组合中,由弯曲工具地两个轴线所决定地那个平面.19.反扭角:使用井底马达带弯接头进行定向造斜或扭方位时,动力钻具启动前地工具面与启动后且加压钻进时工具面之间地夹角.反扭角总是工具面逆时针转动.20.高边:定向井地井底是一个呈倾斜状态地圆平面,称为井底圆.井底圆上地最高点称为高边.从井底圆心至高边之间地连线所指地方向,称为井底高边方向.高边方向上地水平投影称为高边方位,即井底方位.21.工具面角:是表示造斜工具下到井底后,工具面所在地位置参数.有两种表示方法:一种是以高边为基准,一种是以磁北为基准.高边基准工具面,简称高边工具面,是指高边方向线为始边,顺时针转到工具面与井底圆平面地交线上所转过地角度.磁北基准工具面等于高边工具面角加上井底方位角.1 / 9,示角表,用工具面,工具面所处地位置之角地简称.在定向造斜时,当启动井下马达后22.定向角:是定向工具面.示角表北工具面面角表示,也可用磁可即为定向工具面角.定向角用高边工具.表示工具面角,工具安置地位置以定向时,当启动井下动力钻具之前,将具23.安置角:是安置工面角地简称.在.扭角向角加反角在数值上等于定即为安置工具面角.安置处理二.数据. 现场适用于确度较高,特别角角法,平均法计算简单,并且准测1.根据规定,斜数据计算方法为平均法:计算方平均角法;井斜角平平均值,称均是1点井斜角与2点井斜角地式中:αc;方位角值,称为平均方位角与2点方位角地平均是1点φc);(M长(斜深)L是1.2点间地段)(M;长(垂深)H 是1.2点间地垂)(M平位移;S是1.2点间地水)(M上地投影;N是S在北轴)(M地投影;E是S在东轴上为:别方位φ分故闭合距Se和闭合e(?N)2?(??) =S e??1-φ=tg N?1ΔN.ΔE分别为每一小段位移(S)在北轴.东轴上投影地迭加值.实例:已知井深140M时,井斜0.18?,方位359,在井深170m,200m,230m和260m时,井斜和方位分别是0.37?,250?。

钻井常用计算公式

钻井常用计算公式

第四节 钻井常用计算公式一、井架基础的计算公式(一)基础面上的压力P 基= 式中:P 基——基础面上的压力,MPa ;n ——动负荷系数(一般取1.25~1.40);Q O ——天车台的负荷=天车最大负荷+天车重量,t ;Q B ——井架重量,t ;(二)土地面上的压力P 地=P 基+W式中:P 地——土地面上的压力,MPa;P 基——基础面上的压力,MPa;W ——基础重量,t (常略不计)。

(三)基础尺寸1、顶面积F 1= 式中:F 1——基础顶面积,cm2;B 1——混凝土抗压强度(通常为28.1kg/cm2=0.281MPa) 2、底面积F 2= 式中:F 2——基础底面积,cm 2;B 2——土地抗压强度,MPa ;P 地——土地面上的压力,MPa 。

3、基础高度式中:H ——基础高度,m ;F2、F1分别为基础的底面积和顶面积,cm 2;P 基——基础面上的压力,MPa ;B 3——混凝土抗剪切强度(通常为3.51kg/cm 2=0.351MPa )。

(二)混凝土体积配合比用料计算1、计算公式 nQ O +Q B 4P 基B 1P 地B 2配合比为1∶m∶n=水泥∶砂子∶卵石。

根据经验公式求每1m3混凝土所需的各种材料如下:2、混凝土常用体积配合比及用料量,见表1-69。

表1-69 混凝土常用体积配合比及用料量混凝土用途体积配合比每立方米混凝土每立方米砂子每立方米石子每1000公斤水尼水泥kg砂子m3石子m3水泥kg石子m3混凝土m3水泥kg砂子m3混凝土m3砂子m3石子m3混凝土m31.坚硬土壤上的井架脚,小基墩井架脚,基墩的上部分。

1∶2∶4335 0.45 0.90 744 2 2.22 372 0.5 1.11 1.35 2.70 2.992.厚而大的突出基墩。

1∶2.5∶5 276 0.46 0.91 608 2 2.20 304 0.5 1.10 1.57 3.10 3.633.支承台、浇灌坑穴及其他。

一井定向计算

一井定向计算

一井定向计算摘要:一、一井定向计算的概念与原理二、一井定向计算的方法三、一井定向计算的应用实例四、一井定向计算的优缺点分析正文:一、一井定向计算的概念与原理一井定向计算,是一种在地球物理勘探中用于确定地下构造的方法。

它是通过研究地层在钻井中的走向和倾角,分析地下构造的形态和规律,从而为油气勘探和矿产资源开发提供科学依据。

一井定向计算的原理主要基于钻井中地层的几何形态和地球物理性质,借助数学和物理学的方法,推算出地下构造的详细信息。

二、一井定向计算的方法一井定向计算的方法主要包括以下几种:1.测井法:通过在钻井中对地层进行测井,获取地层的物理性质,如密度、电阻率等,然后根据这些性质推算地下构造的几何形态。

2.地震法:利用地震波在地下的传播特性,分析地下构造的形态和规律。

地震法可分为二维地震法和三维地震法,其中三维地震法能够更准确地反映地下构造的真实形态。

3.重力法:通过测量地下重力场,研究地层的构造和地下水流状况。

重力法适用于浅层地下构造的勘探。

4.电法:通过测量地下的电阻率和电导率,推算地下构造的几何形态。

电法适用于勘探电阻率差异较大的地层。

5.磁法:通过测量地下的磁场,研究地层的构造和磁性矿物的分布。

磁法适用于磁性矿物含量较高的地区。

三、一井定向计算的应用实例一井定向计算在地球物理勘探中具有广泛的应用,以下是一些实例:1.油气勘探:通过一井定向计算,可以确定油气藏的位置、规模和形状,为油气勘探提供重要依据。

2.矿产资源开发:一井定向计算可用于研究地下矿产的分布规律,为矿产资源开发提供科学依据。

3.地下水资源勘查:通过一井定向计算,可以了解地下水的流向和分布,为地下水资源勘查和开发提供依据。

4.工程地质勘察:一井定向计算可用于分析地下构造和地层性质,为工程地质勘察提供重要信息。

四、一井定向计算的优缺点分析一井定向计算具有以下优缺点:优点:1.可准确反映地下构造的几何形态和规律。

2.适用于多种地层和地质条件。

定向井技术

定向井技术

摘要定向井技术是当今世界石油勘探开发领域最先进的钻井技术之一,它是由特殊井下工具、测量仪器和工艺技术有效控制井眼轨迹,使钻头沿着特定方向钻达地下预定目标的钻井工艺技术。

采用定向井技术可以使地面和地下条件受到限制的油气资源得到经济、有效的开发,能够大幅度提高油气产量和降低钻井成本,有利于保护自然环境,具有显著的经济效益和社会效益。

定向井就是使井身沿着预先设计的井斜和方位钻达目的层的钻井方法。

本文介绍的主要是定向井及水平井的应用。

关键字:定向井水平井及前沿技术发展1、定向钻井的目的:1、地面条件限制;如高山、大河、湖泊、海洋、城市、建筑等;2、地下条件限制;如地下断层、盐丘、穹窿等复杂地层;3、钻井工艺要求;如侧钻井、救援井、丛式井、分支井等;4、开发油气藏的需要。

钻水平井的目的是:1、开发低渗透、低孔隙度油气藏;2、丛式钻井和海洋钻井的需要。

主要内容有:1、定向井和水平井剖面设计;2、定向井和水平井井眼轨迹测量和计算;3、定向井和水平井井眼轨控制原理和技术。

发展状况:最早的定向井是用于井下落鱼而无法继续钻进的侧钻井;用专门的工具及技术钻定向井则始于1895年。

真正钻定向井是1930年在美国的加里福尼亚开采海岸浅层石油。

1934年用于井喷失控的救援井。

广泛使用定定向井是在最近20年。

在此基础上为了开发低渗透油气藏和海洋、从式井的需要又出现了水平井技术。

目前,定向井水平井已发展到很高的水平,应用越来越广泛,在剖面设计,轨迹测量、控制技术已相当完善。

井深超过8000米,水平位移达5000米。

井斜角达800以上,即所谓大斜度井。

2、定向井的基本要素1、井斜角。

井眼轴线的垂直投影平面上,任一点的切线与垂线的夹角,;2、方位角。

井眼轴线的水平投影上任一点的切线与正北方向的夹角,;3、水平位移。

是井底的水平投影与井口的水平投影之间的距离;4、井斜变化率。

井眼单位长度井深井斜角的变化值;5、方位变化率。

单位长度井深方位角的变化值;6、全角变化率(井眼曲率或狗腿度),同时表示井斜和方位变化的程度;7、测量深度(MD)。

定向井狗腿度的计算方法

定向井狗腿度的计算方法

定向井狗腿度的计算方法
嘿,朋友们!今天咱来聊聊定向井狗腿度的计算方法。

定向井啊,就好比是在地下挖的一条有特定方向的通道,而狗腿度呢,就是这条通道弯曲的程度。

你想想看,这定向井就像是一条地下的秘密小道,弯弯曲曲的。

那怎么知道它弯得有多厉害呢?这就得靠计算狗腿度啦!
计算狗腿度其实并不难,就好像你要知道一个弯道有多急一样。

咱先得有一些关键的数据,就像你走路得知道从哪儿到哪儿一样。

比如说,咱得知道两个点的位置信息吧,这就好比你知道起点和终点在哪儿。

然后呢,根据这些信息,用一些专门的公式和方法来算。

哎呀,这可不像你算一加一那么简单哦!这里面可有不少门道呢。

要是算错了,那可就好比你在地下迷宫里走错了路,后果可能很严重呢!
你说这是不是挺重要的呀?就像你出门得找对路一样,定向井的狗腿度要是算错了,那工程可就麻烦啦!
咱可以把定向井想象成一条蛇在地下游走,那狗腿度就是蛇身体弯曲的程度。

你得准确地算出这个弯曲度,才能更好地控制这条“蛇”的走向。

计算的时候可得细心啊,不能马虎。

就像你做一件很重要的事情,得认真对待,不然出了差错可就不好收拾了。

其实啊,生活中很多事情都和这定向井狗腿度的计算有点像。

都需要我们认真、仔细地去对待,不能随随便便。

咱再回过头来想想,要是没有准确的狗腿度计算,那定向井还能打得那么顺利吗?肯定不行啊!
所以说啊,这看似小小的狗腿度计算,其实有着大大的作用呢!它就像是一把钥匙,能打开定向井工程成功的大门。

朋友们,现在你们对定向井狗腿度的计算方法是不是有了更清楚的认识啦?可别小瞧了它哦!。

(完整word版)钻井常用计算公式

(完整word版)钻井常用计算公式

第四节 钻井常用计算公式一、井架基础的计算公式(一)基础面上的压力P 基= 式中:P 基——基础面上的压力,MPa ;n ——动负荷系数(一般取1.25~1.40);Q O ——天车台的负荷=天车最大负荷+天车重量,t ;Q B ——井架重量,t ;(二)土地面上的压力P 地=P 基+W式中:P 地——土地面上的压力,MPa;P 基——基础面上的压力,MPa;W ——基础重量,t (常略不计)。

(三)基础尺寸1、顶面积F 1= 式中:F 1——基础顶面积,cm2;B 1——混凝土抗压强度(通常为28.1kg/cm2=0.281MPa)2、底面积F 2= 式中:F 2——基础底面积,cm 2;B 2——土地抗压强度,MPa ;P 地——土地面上的压力,MPa 。

3、基础高度式中:H ——基础高度,m ;F2、F1分别为基础的底面积和顶面积,cm 2;P 基——基础面上的压力,MPa ;B 3——混凝土抗剪切强度(通常为3.51kg/cm 2=0.351MPa )。

(二)混凝土体积配合比用料计算1、计算公式 nQ O +QB 4P 基B 1P 地B 2配合比为1∶m∶n=水泥∶砂子∶卵石。

根据经验公式求每1m3混凝土所需的各种材料如下:2、混凝土常用体积配合比及用料量,见表1-69。

表1-69混凝土常用体积配合比及用料量混凝土用途体积配合比每立方米混凝土每立方米砂子每立方米石子每1000公斤水尼水泥kg砂子m3石子m3水泥kg石子m3混凝土m3水泥kg砂子m3混凝土m3砂子m3石子m3混凝土m31.坚硬土壤上的井架脚,小基墩井架脚,基墩的上部分。

1∶2∶4335 0.45 0.90 744 2 2.22 372 0.5 1.11 1.35 2.70 2.992.厚而大的突出基墩。

1∶2.5∶5 276 0.46 0.91 608 2 2.20 304 0.5 1.10 1.57 3.10 3.633.支承台、浇灌坑穴及其他。

定向井、丛式井、水平井设计与计算分析

定向井、丛式井、水平井设计与计算分析

定向井、丛式井、水平井设计与计算分析第一节定向井、水平井二维轨道设计一口定向井的实施,首先要有一个轨道设计,才能以此设计为依据进行具体的定向井钻井施工。

对于不同的勘探、开发目的和不同的设计限制条件,定向井的设计方法有多种多样。

而每种设计方法,都有一定的设计原则。

定向井设计是一个非常重要的环节。

“好的设计是成功的一半”。

因此,合理地设计好井身轨道,是定向井成功的保证。

一、设计原则:一口定向井的总设计原则,应该是能保证实现钻井目的,满足采油工艺及修井作业的要求,有利于安全、优质、快速钻井。

在对各个设计参数的选择上,在自身合理的前提下,还要考虑相互的制约。

要综合地进行考虑。

(一)选择合适的井眼形状复杂的井眼形状,势必带来施工难度的增加,因此井眼形状的选择,力求越简单越好。

从钻具受力的角度来看:目前普遍认为,降斜井段会增加井眼的摩阻,引起更多的复杂情况。

如图所示(2-1-1),增斜井段的钻具轴向拉力的径向的分力,与重力在轴向的分力方向相反,有助于减小钻具与井壁的摩擦阻力。

而降斜井段的钻具轴向分力,与重力在轴向的分力方向相同,会增加钻具与井壁的摩擦阻力。

因此,应尽可能不采用降斜井段的轨道设计。

图2-1-1(二)选择合适的井眼曲率井眼曲率的选择,要考虑工具造斜能力的限制和钻具刚性的限制,结合地层的影响,留出充分的余地,保证设计轨道能够实现。

在能满足设计和施工要求的前提下,应尽可能选择比较低的造斜率。

这样,钻具、仪器和套管都容易通过。

当然,此处所说的选择低造斜率,没有与增斜井段的长度联系在一起进行考虑。

另外,造斜率过低,会增加造斜段的工作量。

因此,要综合考虑。

常用的造斜率范围是4°-10°/100米(三)选择合适的造斜井段长度造斜井段长度的选择,影响着整个工程的工期进度,也影响着动力钻具的有效使用。

若造斜井段过长,一方面由于动力钻具的机械钻速偏低,使施工周期加长,另一方面由于长井段使用动力钻具,必然造成钻井成本的上升。

定向井施工中常用计算方法

定向井施工中常用计算方法

定向井施工中常用计算方法钻井一公司赵相泽编内部资料。

讲课用,错误难免,请误外传一、定向井剖面专业术语1、井深:井眼轴线上任一点,到井口的井眼长度,称为该点的井深,也称该点的测量井深或斜深。

2、垂深:井眼轴线上任一点,到井口所在水平面的距离。

3、水平位移:井眼轨迹上任一点,与井口铅垂线的距离。

也称该点的闭合距。

4、井斜角:井眼轴线上任一点的井眼方向,与通过该点的重力线之间的夹角。

5、最大井斜角:全井井斜角的最大值。

6、方位角:在以井眼轨迹上任一点为原点的平面坐标系中,以通过该点的正北方向为始边,按顺时针方向旋转至该点处井眼方向线在水平面上的投影线为终边,其所转过的角度称为该点的方位角。

7、造斜率:在定向井中,开始定向造斜的位置叫造斜点。

通常以开始定向造斜的井深来表示。

8、井斜变化率:单位井段内井斜角的变化值。

通常以两测点间井斜角的变化量与两测点间的井段的长度的比值表示。

9、方位变化率:单位井段内方位角的变化值。

通常以两测点间方位角的变化量与两测点间的井段的长度的比值表示。

10、造斜率:表示造斜工具的造斜能力。

11、全角变化率:在单位井段内井眼前进的方向在三维空间内的角度变化。

12、增斜率:井斜角随井深增加的井段。

13、稳斜段:井斜角保持不变的井段。

14、降斜段:井斜角随井深增加而逐渐减小的井段。

15、目标点:设计规定的必须钻达的地层位置。

通常以地面井口为坐标原点的空间坐标系的坐标来表示。

16、靶区半径:允许实钻井眼轨迹偏离设计目标点的水平距离。

17、靶心距:在靶区平面上,实钻井眼轴线与目标点之间的距离。

18、工具面:在造斜钻具组合中,由弯曲工具的两个轴线所决定的那个平面。

19、反扭角:使用井底马达带弯接头进行定向造斜或扭方位时,动力钻具启动前的工具面与启动后且加压钻进时工具面之间的夹角。

反扭角总是工具面逆时针转动。

20、高边:定向井的井底是一个呈倾斜状态的圆平面,称为井底圆。

井底圆上的最高点称为高边。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定向井施工中常用计算方法钻井一公司赵相泽编内部资料。

讲课用,错误难免,请误外传一、定向井剖面专业术语1、井深:井眼轴线上任一点,到井口的井眼长度,称为该点的井深,也称该点的测量井深或斜深。

2、垂深:井眼轴线上任一点,到井口所在水平面的距离。

3、水平位移:井眼轨迹上任一点,与井口铅垂线的距离。

也称该点的闭合距。

4、井斜角:井眼轴线上任一点的井眼方向,与通过该点的重力线之间的夹角。

5、最大井斜角:全井井斜角的最大值。

6、方位角:在以井眼轨迹上任一点为原点的平面坐标系中,以通过该点的正北方向为始边,按顺时针方向旋转至该点处井眼方向线在水平面上的投影线为终边,其所转过的角度称为该点的方位角。

7、造斜率:在定向井中,开始定向造斜的位置叫造斜点。

通常以开始定向造斜的井深来表示。

8、井斜变化率:单位井段内井斜角的变化值。

通常以两测点间井斜角的变化量与两测点间的井段的长度的比值表示。

9、方位变化率:单位井段内方位角的变化值。

通常以两测点间方位角的变化量与两测点间的井段的长度的比值表示。

10、造斜率:表示造斜工具的造斜能力。

11、全角变化率:在单位井段内井眼前进的方向在三维空间内的角度变化。

12、增斜率:井斜角随井深增加的井段。

13、稳斜段:井斜角保持不变的井段。

14、降斜段:井斜角随井深增加而逐渐减小的井段。

15、目标点:设计规定的必须钻达的地层位置。

通常以地面井口为坐标原点的空间坐标系的坐标来表示。

16、靶区半径:允许实钻井眼轨迹偏离设计目标点的水平距离。

17、靶心距:在靶区平面上,实钻井眼轴线与目标点之间的距离。

18、工具面:在造斜钻具组合中,由弯曲工具的两个轴线所决定的那个平面。

19、反扭角:使用井底马达带弯接头进行定向造斜或扭方位时,动力钻具启动前的工具面与启动后且加压钻进时工具面之间的夹角。

反扭角总是工具面逆时针转动。

20、高边:定向井的井底是一个呈倾斜状态的圆平面,称为井底圆。

井底圆上的最高点称为高边。

从井底圆心至高边之间的连线所指的方向,称为井底高边方向。

高边方向上的水平投影称为高边方位,即井底方位。

21、工具面角:是表示造斜工具下到井底后,工具面所在的位置参数。

有两种表示方法:一种是以高边为基准,一种是以磁北为基准。

高边基准工具面,简称高边工具面,是指高边方向线为始边,顺时针转到工具面与井底圆平面的交线上所转过的角度。

磁北基准工具面等于高边工具面角加上井底方位角。

22、定向角:是定向工具面角的简称。

在定向造斜时,当启动井下马达之后,工具面所处的位置,用工具面角表示,即为定向工具面角。

定向角可用高边工具面角表示,也可用磁北工具面角表示。

23、安置角:是安置工具面角的简称。

在定向时,当启动井下动力钻具之前,将工具安置的位置,以工具面角表示。

即为安置工具面角。

安置角在数值上等于定向角加反扭角。

二、数据处理1、根据规定,测斜数据计算方法为平均角法,平均角法计算简单,并且准确度较高,特别适用于现场。

平均角法计算方法:式中:αc 是1点井斜角与2点井斜角的平均值,称平均井斜角; φc 是1点方位角与2点方位角的平均值,称为平均方位角;L 是1、2点间的段长(斜深);(米) H 是1、2点间的垂长(垂深);(米) S 是1、2点间的水平位移 ;(米) N 是S 在北轴上的投影;(米) E 是S 在东轴上的投影;(米) 故闭合距Se 和闭合方位φe 分别为: S e =)(2)(∑E +∑Nφ1=tg -1N ∑∑EΔN 、ΔE 分别为每一小段位移(S )在北轴、东轴上投影的迭加值。

实例:已知井深140米时,井斜0.18˚,方位359,在井深170m ,200m ,230m 和260m 时,井斜和方位分别是0.37˚,250˚;0.64˚、230˚;0.43˚;216.98˚;0.28˚,224.26˚; 通过带入以上公式计算,列表如下三井身剖面各项参数的计算已知地面坐标,目标点坐标、垂深、最大井斜,计算造斜点及各段长度实例:已知地面井口坐标:X=3943724.2 Y=203423916靶点垂深2730m X 3943675 Y 3943675 Y 20342225(最大井斜角)25°。

靶心半径 R=20米 根据已知条件,设计成直、增、稳剖面。

求:造斜点及各段参数解:(1)根据井口坐标 靶点坐标,计算本井总位移,根据闭合位移公式 S=)(2)(∑N +∑N 2S 总=2)6.2034239120342225(2)2.39437243943675(-+-=173.11(米) (2)计算本目标闭合方位φ闭。

由公式=∑N∑EΣΕ=20342225-20342391.6=-166.6 ΣΝ=3943675-3943724.2=-49.2由ΣΝΣΕ可知目标点在第三象限;代入公式φ=73.5° φ闭=180+73.5°(3)根据油田标准造斜率4.5°/30(在现场可根据实际情况来选择造斜率例3.6°/30m 4°/30m )。

井斜增到αm ax 25°,需要段长︒5.425×30=166.67米,由平均角法计算公式H=L·cosαc S=L·sinαc (αc 为平均井斜) 可计算出 H 造=166.67cos12.5=162.71米 S 造=166.67sin12.5=36.07米 H 造为造斜段垂深S 造为造斜段产生的位移(4)知道总位移和造斜段所产生的位移,可计算出稳斜段需产生的位移 我们用S 稳表示S 总-S 造=173.11-36.07=137.04m由平均角法计算公式 H =Lcosαc S=Lsinαc 我们可推出稳斜段斜深L 稳=米28.32425sin 04.137sin ==c S α稳斜段垂深H 稳=89.29325cos 25sin 04.137cos sin =︒∙=∙c c S αα米 (5)根据上的计算可以反推出造斜点=H 目标点-H 造-H 稳=2730-162.71-293.89=2273.4m 目标点斜深L 目标点=H 造+L 稳=2273.4+166.67+324.28=2764.35米 根据以上计算我们可以得到 造斜点2273.4m造斜段2273.4~2440.07m 井斜从0~25° 造斜率4.5°/3° 方位保持253.5° 稳斜段244.07~2273.4m 井斜25°不变 方位保持在253.5°在实钻过程中,我们过程中,我们选择造斜点,往往要留有余地,也就是提前50--100米造斜,在实钻过程中,由于直井段不可能是0度,总是会产生一定位移。

有反向有正向。

我们都可以根据以上的步骤来重新校正目标点与计算点的总位移和对靶立位,来重新设计造成斜点和名段的参数,只要我们掌握上面这种方法。

举一反三,你会发现直增剖面,直增稳降直,直增、增剖面都可以利用上述思路利用计算器来计算推导造斜点及设计剖面。

三、方位控制计算方位漂移是客观存在的现实,其中地层走向对方位影响有一定规律、根据地层各向异性原理,井斜方位有着向垂直于地层走向的方向漂移的趋势。

如图:在地层倾角小于45°,井斜方位将向上倾(反倾),例如:中原油田某地层倾向110°倾角15°。

设计方位为180°。

由方位漂移将会增方位,设计方位如果是20°,方位漂移将会出现减方位。

造斜工具的装置角在定向井的方位控制中是非常重要的,造斜工具装置角决定了便用这个造斜工具钻出的新井眼是增方位还是减方位或是稳方位。

正确的装置角可以决定这个造斜工具造斜率如何分配,即有多少用于改变井斜角,有多少用于改变方位角,关链在于确定好造斜工具的装置角。

目前在有线随钻条件下,可以随时了解井府装置角的大小,这就为准确计算在一定装置角下,井斜、方位、变化适用的公式㈠磁性定向法: 1、数学计算磁性定向法它适用于井斜小于8°(随仪器不同有变化)它是利用装置方位角不变把方位,钻出的井眼轴线是一条圆滑的曲线,而这条圆弧曲线乃是空间一斜面上的圆弧曲线,其推导出的公式为cosα2=cosα1·cosγ-sinα ·sinγ·cosw (1) tgΔφ=ωγαγαωγcos sin cos cos sin sin sin ⋅⋅+⋅⋅ (2)sinω=γϕαsin sin sin ∆⋅ (3)sinα=ϕγγγα∆+cos 1sin cos 1sin conwcon (4)tg)sin(sin 2sin 2sin 2sin cos sin 2γαϕϕαγϕγ--∆∆±∆=w 上式中当增斜按方位时,根号前取负号,减斜扭方位时,根号前取+号当α=γ时,5式将出现tg=2=w 的不定形式,此时需要按下式计算tg=1cos 2αϕ∆=tg w1-5式为扭方位一般计算公式,它适用于所有情况,在实际工作中有几种常用的特定条件下的扭方位计算公式,若将这些特定条件代入1-5式可得到简化计算公式① 90º扭方位,弯接头初好装置角W 为±90,增方位时用+90,减方位时用- 90已知:弯接头造斜率为K ,扭方位前井斜角α井斜方位角φ,要求方位扭角Δφ计算扭方位井段狗腿度γ,扭完方位后的井斜角α2扭方位井段长度ΔL ,可得到简便公式tg=1sin αγϕtg ±=∆ (6)“+、-”取法及意义如下:当w+90˚时式中取+号 Δφ为正值表示增方位 当w -90˚时式中取-号 Δφ为负值表示减方位 cosα2=cosα1cosγ (7) tgγ=±tg Δφsinα1 (8)Δφ为正值式中取“+”号 Δφ为负值式中取“-”号 报刊方位井段长度ΔL 可用下式ΔL=Kγ(9) ②稳斜扭方位已知弯接头造斜率K ,扭方位前井斜角α1和井斜方位角φ,要求方位扭转角 Δφ,由于稳斜扭方位,扭完方位后α2=α1,φ2=φ1+Δφ计算:弯接头初始装置角ω,扭方位井段的γ,扭方位钻进井段长度ΔL cosγ=cos 2α1+sin 2Δφ (10) cosω=γααγαsin 1sin 1cos cos 1cos - (11)ω=±cos -1[-12φγtg tg] (12)12式中正负号取法,当需要增立位时即Δφ>0式中取“-”号扭方位井段ΔL 仍按9式计算③全力扭方位即是最大可能发挥造斜工具的能力,最快速度扭方位。

已知K 、α1、φ、Δφ计算:扭方位井段狗腿角γ,造斜工具装置用ω,扭方位井段长度ΔL ,扭完方位右的井斜角α2 公式 ω=±cos -1[-1αγtg tg (13) 这就是计算全力扭方位时造斜工具装置用的公式,式中的正负号取法为:需要增方法取“+”,需要减方位取“-”。

相关文档
最新文档