高考物理模拟试题力学压轴题和高中物理初赛力学模拟试题大题详解

合集下载

力学压轴选择题(全国甲卷和Ⅰ卷)-高考物理十年压轴真题与模拟(原卷版)

力学压轴选择题(全国甲卷和Ⅰ卷)-高考物理十年压轴真题与模拟(原卷版)

力学压轴选择题(全国甲卷和Ⅰ卷)高考物理力学压轴题是考查学生物理学科素养高低的试金石,表现为综合性强、求解难度大、对考生的综合分析能力和应用数学知识解决物理问题的能力要求高等特点。

一、命题范围1.万有引力与宇宙航行(压轴指数★★★)①行星冲日问题。

结合开普勒第二定律和万有引力定律解决。

②结合最近航天事业发展的最新动态,利用万有引力与宇宙航行的知识解决相关问题。

2、牛顿运动定律综合性题目(压轴指数★★★★)整体法和隔离法在牛顿第二定律中的应用,临界问题和瞬时性问题。

3、共点力平衡(压轴指数★★★)三力平衡的处理方法,除常规的合成法,正交分解法,还要注意一些特殊的方法,例如相似三角形法和正弦定理和余弦定理处理相关问题。

4、机械能守恒定律和能量守恒定律(压轴指数★★★★★)利用机械能守恒定律或动能定理、能量守恒定律处理力学综合类题目。

二、命题类型1.力学情境综合型。

物理情境选自生活生产情境或学习探究情境,物理力学情境综合型试题的物理模型有:斜面、板块、弹簧等模型。

研究对象包含两个或两个以上物体、物理过程复杂程度高。

已知条件情境化、隐秘化、需要仔细挖掘题目信息。

求解方法技巧性强、灵活性高、应用数学知识解决问题的能力要求高的特点。

命题点常包含:匀变速直线运动、圆周运动、抛体运动等。

命题常涉及运动学、力学、功能关系等多个物理规律的综合运用,有时也会与相关图像联系在一起。

2.单一物体多过程型、多物体同一过程型问题。

对单一物体多过程型问题,比较多过程的不同之处,利用数学语言列方程求解。

对于多物体同一过程型问题,要灵活选取研究对象,善于寻找相互联系。

选取研究对象,或采用隔离法,或采用整体法,或将隔离法与整体法交叉使用。

预测2023年高考物理压轴题重点要放在单个物体与弹簧模型结合的直线运动、圆周运动与抛体运动以及多物体与板块模型、运动图像相结合的直线运动问题上。

在复习备考中应注意以下几点:1.读懂题目情境,要注重审题,深究细琢,纵观全局重点推敲,挖掘并应用隐含条件,梳理解题思路、用数学语言表达物理过程。

2022高考物理复习冲刺压轴题精练力学部分专题8 动量守恒定律(力学部分)(解析版)

2022高考物理复习冲刺压轴题精练力学部分专题8 动量守恒定律(力学部分)(解析版)

2022高考物理复习冲刺压轴题精练力学部分专题8动量守恒定律一、单选题1.若采用下图中甲、乙两种实验装置来验证动量守恒定律(图中小球半径相同、质量均已知,且m A>m B,B、B´两点在同一水平线上),下列说法正确的是A.采用图甲所示的装置,必需测量OB、OM、OP和ON的距离B.采用图乙所示的装置,必需测量OB、B´N、B´P和B´M的距离C.采用图甲所示的装置,若m A•ON=m A•OP+m B•OM,则表明此碰撞动量守恒=,则表明此碰撞机械能也守恒D.2.如图所示,一质量为0.5kg的一块橡皮泥自距小车上表面1.25m高处由静止下落,恰好落入质量为2kg、速度为2.5m/s沿光滑水平地面运动的小车上,并与小车一起沿水平地面运动,取g=10m/s2,不计空气阻力,下列说法正确的是A.橡皮泥下落的时间为0.3sB.橡皮泥与小车一起在水平地面上运动的速度大小为3.5m/sC.橡皮泥落入小车的过程中,橡皮泥与小车组成的系统动量守恒D.整个过程中,橡皮泥与小车组成的系统损失的机械能为7.5J3.我国女子短道速滑队在2013年世锦赛上实现女子3000m接力三连冠.观察发现,“接棒”的运动员甲提前站在“交棒”的运动员乙前面,并且开始向前滑行,待乙追上甲时,乙猛推甲一把,使甲获得更大的速度向前冲出.在乙推甲的过程中,忽略运动员与冰面间在水平方向上的相互作用,则()A.甲对乙的冲量一定等于乙对甲的冲量B.甲、乙的动量变化一定大小相等方向相反C.甲的动能增加量一定等于乙的动能减少量D.甲对乙做多少负功,乙对甲就一定做多少正功4.一枚火箭搭载着卫星以速率v 0进入太空预定位置,由控制系统使箭体与卫星分离.已知前部分的卫星质量为m 1,后部分的箭体质量为m 2,分离后箭体以速率v 2沿火箭原方向飞行,若忽略空气阻力及分离前后系统质量的变化,则分离后卫星的速率v 1为()A.v 0-v 2B.v 0+v 2C.21021m v v v m =-D.5.如图所示,弹簧的一端固定在竖直墙上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始自由下滑则()A.在以后的运动过程中,小球和槽的动量始终守恒B.在下滑过程中小球和槽之间的相互作用力始终不做功C.被弹簧反弹后,小球和槽都做速率不变的直线运动D.被弹簧反弹后,小球和槽的机械能守恒,小球能回到槽高h 处二、多选题6.如图所示,水平面上固定着两根足够长的平行导槽,质量为2m 的U 形管恰好能在两导槽之间自由滑动,一质量为m 的小球沿水平方向,以初速度0v 从U 形管的一端射入,从另一端射出。

高中物理压轴题之力学(高中题型整理,突破提升,有答案)

高中物理压轴题之力学(高中题型整理,突破提升,有答案)

高中物理压轴题之力学(高中题型整理,突破提升,有答案)简介本篇文档汇总了高中物理力学部分的压轴题,旨在帮助学生突破提升。

以下是一些经典问题及其答案。

第一题问题:一个质量为2kg的物体在水平地面上,受到一个力120N的作用,加速度为多少?答案:根据牛顿第二定律,力等于质量乘以加速度,即 F = ma。

代入已知数据:120N = 2kg * a解得加速度 a = 60m/s²。

第二题问题:一个力为30N的物体在水平桌面上受到3N的摩擦力,求物体的加速度。

答案:首先,我们需要考虑摩擦力的方向。

根据题目描述,摩擦力的方向与物体运动的方向相反,所以摩擦力是阻碍运动的力。

根据牛顿第二定律,合力等于质量乘以加速度,即 F = ma。

考虑到摩擦力的影响,我们可以得到 F - f = ma,其中 F 是施在物体上的力,f 是摩擦力。

代入已知数据:30N - 3N = 3kg * a解得加速度 a = 9.0m/s²。

第三题问题:一个质量为10kg的物体处于自由下落状态,求它的重力加速度。

答案:根据牛顿第二定律,重力等于质量乘以重力加速度,即 F = mg。

根据题目的描述,物体处于自由下落状态,没有受到任何其他力的影响,所以重力就是唯一的力。

代入已知数据:F = 10kg * g解得重力加速度g ≈ 9.8m/s²。

......这里仅列举了几个例子,更多高中物理力学题目及其答案可以参考相关教材或习题集。

通过不断练习这些题目,你将能够更好地掌握物理力学知识,提升你的解题能力。

高中物理力学压轴题及解析

高中物理力学压轴题及解析

高中物理力学压轴题及解析高中物理力学是高中阶段物理课程的重要组成部分,压轴题往往考察学生对力学知识的综合运用能力。

本文将针对高中物理力学压轴题,给出详细的题目及解析,帮助同学们巩固力学知识,提高解题能力。

一、高中物理力学压轴题题目:一质量为m的小车,在水平地面上受到一恒力F作用,从静止开始加速运动。

已知小车所受阻力与速度成正比,比例系数为k。

求小车在力F作用下的加速度a与速度v的关系。

二、解析1.首先,根据题目描述,小车受到的合力F合= F - kv,其中F为恒力,kv为阻力。

2.根据牛顿第二定律,合力等于质量乘以加速度,即F合= ma。

3.将合力表达式代入牛顿第二定律,得到ma = F - kv。

4.整理得到加速度a的表达式:a = (F - kv) / m。

5.由于小车从静止开始加速,可以使用初速度为0的匀加速直线运动公式v = at,将加速度a代入,得到v = (F - kv)t / m。

6.进一步整理得到速度v与时间t的关系:v = (F/m)t - (k/m)t^2。

7.由于要求速度v与加速度a的关系,可以将v对a求导,得到dv/da = (F/m) - 2(k/m)t。

8.令dv/da = 0,求得极值点,即t = F / (2km)。

将此值代入v的表达式,得到v = F^2 / (4km)。

9.因此,小车在力F作用下的加速度a与速度v的关系为:a = F / m - 2k/m * v。

三、总结通过对本题的解析,我们可以发现,解决这类力学压轴题的关键在于熟练运用牛顿第二定律、运动学公式,以及掌握阻力与速度成正比的关系。

此外,同学们在解题过程中要注意合理运用数学知识,如求导、求极值等,以提高解题速度和准确度。

注意:本文所提供的题目及解析仅供参考,实际考试题目可能有所不同。

高考物理模拟试题力学压轴题和高中物理初赛力学模拟试题大题详解

高考物理模拟试题力学压轴题和高中物理初赛力学模拟试题大题详解

1、如图6所示,宇宙飞船在距火星表面H高度处作匀速圆周运动,火星半径为R 。

当飞船运行到P点时,在极短时间内向外侧点喷气,使飞船获得一径向速度,其大小为原来速度的α倍。

因α很小,所以飞船新轨道不会与火星表面交会。

飞船喷气质量可以不计。

(1)试求飞船新轨道的近火星点A的高度h近和远火星点B的高度h远;(2)设飞船原来的运动速度为v0,试计算新轨道的运行周期T 。

2、有一个摆长为l的摆(摆球可视为质点,摆线的质量不计),在过悬挂点的竖直线上距悬挂点O的距离为x处(x<l)的C点有一固定的钉子,如图所示,当摆摆动时,摆线会受到钉子的阻挡.当l一定而x取不同值时,阻挡后摆球的运动情况将不同.现将摆拉到位于竖直线的左方(摆球的高度不超过O点),然后放手,令其自由摆动,如果摆线被钉子阻挡后,摆球恰巧能够击中钉子,试求x的最小值.3、如图所示,一根长为L的细刚性轻杆的两端分别连结小球a和b,它们的质量分别为m a和m b. 杆可绕距a球为L/4处的水平定轴O在竖直平面内转动.初始时杆处于竖直位置.小球b几乎接触桌面.在杆的右边水平桌面上,紧挨着细杆放着一个质量为m的立方体匀质物块,图中ABCD为过立方体中心且与细杆共面的截面.现用一水平恒力F作用于a球上,使之绕O轴逆时针转动,求当a转过角时小球b速度的大小.设在此过程中立方体物块没有发生转动,且小球b与立方体物块始终接触没有分离.不计一切摩擦.4、把上端A封闭、下端B开口的玻璃管插入水中,放掉部分空气后放手,玻璃管可以竖直地浮在水中(如下图).设玻璃管的质量m=40克,横截面积S=2厘米2,水面以上部分的长度b=1厘米,大气压强P0=105帕斯卡.玻璃管壁厚度不计,管内空气质量不计.(1)求玻璃管内外水面的高度差h.(2)用手拿住玻璃管并缓慢地把它压入水中,当管的A端在水面下超过某一深度时,放手后玻璃管不浮起.求这个深度.(3)上一小问中,放手后玻璃管的位置是否变化如何变化(计算时可认为管内空气的温度不变)5、一个光滑的圆锥体固定在水平的桌面上,其轴线沿竖直方向,母线与轴线之间的夹角θ=30°(如右图).一条长度为l的绳(质量不计),一端的位置固定在圆锥体的顶点O处,另一端拴着一个质量为m的小物体(物体可看作质点,绳长小于圆锥体的母线).物体以速率v绕圆锥体的轴线做水平匀速圆周运动(物体和绳在上图中都没画出).6、一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图所示.绳的P端拴在车后的挂钩上,Q端拴在物体上.设绳的总长不变,绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳长为H.提升时,车加速向左运动,沿水平方向从A经过B驶向C.设A到B的距离也为H,车过B点时的速度为v B.求在车由A 移到B的过程中,绳Q端的拉力对物体做的功.7、在两端封闭、内径均匀的直玻璃管内,有一段水银柱将两种理想气体a和b隔开.将管竖立着,达到平衡时,若温度为T,气柱a和b的长度分别为l a和l b;若温度为T',长度分别为l抋和l抌.然后将管平放在水平桌面上,在平衡时,两段气柱长度分别为l攁和l攂.已知T、T挕8、如图所示,质量为Kg的小车放在光滑的水平面上,其中M91圆弧,BC部分水平且不AB部分为半径R=的光滑4光滑,长为L=2m,一小物块质量m=6Kg,由A点静止释放,刚好滑到C点静止(取g=102m),求:s①物块与BC间的动摩擦因数②物块从A滑到C过程中,小车获得的最大速度9、如图所示,在光滑水平面上放一质量为M、边长为l的正方体木块,木块上搁有一长为L的轻质光滑棒,棒的一端用光滑铰链连接于地面上O点,棒可绕O点在竖直平面内自由转动,另一端固定一质量为m的均质金属小球.开始时,棒与木块均静止,棒与水平面夹角为α角.当棒绕O点向垂直于木块接触边方向转动到棒与水平面间夹角变为β的瞬时,求木块速度的大小.10 、如图所示,一半径为R的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.11、如图所示,一木块从斜面AC的顶端A点自静止起滑下,经过水平面CD后,又滑上另一个斜面DF,到达顶端F点时速度减为零。

高考物理力学模拟试题附答案

高考物理力学模拟试题附答案

5 1 t /sx /cm 2 3 4 6 7 80 2 -2甲乙 图31 -1 高考物理力学模拟试题一、选择题:每小题4分1.杭州高三月考物体沿一直线运动,在t 时间内通过的路程为S ,它在S/3处的速度为v 1,在中间时刻t/2时的速度为v 2,则v 1和v 2的关系为( ) A .当物体作匀加速直线运动时,v 1>v 2 B .当物体作匀减速直线运动时,v 1>v 2C .当物体作匀速直线运动时,v 1=v 2D .当物体作匀减速直线运动时,v 1<v 22.如图1所示,A 、B 两质量相等的长方体木块放在光滑的水平面上,一颗子弹以水平速度v 先后穿过A 和B(此过程中A 和B 没相碰)。

子弹穿过B 后的速度变为2v /5 ,子弹在A 和B 内的运动时间t A : t B =1:2,若子弹在两木块中所受阻力相等,则:( )A .子弹穿过B 后两木块的速度大小之比为1:2 B .子弹穿过B 后两木块的速度大小之比为1:4C .子弹在A 和B 内克服阻力做功之比为3:4D .子弹在A 和B 内克服阻力做功之比为1:23.某物理学博士的毕业论文是“声速与空气压强和空气密度的关系”。

他在文中给出了四个可能的关系式,其中只有一个是正确的,式中k 为比例常数无单位,P 为空气压强,ρ为空气密度。

正确的关系式是……………………( ) A .ρPkPB .PkPρC ρPkD .Pkρ4.如图2所示,弹簧下端悬一滑轮,跨过滑轮的细线两端系有A 、B 两重物, mB=2kg ,不计线、滑轮质量及摩擦,则A 、B 两重物在运动过程中,弹簧的示数可能为:(g=10m/s2)( ) A .40N B .60N C .80N D .100N5.如图3所示,四个完全相同的弹簧都呈竖直,它们的上端受到大小都为F 的拉力作用,而下端的情况各不相同;a 中弹簧下端固定在地面上,b 中弹簧下端受大小也为F 的拉力作用, c 中弹簧下端拴一质量为m 的物块且在竖直向上运动,d 中弹簧下端拴一质量为2m 的物块且在竖直方向上运动。

高考物理力学压轴预测题(含答案)

高考物理力学压轴预测题(含答案)

高三物理力学压轴预测题及答案1.(16分)如图所示,水平传送带沿顺时针匀速转动,在传送带上的P 点放一质量m =1kg 的静止小物块。

小物块随传送带运动到A 点后水平抛出,恰好无碰撞的沿圆弧切线从B 点进入竖直光滑圆弧轨道运动。

B 、C 为圆弧的两端点,其连线水平。

小物块离开C 点后恰能无碰撞的沿固定斜面向上运动,经0.8s 通过D 点。

己知小物块与传送带间的动摩擦因数μ1=0.3,圆弧半径R =1.0m ,圆弧对应的圆心角θ=1060,轨道最低点为O ,A 点距水平面的高度h =0.8m ,小物块与斜面间的动摩擦因数μ2=13,重力加速度g 取10m/s 2。

试求:(1)小物块离开A 点的水平初速度v 1;(2)若传送带的速度为5m/s ,则P A 间的距离是多大?(3)小物块经过O 点时对轨道的压力; (4)斜面上CD 间的距离。

2.(15分)如图所示,水平传送带的右端与竖直面内的用光滑钢管弯成的“9”形固定轨道相接,钢管内径很小。

传送带的运行速度为v 0=6m/s ,将质量m =1.0kg 的可看作质点的滑块无初速地放到传送带A 端,传送带长度为L =12.0m ,“9”字全高H =0.8m ,“9”字上半部分圆弧半径为R =0.2m ,滑块与传送带间的动摩擦因数为μ=0.3,重力加速g =10m/s 2,试求:(1)滑块从传送带A 端运动到B 端所需要的时间;(2)滑块滑到轨道最高点C 时对轨道作用力的大小和方向;(3)若滑块从“9”形轨道D 点水平抛出后,恰好垂直撞在倾角θ=45°的斜面上P 点,求P 、D 两点间的竖直高度 h (保留两位有效数字)。

3.(16分)如图所示,某货场利用固定于地面的、半径R=1.8m的四分之一圆轨道将质量为m1=10 kg的货物(可视为质点)从高处运送至地面,已知当货物由轨道顶端无初速滑下时,到达轨道底端的速度为5m/s.为避免货物与地面发生撞击,在地面上紧靠轨道依次排放两块完全相同的木板A、B,长度均为l=2m,质量均为m2=20 kg,木板上表面与轨道末端相切.货物与木板间的动摩擦因数为μ=0.4,木板与地面间的动摩擦因数μ2=0.1.(最大静摩擦力与滑动摩擦力大小相等,取g =10 m/s2)求(1)货物沿圆轨道下滑过程中克服摩擦力做的功;(2)通过计算判断货物是否会从木板B的右端滑落?若能,求货物滑离木板B右端时的速度;若不能,求货物最终停在B板上的位置。

高考物理力学大题习题20题Word版含答案及解析

高考物理力学大题习题20题Word版含答案及解析

高考物理力学大题习题20题1.一长木板在光滑水平地面上匀速运动,在t=0时刻将一物块无初速轻放到木板上,此后长木板运动的速度﹣时间图象如图所示.已知长木板的质量M=2kg ,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.取g=10m/s 2,求:(1)物块的质量m ;(2)这一过程中长木板和物块的内能增加了多少? 【答案】(1)4kg (2)2211()24J 22Q Mv M m v =-+=共 【解析】(1)长木板和物块组成的系统动量守恒:)Mv M m v 共(=+ 将2M kg =, 6.0/v m s =, 2.0?/v m s =共,代入解得:4m kg = 。

(2)设这一过程中长木板和物块的内能增加量为Q ,根据能量守恒定律:2211()24J 22Q Mv M m v =-+=共 点睛:解决本题的关键理清物块和木板的运动规律,结合牛顿第二定律和运动学公式进行求解,知道图线的斜率表示加速度,图线与时间轴围成的面积表示位移。

2.如图所示的水平地面。

可视为质点的物体A 和B 紧靠在一起,静止于b 处,已知A 的质量为3m ,B 的质量为m 。

两物体在足够大的内力作用下突然沿水平方向左右分离。

B 碰到c 处的墙壁后等速率反弹,并追上已停在ab 段的A ,追上时B 的速率等于两物体刚分离时B 的速率的一半。

A 、B 与地面的动摩擦因数均为μ,b 与c 间的距离为d ,重力加速度为g 。

求:(1)分离瞬间A 、B 的速率之比; (2)分离瞬间A 获得的动能。

【答案】(1) (2)【解析】【详解】(1)分离瞬间对A 、B 系统应用动量守恒定律有:解得:;(2) A 、B 分离后,A 物体向左匀减速滑行,对A 应用动能定理:对B 从两物体分离后到追上A 的过程应用动能定理:两物体的路程关系是分离瞬间A 获得的动能联立解得:。

3.甲、乙两车同时同向从同一地点出发,甲车以v1=16 m/s 的初速度,a1=-2 m/s 2的加速度做匀减速直线运动,乙车以v2=4 m/s 的初速度,a2=1 m/s 2的加速度做匀加速直线运动,求两车再次相遇前两车相距最大距离和再次相遇时两车运动的时间。

高考物理力学压轴题经典

高考物理力学压轴题经典

10%,太阳将离开主序垦阶段而转入红巨
星的演化阶段。为了简化,假定目前太阳全部由电子和
1 1
H
核组成。
(1)为了研究太阳演化进程,需知道目前太阳的质量 M。已知地球半径 R=6.4×106 m,地球质量 m=6.0×1024
kg,日地中心的距离 r=1.5×1011 m,地球表面处的重力加速度 g=10 m/s2,1 年约为 3.2×107 秒。试估算目前
高考物理压轴题力学 Agzmols
1.太阳现正处于主序星演化阶段。它主要是由电子和ຫໍສະໝຸດ 1 1H、42
He
等原子核组成。维持太阳辐射的是它内部的核
聚变反应,核反应方程是
2e+4
1 1
H

4 2
He
+释放的核能,这些核能最后转化为辐射能。根据目前关于恒星演
化的理论,若由于聚变反应而使太阳中的
1 1
H
核数目从现有数减少
第3页 共4页
高考物理压轴题力学 Agzmols
7.如图所示,固定的凹槽水平表面光滑,其内放置U形滑板N,滑板两端为半径R=0.45m 的 1/4 圆弧面,A
和D分别是圆弧的端点,BC段表面粗糙,其余段表面光滑.小滑块P1 和P2 的质量均为 m,滑板的质量M
=4m.P1 和P2 与BC面的动摩擦因数分别为μ1=0.10 和μ2=0.40,最大静摩擦力近似等于滑动摩擦力.开始
太阳的质量 M。
(2)已知质子质量
mp=1.6726×10-27
kg,
4 2
He
质量
mα=6.6458×10-27
kg,电子质量
me=0.9×10-30
kg,光速
c=3×108 m/s。求每发生一次题中所述的核聚变反应所释放的核能。

高三物理力学模拟试题

高三物理力学模拟试题

高考物理力学模拟试题(二)一、选择题:每小题4分1.如图1所示:一列简谐波向右以8.0 m /s 的速度传播:某一时刻沿波的传播方向上有a 、b 两质点:位移大小相等:方向相同.以下说法正确的是( )A .无论再经过多长时间:a 、b 两质点位移不可能大小相等、方向相反B .再经过0.25s :a 、b 两质点位移第一次大小相等、方向相反C .再经过1.0s :a 、b 两质点位移第一次大小相等、方向相反D .再经过1.5s :a 、b 两质点位移第一次大小相等、方向相反2、从地面上以速率v 1竖直上抛一小球:若运动中受到的空气阻力与小球速率成正比:小球落回地面时速率为v 2,则( )①小球的加速度在上升过程中逐渐减小:在下降过程中也是逐渐减小②小球被抛出时的加速度值最大:落回抛出点时的加速度值最小③小球从抛出到落回地面经历时间是(v 1+v 2)/g ④小球从抛出到落回地面经历时间是g v v /)(212221 A. ①② B. ①②③ C. ①②④ D.①②③3如图2:用相同材料做成的质量分别为m 1、m 2的两个物体中间用一轻弹簧连接。

在下列四种情况下:相同的拉力F 均作用在m 1上:使m 1、m 2作加速运动:①拉力水平:m 1、m 2在光滑的水平面上加速运动。

②拉力水平:m 1、m 2在粗糙的水平面上加速运动。

③拉力平行于倾角为θ的斜面:m 1、m 2沿光滑的斜面向上加速运动。

④拉力平行于倾角为θ的斜面:m 1、m 2沿粗糙的斜面向上加速运动。

以△l 1、△l 2、△l 3、△l 4依次表示弹簧在四种情况下的伸长量:则有 ( )A. △l 2>△l 1B. △l 4>△l 3C. △l 1>△l 3D. △l 2=△l 44.如图3所示:物体从倾斜的传送带的顶端由静止下滑:当传送带静止时:物体下滑的加速度为a 1:下滑到传送带的底端所用的时间为t 1:到底端时的速度为υ1:物体与传送带摩擦生热量为Q 1:当传送带顺时针转动时:物体下滑的加速度为a 2:下滑到传送带的底端所用的时间为t 2:到底端时的速度为υ2:物体与传送带因摩擦生热量为Q 2 :则:A .a 1 >a 2B .t 1 <t 2C .υ1>v 1D .Q 1 <Q 2如图2图1 如图35.如图所示:固定斜面倾角为θ:整个斜面长分为AB 、BC 两段:AB =2BC .小物块P (可视为质点)与AB 、BC 两段斜面间的动摩擦因数分别为1μ,2μ.已知P 由静止开始从A 点释放:恰好能滑动到C 点而停下:那么θ、1μ、2μ间应满足的关系是( )A .32tan 21μμθ+=B . 32tan 21μμθ+= C .212tan μμθ-= D .122tan μμθ-=6.高三月考从离地H高处自由下落小球a :同时在它正下方H 处以速度V0竖直上抛另一小球b :不计空气阻力:有: ( )(1)若V0>gH :小球b 在上升过程中与a 球相遇(2)若V0<gH ,小球b 在下落过程中肯定与a 球相遇(3)若V0=2gH :小球b 和a 不会在空中相遇(4)若V0=gH :两球在空中相遇时b 球速度为零。

2024届高考物理压轴题专项训练:用力学三大观点处理多过程问题(解析版)(共23页)

2024届高考物理压轴题专项训练:用力学三大观点处理多过程问题(解析版)(共23页)

压轴题用力学三大观点处理多过程问题1.用力学三大观点(动力学观点、能量观点和动量观点)处理多过程问题在高考物理中占据核心地位,是检验学生物理思维能力和综合运用知识解决实际问题能力的重要标准。

2.在命题方式上,高考通常会通过设计包含多个物理过程、涉及多个力学观点的复杂问题来考查学生的综合能力。

这些问题可能涉及物体的运动状态变化、能量转换和守恒、动量变化等多个方面,要求考生能够灵活运用力学三大观点进行分析和解答。

3.备考时,学生应首先深入理解力学三大观点的基本原理和应用方法,掌握相关的物理公式和定理。

其次,要通过大量的练习来提高自己分析和解决问题的能力,特别是要注重对多过程问题的训练,学会将复杂问题分解为多个简单过程进行分析和处理。

考向一:三大观点及相互联系考向二:三大观点的选用原则力学中首先考虑使用两个守恒定律。

从两个守恒定律的表达式看出多项都是状态量(如速度、位置),所以守恒定律能解决状态问题,不能解决过程(如位移x,时间t)问题,不能解决力(F)的问题。

(1)若是多个物体组成的系统,优先考虑使用两个守恒定律。

(2)若物体(或系统)涉及速度和时间,应考虑使用动量定理。

(3)若物体(或系统)涉及位移和时间,且受到恒力作用,应考虑使用牛顿运动定律。

(4)若物体(或系统)涉及位移和速度,应考虑使用动能定理,系统中摩擦力做功时应用摩擦力乘以相对路程,动能定理解决曲线运动和变加速运动特别方便。

考向三:用三大观点的解物理题要掌握的科学思维方法1.多体问题--要正确选取研究对象,善于寻找相互联系选取研究对象和寻找相互联系是求解多体问题的两个关键。

选取研究对象后需根据不同的条件采用隔离法,即把研究对象从其所在的系统中抽离出来进行研究;或采用整体法,即把几个研究对象组成的系统作为整体进行研究;或将隔离法与整体法交叉使用。

通常,符合守恒定律的系统或各部分运动状态相同的系统,宜采用整体法;在需讨论系统各部分间的相互作用时,宜采用隔离法;对于各部分运动状态不同的系统,应慎用整体法。

高考物理压轴题分析及求解方法(力学部分)

高考物理压轴题分析及求解方法(力学部分)

高考物理压轴题分析及求解方法一、力学部分【例1】【2017·新课标Ⅲ卷】(20分)如图,两个滑块A 和B 的质量分别为m A =1 kg 和m B =5 kg ,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m =4 kg ,与地面间的动摩擦因数为μ2=0.1。

某时刻A 、B 两滑块开始相向滑动,初速度大小均为v 0=3 m/s 。

A 、B 相遇时,A 与木板恰好相对静止。

设最大静摩擦力等于滑动摩擦力,取重力加速度大小g =10 m/s 2。

求(1)B 与木板相对静止时,木板的速度;(2)A 、B 开始运动时,两者之间的距离。

审题:A 、B 摩擦系数相同,但B 的质量大于A 的质量,故B 对木板的摩擦力大于A 对木板的摩擦力,而木板受地面的摩擦力小于A 、B 对木板摩擦力的合力,故木板先向右加速,后与B 一起减速,而A 先向左减速,后向右加速。

关键:是物理过程分析,只要物理过程清楚了,解题思路就有了。

【解析】(1)滑块A 和B 在木板上滑动时,木板也在地面上滑动。

设A 、B 和木板所受的摩擦力大小分别为f 1、f 2和f 3,A 和B 相对于地面的加速度大小分别是a A 和a B ,木板相对于地面的加、B 速度大小为a 1。

在物块B 与木板达到共同速度前有① ② ③由牛顿第二定律得 ④ ⑤ ⑥设在t 1时刻,B 与木板达到共同速度,设大小为v 1。

由运动学公式有对B :⑦ 对木板:⑧联立①②③④⑤⑥⑦⑧式,代入已知数据得⑨ 10.4t s =(2)在t 1时间间隔内,B 相对于地面移动的距离为201112B B S v t a t =-⑩11A f m g μ=21B f m g μ=32()A B f m m m g μ=++1A A f m a =2B B f m a =2131f f f ma --=101B v v a t =-111v a t =1 1 m/s v =设在B 与木板达到共同速度v 1后,木板的加速度大小为a 2,对于B 与木板组成的体系,由牛顿第二定律有⑪由①②④⑤式知,A B a a =,再由⑦⑧可知,B 与木板达到共同速度时,A 的速度大小也为v 1,但运动方向与木板相反。

高考和自主招生物理力学模拟压轴题3

高考和自主招生物理力学模拟压轴题3

1、如图4—3所示,一根长为l 的细刚性轻杆的两端分别连结小球a 和b ,它们的质量分别为m a 和m b .杆可绕距a 球为14l 处的水平定轴O 在竖直平面内转动.初始时杆处于竖直位置,小球b 几乎接触桌面.在杆的右边水平桌面上,紧挨着细杆放着一个质量为m 的立方体匀质物块,图中ABCD 为过立方体中心且与细杆共面的截面.现用一水平恒力F 作用于a 球上,使之绕O 轴逆时针转动,求当a 转过α角时小球b 速度的大小,设在此过程中立方体物块没有发生转动,且小球b 与立方体物块始终接触没有分离.不计一切摩擦.解析:如图4—4所示,用b υ表示a 转过α。

角时b 球速度的大小,υ表示此时立方体速度的大小,则有cos b υαυ=由于b 与正立方体的接触是光滑的,相互作用力总是沿 水 平方向,而且两者在水平方向的位移相同,因此相互作用的作用力和反作用力做功大小相同,符号相反,做功的总和为0.因此在整个过程中推力F 所做的功应等于球a 、b 和正立方体机械能的增量.现用a υ表示此时a 球速度的大小,因为a 、b 角速度相同,14Oa l =,034Ob l =,所以得13a b υυ= 根据功能原理可知22211331sin (cos )(cos )42442442a a ab b b l l l l l F m m g m m g m αυαυαυ⋅=--++-+ 将①、②式代人③可得22211331sin ()(cos )(cos )(cos )42442442a b a b b b b l l l l l F m m g m m g m αυαυαυα⋅=--++-+ 解得s )b υ=2、如图预解17-8所示,在水平桌面上放有长木板C ,C 上右端是固定挡板P ,在C 上左端和中点处各放有小物块A 和B ,A 、B 的尺寸以及P 的厚度皆可忽略不计,A 、B 之间和B 、P 之间的距离皆为L 。

动力学与运动学综合问题(解析版)-2023年高考物理压轴题专项训练(新高考专用)

动力学与运动学综合问题(解析版)-2023年高考物理压轴题专项训练(新高考专用)

压轴题01动力学与运动学综合问题目录一,考向分析 (1)二.题型及要领归纳 (1)热点题型一结合牛顿定律与运动学公式考察经典多过程运动模型 (1)热点题型二动力学图像的理解与应用 (4)热点题型三结合新情景考察动力学观点 (7)类型一以生产生活问题为情境构建多过程多运动问题考动力学观点 (7)类型二以问题探索情景构建物理模型考动力学观点 (9)类型三以科研背景为题材构建物理模型考动力学观点 (10)三.压轴题速练 (11)一,考向分析1.本专题是动力学方法的典型题型,包括动力学两类基本问题和应用动力学方法解决多运动过程问题。

高考中既可以在选择题中命题,更会在计算题中命题。

2023年高考对于动力学的考察仍然是照顾点。

2.通过本专题的复习,可以培养同学们的审题能力,分析和推理能力。

提高学生关键物理素养.3.用到的相关知识有:匀变速直线运动规律,受力分析、牛顿运动定律等。

牛顿第二定律对于整个高中物理的串联作用起到至关重要的效果,是提高学生关键物理素养的重要知识点,因此在近几年的高考命题中动力学问题一直都是以压轴题的形式存在,其中包括对与高种常见的几种运动形式,以及对于图像问题的考察等,所以要求考生了解题型的知识点及要领,对于常考的模型要求有充分的认知。

二.题型及要领归纳热点题型一结合牛顿定律与运动学公式考察经典多过程运动模型多过程问题的处理(1)不同过程之间衔接的关键物理量是不同过程之间的衔接速度。

(2)用好四个公式:v=v0+at,x=v0t+12at2,v2-v20=2ax,x=v+v02t。

(3)充分借助v-t图像,图像反映物体运动过程经历的不同阶段,可获得的重要信息有加速度(斜率)、位移(面积)和速度。

①多过程v-t图像“上凸”模型,如图所示。

特点:全程初、末速度为零,匀加速直线运动过程和匀减速过程平均速度相等。

速度与时间关系公式:v=a1t1,v=a2t2得a 1a 2=t 2t 1速度与位移关系公式:v 2=2a 1x 1,v 2=2a 2x 2得a 1a 2=x 2x 1平均速度与位移关系公式:x 1=vt 12,x 2=vt 22得t 1t 2=x 1x 2②多过程v -t 图像“下凹”模型,如图所示。

高考物理力学压轴复习题(含答案)

高考物理力学压轴复习题(含答案)

本文由一线教师精心整理/word可编辑高考物理力学压轴复习题(含答案)
高考物理力学压轴复习题
高考物理力学压轴复习题参考答案
高考物理力学解题思路
(1)审清题意,弄清物理过程,明确研究对象,画好两图:物理过程示意图和研究对象受力分析图。

(2)对涉及求速度和位移的问题,先从能量观点入手分析往往会带来方便:即对各个力所做的功,物体速度的变化情况作出分析,如果研究对象是一系统,且只有重力(或弹力)做功,则应用机械能守恒定律解;如果研究对象是一物体,且还有其他力做功,则应用动能定理解。

(3)对涉及求时间和速度的问题,先从动量和冲量观点入手分析较方便:即对各个力的冲量,物体动量的变化情况作出分析,如果研究对象是一系统,且所受合力F=O,则应用动量守恒定律解;如果研究对象是一物体,且F&ne;O,则应用动量定理解。

(4)对涉及求加速度和时间的问题,往往先从牛顿运动定律入手分析,即对研究对象分析其运动状态和受力情况后,选准物理规律,列出方程解之。

选用上述三把金钥匙解题是相对的,要视具体问题来定,有时需同时用之,有时可分别用之,这就需要通过不断总结经验,才能深刻领会、灵活运用。

1 / 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、如图6所示,宇宙飞船在距火星表面H高度处作匀速圆周运动,火星半径为R。

当飞船运行到P 点时,在极短时间内向外侧点喷气,使飞船获得一径向速度,其大小为原来速度的a倍。

因a很小,所以飞船新轨道不会与火星表面交会。

飞船喷气质量可以不计。

(1 )试求飞船新轨道的近火星点A的高度h近和远火星点B的高度h远;(2 )设飞船原来的运动速度为V0,试计算新轨道的运行周期T。

2、有一个摆长为丨的摆(摆球可视为质点,摆线的质量不计),在过悬挂点的竖直线上距悬挂点0的距离为x处(x v l)的C点有一固定的钉子,如图所示,当摆摆动时,摆线会受到钉子的阻挡•当丨一定而x取不同值时,阻挡后摆球的运动情况将不同•现将摆拉到位于竖直线的左方(摆球的高度不超过0点),然后放手,令其自由摆动,如果摆线被钉子阻挡后,摆球恰巧能够击中钉子,试求x的最小值.3、如图所示,一根长为L的细刚性轻杆的两端分别连结小球a和b,它们的质量分别为ma球为L/4处的水平a和m b.杆可绕距定轴0在竖直平面内转动.初始时杆处于竖直位置. 小球b几乎接触桌面•在杆的右边水平桌面上,紧挨着细杆放着一个质量为m的立方体匀质物块,图中ABCD为过立方体中心且与细杆共面的截面.现用一水平恒力F作用于a球上,使之绕O轴逆时针转动,求当a转过角时小球b速度的大小.设在此过程中立方体物块没有发生转动,且小球b与立方体物块始终接触没有分离.不计一切摩擦. -=4、把上端A封闭、下端B开口的玻璃管插入水中,放掉部分空气后放手,玻璃管可以竖直地浮在水中(如下图).设玻璃管的质量m=40克,横截面积S=2厘米2,水面以上部分的长度b=1厘米,大气压强P0=10 5帕斯卡.玻璃管壁厚,当管的A端在水面下超过某一深度时,放手后玻璃管度不计(1)求玻璃管内外水面的高度差h.(2)用手拿住玻璃管并缓慢地把它压入水中不浮起.求这个深度.(3)上一小问中,放手后玻璃管的位置是否变化?如何变化?(计算时可认为管内空气的温度不变)5、一个光滑的圆锥体固定在水平的桌面上,其轴线沿竖直方向,母线与轴线之间的夹角B =30 °如右图).一条长度为I的绳(质量不计),一端的位置固定在圆锥体的顶点O处,另一端拴着一个质量为m的小物体(物体可看作质点,绳长小于圆锥体的母线).物体以速率v绕圆锥体的轴线做水平匀速圆周运动(物体和绳在上图中都没画).出⑴当V■二时'求绳对物低的拉力*当丫-、弓吝1R二求绳对物体的拉力.6、一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图所示.绳的P端拴在车后的挂钩上,Q端拴在物体上.设绳的总长不变,绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳长为H.提升时,车加速向左运动,沿水平方向从A经过B驶向C.设A到B的距离也为H,车过B点时的速度为vB.求在车由A移到B 的过程中,绳Q端的拉力对物体做的功.7、在两端封闭、内径均匀的直玻璃管内,有一段水银柱将两种理想气体a和b隔开.将管竖立着达到平衡时,若温度为T,气柱a和b的长度分别为l a和l b;若温度为T',长度分别为I抋和I抌.然后将管平放在水平桌面上,在平衡时,两段气柱长度分别为I攁和I攂.已知T、T挕■『1 1 V h ZJ_' % * J b ' 11 J m ■l「ii8、如图所示,质量为M 9Kg的小车放在光滑的水平面上,其中AB部分为半径R=0.5m 的光滑1圆弧,BC部分水平且不光滑,长为L=2m,一小物块质量m=6Kg,由A点静止释放,刚好滑到C 4点静止(取g=10 mS2),求:①物块与BC间的动摩擦因数②物块从A滑到C过程中,小车获得的最大速度9、如图所示,在光滑水平面上放一质量为M、边长为l的正方体木块,木块上搁有一长为L的轻质光滑棒,棒的一端用光滑铰链连接于地面上0点,棒可绕0点在竖直平面内自由转动,另一端固定一质量为m的均质金属小球.开始时,棒与木块均静止,棒与水平面夹角为角.当棒绕O点向垂直于木块接触边方向转动到棒与水平面间夹角变为的瞬时,求木块速度的大小.10、如图所示,一半径为 R 的金属光滑圆环可绕其竖直直径转动•在环上套有一珠子•今逐渐增大圆环的转动角速度3,试求在不同转动速度下珠子能静止在环上的位置•以珠子所停 处的半径与竖直直径的夹角 e 表示.11、如图所示,一木块从斜面 AC 的顶端A 点自静止起滑下,经过水平面 CD 后,又滑上另一个斜面 DF , 到达顶端F 点时速度减为零。

两斜面倾角不同,但木块与所有接触面间的摩擦系数相同,若 AF 连线与水平面夹角为试求木块与接触面间的滑动摩擦系数卩。

任意点从静止开始下滑.1•若小滑块从开始下滑到脱离滑道过程中,在两个圆弧上滑过的弧长相等,则小滑块开始下滑时 应在圆弧A0上的何处?(用该处到 01的连线与竖直线的夹角表示)2•凡能在0点脱离滑道的小滑块,其落水点到 02的距离如何?详解: 1参考解答:对圆轨道应用动力学,有: V 0 = JGM< R H12.图中的AOB 是游乐场中的滑道模型,它位于竖直,R 的1/4圆周连接而成, 它们的圆心。

1、。

2与两圆弧的连接点 0在同一竖直线上. 02 B 沿水池的水面.一小滑块可由弧A0的则椭圆轨道上P点的速度:V P = yj v o ( V o)2=、;1 2J GM②X R H对P T A过程,机械能守恒:1 m v P GmMR H 1 2 GmM m V A -2 r A比较P、A两点,用开普勒第二定律(此处特别注意, P点的速度取垂直矢径的分速度)v o r p = v A r A解①②③④四式可得:R H rA = ■1同理,对P和B用能量关系和开普勒第二定律,可得:R H r B = ------------1椭圆的长半轴:a=宁最后对圆轨道和椭圆轨道用开普勒第三定律可得椭圆运动的周期。

竹」HR」HR〒2(RH)答: h 近= ,h 远= ;T = (1 1 V。

'2.参考解答摆线受阻后在一段时间内摆球作圆周运动,若摆球的质量为m,则摆球受重力mg和摆线拉力T的作用,设在这段时间内任一时刻的速度为V,如图预解20-5所示。

有方程式用表示此时摆线与重力方向之间的夹角,则T mg cos2mv(1)运动过程中机械能守恒,令取O点为势能零点,则有关系1 2 mgl cos mv x表示摆线在起始位置时与竖直方向的夹角, mg[x (I x)cos )] (2)摆受阻后,如果后来摆球能击中钉子,则必定在某位置时摆线开始松1hI m ;J—■V V。

,摆线与竖直线的弛,此时T =o,此后摆球仅在重力作用下作斜抛运动。

设在该位置时摆球速度夹角。

,由式(1 )得V:g(l x)cos o代入(2 )式,求出(3)2I cos 3(x l)cos 。

2x (4) 要求作斜抛运动的摆球击中C点,则应满足下列关系式:(I x)sin o V o cos o t,(I x)cos o V o s in o t 1gt22y(5)(6)利用式(5)和式(6)消去t,得到(7)2g(ix)sin 2 2cos o由式(3 )、( 7)得到 cos 代入式(4),求出 arccos x(2.3) l -3 arccos - 2l (8)(9)越大,cos 越小,x 越小, 最大值为 /2,由此可求得x 的最小值: x(2 , 3) , 3l ,所以 x (2.3 3)t 0.4641 (10) 3..参考答案:如图所示,用 v b 表示a 转过 角时b 球速度的大小,v 表示此时立方体速度的大小,则有 v b cos v ( 1) 由于b 与正立方体的接触是光滑的,相互作用 力总是沿水平方向,而且两者在水平方向的位移相 同,因此相互作用的作用力和反作用力做功大小相 同,符号相反,做功的总和为 o •因此在整个过程 中推力F 所做的功应等于球a 、b 和正立方体机械 能的增量.现用 v a 表示此时 a 球速度的大小,因 为a 、b 角速度相同, Oa 1丄1,Ob 4 3I, 以得 V a 13v b(2) 根据功能原理可知 F -sin 丄 m a v 4 2 m a g l cos 4 mbV b m b gcos4mv2(3)将(1 )、(2) 式代入可得 l F sin 41 'a 5v b解得V bm a g l cos 42 ^bV b m b g3l3l cos 41m(v b cos )9l F sinm a 3m b g 1 cos2m a 18m b 18mcos4. 玻璃管A端浮在水面上方时,管受力平衡.设管中空气压强为P1,则管所受内外空气压力之差(竖直方向)是f=(P 1-P0)S0(a)用P表示水的密度,P1=P0+ pgh, (b)则: f= pghs. (c)f应与管所受重力平衡:pghS=mg. (d)故!h = —^ tejpS代導h= 譽CO斗托=Q2米=20哩米,lt> x 2 xlO(2)管竖直没入水中后,设管A端的深度为H,管内气柱长度为I,则A端所在处水内压强为:P A=P O+H pg, (f)管内气压,由管内水面在水下的深度可知:为:P2=P O+H pg+i pg. (g)管所受两者压力之差(竖直方向)为:r =(P2-P A)S=I pgs. (h)随着管的下降,管内水面也必下降,即管内水面在水下的深度增大〔若管内水面的深度不变(或减小),则P2不变(或减小),而因管A端的下降,管内空气的体积却减小了,这与玻-马定律不符〕.因此,p2增大,1减小,故f f减小.当管A端到达某一深度H0时,f f与管所受重力相等,超过这一深度后,f f小于重力,放手后管不浮起.由此,当H=H °时,f f=l pgS=mg, (i)-5- 3这时,由玻-马定律:P2IS=P 1(b+h)S. (k)即|纵「十眄耐三閻斗=仙+斗呼)-O H斗)「pS pS pS pS瞰Hj -代入数值后H n⑶由上一小问解答的分析可知,当管A 端的深度超过H 0时,f ' <mg.故放手后管的位置要变化 将自行下沉.5、题目要求考生说明每问解法的根据.物体做水平匀速圆周运动有两种可能:一种是物体与锥体表面 接触(见图1); 一种是物体与锥体表面不接触(见图2).当接触时,物体受力如图1所示,T 是绳对物体的拉力,N 是支持力,mg 是重力.物体与锥面间无摩擦 将力沿水平方向和竖直方向分解,按牛顿定律得:V sTsm G-Ncosfi - m ------------- (町Tcos 0+Nsin 0=mg.(b )由(a )、(b )两式消去T,可得N 跟v 的关系如下:在日怡定后小越大tN 就越小”当审=鷲/肘亦=0.眷兀表示这个■趣率,并将B =30 °代入可得因为N 是支持力,最小等于0,所以当v>v b 时,物体不再与锥面接触+三mg1 +症 ---------- ni!>.6或:T=1.03mg.㈢当¥ =为、「二叫所氏物体与锥面不樹虬这时物体只受重力和绳子拉力作用(如图2所示).用 表示绳与圆锥体轴线之间的夹角 ,将力沿水平方向和竖直方向分解,按牛顿定律得:v aTf :in a - tn --- --- f(d jIsm aTcos =mg. (e)*因为VI"所以物体弓锥面橫鯉,由(町、⑹式-gl⑴1V-将¥=石0代人⑷式「由{山*何两式消去m 可衞2T 2-3mgT-2m 2g 2=0解此方程,取合理值,得:T=2mg.6、设绳的P 端到达B 处时,左边绳与水平地面所成夹角为B ,物体从井底上升的高度为 h,速度为v,所求的功为W,则:-丄十机曲.(a)因绳总长不变,所以:h 唸H沏V=V B COS 0. (c)将(b)、(c)两式代入(a)式,得:w- mvi CM 2 6 +1)H.2 31HE 为!6 = -j(d)町得:1 一 4评分说明 全题13分.列出(a)式的,给3分.列出(b)式的潍3分.列出(c)式的给5分.列出(d)式的,给1分.最后结 果正确的,再给1分.7、对于a 段气体,有:压强关系有:Pb-Pa=P 抇b-p 抇a ,(e)Pa=P b. (f)由以上各式可得:T V r; 「叮 K'TT i,对于b 段气体,有:或:1山 U.TT.Tv=mu重力对小球、轻杆、木块组成的系统做功,所以在上述过程中机械能守恒:12 1 2,亠人,— ■ 2mgL(sin sin ) mgL(sin sin )=2mv m 严综合上述得v = ] {而厂亦^10[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为 珠子做圆周运动的向心力,其大小为: F = mg tg 0.珠子做圆周运动的半径为 r = R sin 0.根据向心力公式得 F = mg tg 0 = m w 2R sin 0, 可得mgR 2cos ,arccos g 2 解得 R 2 .11 .解: 如图所示,A T F 过程重力所做的功为: W G mgh AG摩擦阻力所做功为:W f [ (mg cos ) S ACmgS cD (mg cos ) S DF ]8 •解:由A 点滑到C 点,物块静止,由于系统水平方向动量守恒, 少转化为热能。

相关文档
最新文档