深度学习介绍 ppt课件

合集下载

深度学习介绍 ppt课件

深度学习介绍 ppt课件

自编码器的建立
建立AutoEncoder的方法是:
对于m个数据的输入,有:
Code编码:使用非线性激活函数,将维输入数据映射到维隐含层(隐含节点表示特 征)
其中W是一个的权重矩阵,b是一个d'维的偏移向量 Decode解码:通过反向映射,对映射后的数据进行重建
hi
yi
SAE网络每一次训练输入都会得到映射后的 与解码后的 。通过对代价函数的最优
深层带来的好处
为什么采用层次网络
预训练与梯度消失现象
主要内容
自编码器结构
单层自动编码器网络(AutoEncoder)实质上是一个三层的反向传播神经网络。它逐 层采用无监督学习的方式,不使用标签调整权值,将输入映射到隐含层上,再经过反 变换映射到输出上,实现输入输出的近似等价。
X1 X2 X3 X4 X5 +1
RBM网络有几个参数,一个是可视层与隐含 层之间的权重矩阵,一个是可视节点的偏移 量b,一个是隐含节点的偏移量c,这几个参 数决定了RBM网络将一个m维的样本编码成 一个什么样的n维的样本。
受限玻尔兹曼机
RBM介绍

RBM训练
一般地,链接权重Wij可初始化为来自正态分布N(0,0.01)的随机数,隐 单元的偏置cj初始化为0; 对于第i个可见单元,偏置bj初始化为log[pi/(1-pi)] 。pi表示训练样本中 第i个特征处于激活状态所占的比率 学习率epsilon至关重要,大则收敛快,但是算法可能不稳定。小则 慢。为克服这一矛盾引入动量,使本次参数值修改的方向不完全由当 前样本似然函数梯度方向决定,而是上一次参数值修改方向与本次梯 度方向的结合可以避免过早的收敛到局部最优点
激活函数
y f (x)

《机器学习与深度学习》PPT课件讲义

《机器学习与深度学习》PPT课件讲义

训练神经元网络 -- Back Propagation
梯度下降迭代算法
输出层误差: δki 隐含层误差: smi
BP 算法
初始化参数 θ 两阶段算法: Two-Pass
前向 Forward-Pass: 给定参数,计算输出值 后向 Backward-Pass: 计算输出层误差, 计算隐含层误差,更新
• 一个BN 是一个由随机变量 组成的有向非循环图
• 一部分变量为可观察已知 变量
• 如何由已知变量推断出非 观察变量的状态
• 调整变量之间连接的参数 优化:最大可能重新生成 观察变量
可信任, 信任什么?
随机的二元单元
(Bernoulli variables)
• 隐含层的神经元的状态 为0或1
• 该神经元激活的概率为 输入层加权和的 sigmoid 函数
什么为最佳匹配?
参数估计方法一: 最小化误差平方和
机器学习背景
RSS()
0
正则化 L2 (Ridge) Regularization
限制参数的大小 , 以避免过拟合
正则化 L1 Regularization (Lasso)
| j | j1...p
No closed form for β 限制参数的大小 , 以避免过拟合
➢ Still Perceptron ➢ 一个特殊的单隐含层网络 ➢ 每个训练案例用于构造一个
特征,该特征用于测量改训 练案例和测试案例的距离 ➢ SVM训练选择自由特征集以 及特征的权重 ➢ 1990-2010 很多让放弃NN, 选择 SVM
深层信任网络(Deep Belief Net,DBN) 是 部分解决了以上问题的神经元网络
小结一个基础的DBN网络

经典深度学习(PPT136页)

经典深度学习(PPT136页)
4th November 2016
美国人工智能战略规划
4th November 2016
美国人工智能研发战略规划
4th November 2016
策略- I : 在人工智能研究领域做长期研发投资
目标:. 确保美国的世界领导地位 . 优先投资下一代人工智能技术
1. 推动以数据为中心的知 识发现技术
. 不是替代人,而是跟人合作,强调人和AI系统之间的互补作用
1. 辅助人类的人工智能技术
• AI系统的设计很多是为人所用 • 复制人类计算,决策,认知
4th November 2016
策略-II: 开发有效的人机合作方法
. 不是替代人,而是跟人合作,强调人和AI系统之间的互补作用
1. 辅助人类的人工智能技术 2. 开发增强人类的AI技术
目标:. 确保美国的世界领导地位 . 优先投资下一代人工智能技术
1. 推动以数据为中心的知识发 现技术
2. 增强AI系统的感知能力
3. 理论AI能力和上限
4. 通用AI 5. 规模化AI系统
6. 仿人类的AI技术 7. 研发实用,可靠,易用的机
器人 8. AI和硬件的相互推动
• 提升机器人的感知能力,更智能的同复 杂的物理世界交互
1. 在人工智能系统广泛使用之前,必须确保系统的安全性 2. 研究创造稳定, 可依靠,可信赖,可理解,可控制的人工智能
系统所面临的挑战及解决办法
1. 提升AI系统 的可解释性和透明度 2. 建立信任 3. 增强verification 和 validation 4. 自我监控,自我诊断,自我修正 5. 意外处理能力, 防攻击能力
1. 推动以数据为中心的知识发 现技术
2. 增强AI系统的感知能力

深度学习基础(PPT36页)

深度学习基础(PPT36页)

CNN的优点
参数减少与权值共享 如下图所示,如果我们有1000x1000(每个隐层神经元都连接图像的每一个像素点),就有 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 = 1 0 1 2个连接,也就是10^12个权值参数。
局部连接网络,每一个节点与上层节点同位置附近10x10的窗口相连接, 则1百万个隐层神经元就只有 16 0100 18 0,即10^8个参数。其权值连 接个数比原来减少了四个数量级。
深度学习可以通过学习一种深层非线性网络结构,实 现复杂函数逼近,表征输入数据分布式表示,并展现 了强大的从少数样本中集中学习数据及本质特征的能 力。
深度学习的实质
通过构建具有很多隐层的机器学习模型和海量的训练数 据,来学习更有用的特征,从而最终提升分类或预测的 准确性。因此,“深度模型”是手段,“特征学习”是 目的。
人脑的视觉机理
1981年的诺贝尔医学奖获得者 David Hubel和Torsten Wiesel发现了视觉系统的信息处理机制,他们发现了一 种被称为“方向选择性细胞的神经元细胞,当瞳孔发现 了眼前的物体的边缘,而且这个边缘指向某个方向时, 这种神经元细胞就会活跃。
由此可知人的视觉系统的信息处理是分级的,高 层的特征是低层特征的组合,从低层到高层的特征表示 越来越抽象,越来越能表现语义或者意图,抽象层面越 高,存在的可能猜测就越少,就越利于分类。
与神经网络的异同
深度学习与神经网络的异同
神经网络
深度学习
深度学习与神经网络的异同
相同点
二者均采用分层结构,系统包括输入层、隐层(多层)、 输出层组成的多层网络,只有相邻层节点之间有连接,同 一层以及跨层节点之间相互无连接,每一层可以看作是一 个logistic 回归模型。

深度学习技术介绍PPT课件

深度学习技术介绍PPT课件
根据Marr(1982)年理论,理解一个信息处理系统,具有三个被称为分析层面的内容: 计算理论(computational theory)对应计算目标和任务的抽象定义。 表示和算法(representation and algorithm)是关于输人和输出如何表示和从输入到输
出变换的算法说明。 硬件实现(hardware implementation)是系统的实物物理实现。
29
29
M40 GPU加速特性
30
GPU与CPU连接
通过PCIe与CPU连接, 最大理论带宽8GB/s(gen2.0)、16GB/s(gen3.0) CPU称为主机(host), 显卡(GPU)称为设备(device)
31
31
最优连接数量:4
32
32
目前的GPU使用方案
33
33
CPU困境
34
机器学习还可以进行压缩(compression)。用规则拟合数据,我们能得到比数据更简 单的解释,需要的存储空间更少,处理所需要的计算更少,例如,一旦你掌握了加法 规则,你就不必记忆每对可能数字的和是多少。
机器学习的另一种用途是离群点检测(outlier detection),即发现那些不遵守规则的 例外实例。在这种情况下,学习规则之后,我们感兴趣的不是规则,而是规则未能覆 盖的例外,他们可能暗示出我们需要注意的异常,如诈骗等。
具体应用-人脸识别
对于人脸识别(face recognition)。输入是人脸 图像,类是需要识别的人,并且学习程序应当 学习人脸图像与身份之间的关联性。人脸会有 更多的类,输入图像也更大一些,并且人脸是 三维的,不同的姿势和光线等都会导致图像的 显著变化。另外,对于特定人脸的输人也会出 现问题,比如说眼镜可能会把眼睛和眉毛遮住 ,胡子可能会把下巴盖住等。

深度学习基础PPT幻灯片

深度学习基础PPT幻灯片
Deep Learning
2020/4/2
1
目录
深度学习简介 深度学习的训练方法 深度学习常用的几种模型和方法 Convolutional Neural Networks卷积神经网络 卷积神经网络(CNN)在脑机接口中的应用源自2020/4/22
What is Deep Learning?
浅层结构的局限性在于有限的样本和计算单元情况下 对复杂的函数表示能力有限,针对复杂分类问题其泛 化能力受到一定的制约。
2020/4/2
9
受到大脑结构分层的启发,神经网络的研究发现多隐 层的人工神经网络具有优异的特征学习能力,学习得 到的特征对数据有更本质的刻画,从而有利于可视化 或分类;而深度神经网络在训练上的难度,可以通过 “逐层初始化”来有效克服。
A brief introduce of deep learning
2020/4/2
3
机器学习
机器学习(Machine Learning)是一门专门研究计算机 怎样模拟或实现人类的学习行为,以获取新的知识或 技能,重新组织已有的知识结构市值不断改善自身的 性能的学科,简单地说,机器学习就是通过算法,使 得机器能从大量的历史数据中学习规律,从而对新的 样本做智能识别或预测未来。
机器学习在图像识别、语音识别、自然语言理解、天 气预测、基因表达、内容推荐等很多方面的发展还存 在着没有良好解决的问题。
2020/4/2
4
特征的自学习
传统的模式识别方法:
通过传感器获取数据,然后经过预处理、特征提取、特 征选择、再到推理、预测或识别。 特征提取与选择的好坏对最终算法的确定性齐了非常关 键的作用。而特征的样式目前一般都是靠人工提取特征。 而手工选取特征费时费力,需要专业知识,很大程度上 靠经验和运气,那么机器能不能自动的学习特征呢?深 度学习的出现就这个问题提出了一种解决方案。

深度学习详解37页PPT文档

深度学习详解37页PPT文档
深度学习与浅层学习的区别
强调了模型结构的深度,通常有5-10多层的隐层节点;
明确突出了特征学习的重要性,通过逐层特征变换,将 样本在原空间的特征表示变换到一个新特征空间,从而 使分类或预测更加容易。与人工规则构造特征的方法相 比,利用大数据来学习特征,更能够刻画数据的丰富内 在信息。
深度学习的训练方法
深度学习的训练过程
自下而上的非监督学习:从底层开始,一层一层的往 顶层训练,分别得到各层参数。
采用无标签数据分层训练各层参数(可以看作是特征学习 的过程)。
自上而下的监督学习
基于第一步的得到的各层参数进一步调整整个多层模型的 参数,这一步是一个有监督的训练过程。
深度学习的几种常用模型
Auto Encoder(自动编码器) Sparse Coding (稀疏编码) Restricted Boltzmann Machine(限制玻尔兹曼机) Deep Belief Networks (深度信任网络) Convolutional Neural Networks (卷积神经网络)
深度学习可以通过学习一种深层非线性网络结构,实 现复杂函数逼近,表征输入数据分布式表示,并展现 了强大的从少数样本中集中学习数据及本质特征的能 力。
深度学习的实质
通过构建具有很多隐层的机器学习模型和海量的训练数 据,来学习更有用的特征,从而最终提升分类或预测的 准确性。因此,“深度模型”是手段,“特征学习”是 目的。
Convolutional Neural Networks(CNN)
Convolutional Neural Networks(CNN)
卷积神经网络是人工神经网络的一种,已成为当前语音分析和图像识别领 域的研究热点。它的权值共享网络结构使之更类似于生物神经网络,降低了网 络模型的复杂度,减少了权值的数量。该优点在网络的输入是多维图像时表现 的更为明显,使图像可以直接作为网络的输入,避免了传统识别算法中复杂的 特征提取和数据重建过程。卷积网络是为识别二维形状而特殊设计的一个多层 感知器,这种网络结构对平移、比例缩放、倾斜或者共他形式的变形具有高度 不变性。

深度学习PPT幻灯片

深度学习PPT幻灯片
❖ 案例:星光智能一号广泛应用于高清视频监控、智能驾驶辅助、无人机、 机器人等嵌入式机器视觉领域
14
深度学习硬件加速方式——ASIC
❖ 阻碍深度学习发展的瓶颈仍是算法速度 ❖ 传统处理器需要多条指令才能完成一个神经元的处理 ❖ ASIC根据深度学习算法定制:处理效率、能效均最高 ❖ 代表:Cambricon(寒武纪科技)DianNao芯片、谷歌的TPU芯片、
11
深度学习硬件加速方式——GPU
❖ SIMD方式,计算能力强,并行度支持好 ❖ 通用性,并非针对深度学习
➢ 运行效率受影响 ➢ 能耗仍较大 ❖ 代表: NVIDIA Tesla P100 GPU ❖ 案例:基于GPADAS)方面与众多车企进行合作
样思考
取新的知识技能,并
应用:国际跳棋程序

改善自身性能
应用:垃圾邮件过滤
深度学习
一种机器学习方法,模 拟人脑机制解释数据, 通过组合低层特征形成 更加抽象的高层属性类 别或特征
应用:谷歌视频寻猫
1950's 1960's 1970's 1980's 1990's 2000's 2010's
3
深度学习的流程
Horizon Robotics(地平线机器人)BPU芯片 ❖ 案例:基于TPU的AlphaGo与围棋冠军李世石人机大战,总比分4:1获胜
15
深度学习硬件加速方式比较
加速方式
优点
缺点
CPU
通用结构、可独立工作 通用性导致效率和能效比低
GPU FPGA DSP ASIC
强大的并行计算能力
通用性导致效率受影响、能耗大
灵活性好、设计空间大、 省去流片过程 改动小、计算能力较高

基于keras的深度学习介绍ppt课件

基于keras的深度学习介绍ppt课件

CNN
假设图3中m-1=1是输入层,我们需要识别一幅彩色图像,这幅图像具有四个通道ARGB(透明度和红绿蓝,对应了四幅相同大小的图像),假设卷积核大小为100*100,共使用100个卷积核w1到w100(从直觉来看,每个卷积核应该学习到不同的结构特征)。用w1在ARGB图像上进行卷积操作,可以得到隐含层的第一幅图像;这幅隐含层图像左上角第一个像素是四幅输入图像左上角100*100区域内像素的加权求和,以此类推。同理,算上其他卷积核,隐含层对应100幅“图像”。每幅图像对是对原始图像中不同特征的响应。按照这样的结构继续传递下去。CNN中还有max-pooling等操作进一步提高鲁棒性。在这个例子里,我们注意到输入层到隐含层的参数瞬间降低到了100*100*100=10^6个!
假设有一个16x16的图片,里面有个数字1,我们需要识别出来,这个数字1可能写的偏左一点(图1),这个数字1可能偏右一点(图2),图1到图2相当于向右平移了一个单位,但是图1和图2经过max pooling之后它们都变成了相同的8x8特征矩阵,主要的特征我们捕获到了,同时又将问题的规模从16x16降到了8x8,而且具有平移不变性的特点。图中的a(或b)表示,在原始图片中的这些a(或b)位置,最终都会映射到相同的位置。
tanh
tanh 函数同样存在饱和问题,但它的输出是零中心的,因此实际中 tanh 比 sigmoid 更受欢迎。
ReLu(校正线性单元:Rectified Linear Unit)
2001年,神经科学家Dayan、Abott从生物学角度,模拟出了脑神经元接受信号更精确的激活模型,这个模型对比Sigmoid系主要变化有三点:①单侧抑制 ②相对宽阔的兴奋边界 ③稀疏激活性(重点,可以看到红框里前端状态完全没有激活)

深度学习基础理论ppt课件

深度学习基础理论ppt课件
13
AutoEncoder自动编码器
2)通过编码器产生特征,然后训练下一层。这样逐层训 练:
将第一层输出的code当成第二层的输入信号,同样最小化重构误差,就会 得到第二层的参数,并且得到第二层输出的code,也就是原输入信息的第 二个表达了。其他层就用同样的方法炮制。
14
AutoEncoder自动编码器
3)有监督微调: 到这里,这个AutoEncoder还不能用来分类数据,可
以在AutoEncoder的最顶的编码层添加一个分类器,然后 通过标准的多层神经网络的监督训练方法(梯度下降法) 去训练。
微调分为两种,一个是只调整分类器(黑色部分):
15
AutoEncoder自动编码器
另一种:通过有标签样本,微调整个系统:
在研究中可以发现,如果在原有的特征中加入这些自动学习得到的特 征可以大大提高精确度,甚至在分类问题中比目前最好的分类算法效果还 要好!
16
AutoEncoder自动编码器
AutoEncoder存在的一些变体:
a)Sparse AutoEncoder稀疏自动编码器 b)Denoising AutoEncoders降噪自动编码器
20
Sparse Coding稀疏编码
2)Coding阶段:
给定一个新的图片x,由上面得到的字典,通过解一 个LASSO问题得到稀疏向量a。这个稀疏向量就是这个输入 向量x的一个稀疏表达了。
21
深度学习的常用模型
3、Restricted Boltzmann Machine (RBM)限 制波尔兹曼机
18
Sparse Coding稀疏编码
19
Sparse Coding稀疏编码
Sparse coding分为两个部分:

一天搞懂深度学习演示教学ppt课件

一天搞懂深度学习演示教学ppt课件
= Multi-class Classifier
Softmax
1-2 基本思想
Neural Network
1-2 基本思想
……
……
……
……
……
……
y1
y2
y10
Cross Entropy
“1”
……
1
0
0
……
target
Softmax
……
Given a set of parameters
目标识别
目标分析
图像捕获 图像压缩 图像存储
图像预处理 图像分割
特征提取 目标分类 判断匹配
模型建立 行为识别
2-1 机器视觉
关键技术与应用
A)生物特征识别技术——安全领域应用广泛 生物特征识别技术是一种通过对生物特征识别和检测,对身伤实行鉴定的技术。从 统计意义上讲人类的指纹、虹膜等生理特征存在唯一性,可以作为鉴另用户身份 的依据。目前,生物特征识别技术主要用于身份识别,包括语音、指纹、人脸、 静脉,虹膜识别等。
1958: Perceptron (linear model) 1969: Perceptron has limitation 1980s: Multi-layer perceptron Do not have significant difference from DNN today 1986: Backpropagation Usually more than 3 hidden layers is not helpful 1989: 1 hidden layer is “good enough”, why deep? 2006: RBM initialization 2009: GPU 2011: Start to be popular in speech recognition 2012: win ILSVRC image competition 2015.2: Image recognition surpassing human-level performance 2016.3: Alpha GO beats Lee Sedol 2016.10: Speech recognition system as good as humans

深度学习ppt课件

深度学习ppt课件

详细描述
目前深度学习在可解释性、过拟合、模型泛化等方面仍存在一些问题,未来将有更多研究关注这些领域,以推动 深度学习的理论发展。
更广泛的应用领域
总结词
随着深度学习技术的不断成熟,未来将有更多领域应用深度学习技术,实现智能 化升级。
详细描述
目前深度学习已经在语音识别、图像处理、自然语言处理等领域取得了显著成果 ,未来还将拓展到医疗、金融、工业等领域,为各行业带来智能化变革。

反向传播算法
反向传播算法是训练神经网络的关键步骤,它通过计算输出层与真实值之间的误差 来逐层反向传播误差。
在反向传播过程中,根据梯度下降算法更新每一层的权重参数,以逐渐减小误差。
反向传播算法通过不断地迭代更新权重,使得神经网络的预测结果逐渐接近真实值 。
卷积神经网络
01
卷积神经网络(CNN)是专门针对图像处理而设计 的神经网络结构。
游戏策略优化
利用深度学习技术,可以优化游戏策略,提 高游戏胜率。
角色行为模拟
通过深度学习,AI可以模拟角色的行为和决 策,使游戏更加真实和有趣。
游戏推荐系统
基于深度学习的推荐系统可以根据玩家的喜 好和行为,推荐合适的游戏。
推荐系统
个性化推荐
利用深度学习技术,可以实现对用户 进行个性化推荐,提高用户满意度和 忠诚度。
集成学习
将多个模型的预测结果组合起来,提高模型 的泛化能力。
Dropout
在训练过程中随机丢弃一部分神经元,以增 加模型的泛化能力。
计算资源问题
分布式计算
利用多台计算机或GPU进行并行计算, 加速训练过程。
硬件优化
优化GPU等硬件设备,提高计算效率 。
模型压缩
通过剪枝、量化等方式减小模型大小 ,降低计算复杂度。

《深度学习之》课件

《深度学习之》课件

Part Five
深度学习的未来展 望
深度学习的发展趋势
深度学习技术将更 加成熟,应用领域 更加广泛
深度学习技术将与 其他技术相结合, 如大数据、云计算 等
深度学习技术将更 加注重实际应用, 如医疗、金融、教 育等领域
深度学习技术将更 加注重安全性和隐 私保护,如数据加 密、隐私保护等技 术
深度学习与其他技术的融合
动画效果:适当添加动画效果,如淡入淡出、缩放等,以增强视觉效果
PPT课件的动画与交互设计
动画效果:使用动画效果可以使PPT课件更加生动有趣,吸引观众的注意力
交互设计:交互设计可以增加PPT课件的互动性,让观众更加深入地参与到学习中
动画与交互设计的结合:将动画效果和交互设计相结合,可以使PPT课件更加生动有 趣,增加观众的参与度 动画与交互设计的注意事项:在使用动画效果和交互设计时,要注意不要过度使用, 以免影响观众的注意力和参与度
生成对抗网络(GAN)是一种深度学习技术,由两个子网络组成:生成器和判别器。
生成器负责生成假数据,判别器负责判断数据是真是假。
GAN通过两个子网络的对抗训练,不断提高生成器的生成能力,最终生成与真实数据非 常接近的假数据。
GAN在图像生成、数据增强、图像翻译等领域有广泛应用。
深度强化学习
概念:一种结合了深度学习和强化学习的技术 特点:能够处理高维、复杂的数据,同时具备学习能力和决策能力 应用场景:自动驾驶、游戏AI、机器人控制等领域 技术挑战:需要大量的数据和计算资源,以及复杂的算法设计
PPT课件的内容组织与布局设计
ቤተ መጻሕፍቲ ባይዱ
内容组织:根据深度学习的主题, 将内容分为不同的章节,如“深 度学习概述”、“深度学习方 法”、“深度学习应用”等。

《深度学习介绍》课件

《深度学习介绍》课件
强化学习
推荐系统和强化学习是深度学习在智能推荐和决策领域的重要应用,能够提高推荐和决策的准确性和智能化水平。
总结
06
CHAPTER
深度学习的未来展望
随着深度学习在各领域的广泛应用,对模型的可解释性需求日益增强。未来研究将致力于开发更透明的模型,通过可视化、解释性图谱等技术,帮助用户理解模型决策过程。
池化层用于降低数据的维度,减少计算量和过拟合的风险。常用的池化方法有最大池化和平均池化等。
池化层
激活函数
03
CHAPTER
深度学习的主要模型
1
2
3
卷积神经网络是一种专门用于处理具有类似网格结构数据的深度学习模型,例如图像、语音信号等。
CNN通过局部连接、权重共享和下采样等策略,实现对输入数据的逐层特征提取和抽象。
《深度学习介绍》ppt课件
目录
深度学习概述深度学习的基本原理深度学习的主要模型深度学习的训练技巧深度学习的应用实例深度学习的未来展望
01
CHAPTER
深度学习概述ຫໍສະໝຸດ ABCD
自动驾驶
用于车辆控制、障碍物检测等自动驾驶系统的关键技术。
推荐系统
用于个性化推荐、广告投放等商业应用。
自然语言处理
用于机器翻译、文本分类、情感分析等任务。
防止模型在验证集上过拟合
当模型在验证集上的性能停止提升时,应停止训练并保存模型。早停法可以防止模型在训练集上过拟合。同时,定期保存模型权重也有助于后续的重训练或迁移学习。
05
CHAPTER
深度学习的应用实例
自然语言处理
利用深度学习技术对自然语言文本进行分析和处理,例如机器翻译、情感分析等。
DBN在图像识别、语音识别和自然语言处理等领域有一定的应用价值。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

神经元模型
f (x) 11ex
神经网络按照拓扑结构,大体分为层状与网状两大类。
神经网络
输出: 激活函数:
神经网络
BP网络
前馈网络的逐层计算:
输入值从输入层神经元通过加权连接逐层前向传播,经过 隐含层,最后到达输出层得到输出。在信号的前向传播过 程中,网络的权值是固定不变的,每一层神经元的状态只 影响下一层神经元的状态。
主要内容
现状
神经网络
深度学习
介绍 常见模型
• Stacked Auto-Encoder • Convolutional Neural Network • Deep Belief Network
杂项
深度学习
深度学习的基础架构来自于前馈神经网络和BP算法,构造多层网络,通过最小化代价 函数的方法来提高分类精度。
学习率超过前层,BP算法收敛缓慢。当神经网络有很多层时,就会面临不稳定的情况。 对网络的预训练可以较好地避免这种现象。这是因为:
实验表明,在非凸优化问题上初始点的选择十分重要; 无监督学习增加了深层结构的鲁棒性; 对神经网络进行不同的预训练能够使网络学习到数据的不同的高质量特征; 单纯增加一个网络的深度,如果不进行预训练处理,会提高陷于局部极小点的可能性。
主要内容
现状
神经网络
深度学习
介绍 常见模型
• Stacked Auto-Encoder • Convolutional Neural Network • Deep Belief Network
杂项
自编码器结构
单层自动编码器网络(AutoEncoder)实质上是一个三层的反向传播神经网络。它逐 层采用无监督学习的方式,不使用标签调整权值,将输入映射到隐含层上,再经过反 变换映射到输出上,实现输入输出的近似等价。
对于传统的ANN网络而言,由于多层网络训练的困难,实际使用的多数是只含有一层 隐层节点的浅层模型。
深度学习更侧重于如何通过增加网络的深度,来减小每层需要拟合的特征个数,来提 取出数据(尤其是语音与图像数据)的高层特征信息,从而达到更好的测试性能与分 类精度。深度学习对输入数据逐级提取从底层到高层的特征,从而能更好地建立从底 层信号到高层语义的复杂映射关系。
2012年11月,在二十一世纪计算大会上,微软首席研究官Rick Rashid展示了一套基于深层神经网络模型 的语音识别系统,能实时流畅翻译,切显著地降低了错误率,这在语音识别度研究院;
2013年7月,谷歌收购了深度学习初创公司DNNResearch Inc.,公司员工GeofferyHinton和他的两个学生 Alex Krizhevsky,Ilya Sutskever 加入谷歌;
自编码器的建立
建立AutoEncoder的方法是:
对于m个数据的输入,有:
Code编码:使用非线性激活函数,将维输入数据映射到维隐含层(隐含节点表示特 征)
其中W是一个的权重矩阵,b是一个d'维的偏移向量 Decode解码:通过反向映射,对映射后的数据进行重建
hi
yi
SAE网络每一次训练输入都会得到映射后的 与解码后的 。通过对代价函数的最优
SAE预训练:对网络只传入训练数据,在有限迭代步数下进行无监督的学习,以学得 数据特征,得到权值与偏置的初始值;
主要内容
现状
神经网络
深度学习
介绍 常见模型
• Stacked Auto-Encoder • Convolutional Neural Network • Deep Belief Network
杂项
神经网络
在机器学习与认知识别领域中,人工神经网络是一类模拟生物神经网络的模型,基于 大量训练数据,用来预测(决策问题)或估计目标函数模型。人工神经网络一般呈现 为相互关联的“神经元”之间相互交换信息的系统。在神经元的连接中包含有可以根 据训练样本调整的权重,使得神经网络可以自适应输入样本,并且拥有学习能力。
现状
2013年10月,雅虎收购图像识别公司LookFlow,正式加入深度学习研究队伍;
2015到2016年,苹果收购人工智能研究公司VocalIQ,Percepti,Emotient,Turi等,强化Siri和摄像等应 用上的优势;
2015年11月,谷歌发布人工智能系统TensorFlow并宣布开放源代码;
X1 X2 X3 X4 X5 +1
Input
X1* h1
X2* h2
X3* h3
X4* +1
X5*
hidden output
• 自动编码器的主要思想是利用无监督方式最小 化重建误差,学习到的权重提供了一个网络初 始化的较好的初始点。无监督学习的主要目的 是从无标签的数据中提取有用的特征,以减少 输入信息,保留数据中关键的有效信息。网络 通过没有标签的数据学习到潜在的分布信息, 有利于它区分有标签的信息。然而,在网络中, 权重仍然需要进行微调。因此,需要在神经网 络的顶部增加一个线性回归,再对有标签的数 据进行处理。网络的微调会采用梯度下降法, 对所有层同时进行调整。
一个AE模型有1个可视层、1个隐含层1个重建层。 通过自下而上的映射,实现编码与反编码重建:
update
梯度下降
COST FUNCTION
激活函数
y f (x)
W ,by ,bz

SAE构建方法
参数设置:设置好激活函数、学习率、迭代步数、训练层数等一系列基本参数;
构建SAE网络:分层建立输入-输出-输入的AE网络,并对权值与偏置初始化;
主要问题
训练过程易陷入局部极小值,从而得不到全局最优解; 计算量大,训练次数多,使得学习效率低,收敛速度慢; 对于隐含层个数和隐含层神经元节点的个数选择,至今还没有一个具体的定论,缺乏理论指导; 训练时,学习新样本有遗忘旧样本的趋势
常用改进方法
添加动量项,Dropout等规则化算法等; 采用改进的梯度下降法,使用硬件辅助计算; RNN,LSTM等改进模型和神经元。
1)强调了模型结构的深度,通常有5层以上、甚至100多层的隐含层;
2)明确突出了特征学习的重要性,通过逐层特征变换,将样本在原空间的特征表示 变换到一个新特征空间,使得分类或预测更加容易。
深层带来的好处
为什么采用层次网络
预训练与梯度消失现象
神经网络层数加深以后,容易出现梯度消失现象; 由于前层的梯度是由后层的梯度项相乘得到,梯度会逐层衰减,从而导致后层的网络
作为机器学习方法的一种,神经网络算法可以用来处理一系列传统机器方法无法处理, 或者处理难度较大的问题,包括计算机视觉、语音识别等任务。
基本结构
神经网络的基本单元是神经元。通过对所有输入进行加权求和,之后进行非线性映射 得到该神经元的输出值。
x1
x2
w1
.
w2
a
.
θ
.
xn
wn
b
常用激活函数: ReLU函数 S型函数 双曲正切函数
2012年5月到10月,为了回应对于深度学习方法的质疑,也为了测试深度学习算法的真实效果,Geoffery Hinton和他的另外一个学生Alex Krizhevsky参加了ImageNet大规模视觉识别竞赛,以大幅领先优势取得 第一名;
2012年6月,机器学习和人工智能的知名学者Andrew Ng等人与谷歌经过多年的合作,在语音识别与图像 目标识别方面取得了突破性的进展;
2016年10月,NVIDIA 发布了新版本的通用并行计算架构库:统一计算设备架构(Compute Unified Device Architecture,CUDA)8.0,以及深度学习专用GPU 加速库:cuDNN 5.0;
2016年11月,在2016全球超级计算机大会(SC16)上,AMD 宣布推出新版Radeon开放计算平台 (Radeon Open Compute Platform,ROCm),以及用于GPU 加速器的免费开源库MIOpen。
直到输出层 的激活值。
3.对于
的各层,计算:
4.计算最终需要的偏导数值:
5.根据残差对参数W和b做出更新:
反向传播与梯度下降
S型函数导数
开始
数据输入
权值学习
求隐含层和输出层 神经元输出
求误差梯度
求期望和实际 的偏差E
计算隐含层 单元误差
E满足要求?
Y
N
达到最大训练次数?
N Y
结束
BP算法流程
主要问题
节点的稀疏性限制
为了增强网络的稳定性,避免过拟合的发生,我们需要让少部 分神经元输出值大于0,其他的大部分为0(或近似为0),这就 是所谓的稀疏性。 在人脑中有大量的神经元,但是大多数自然图像通过视觉进入 人脑时,只会刺激到少部分神经元,大部分神经元都是出于抑 制状态的。而且,大多数自然图像,都可以被表示为少量基本 元素(面或者线)的叠加。稀疏性处理能够更加有助于我们用 少量的神经元提取出自然图像更加本质的特征。
代价函数描述了网络输出与真实值之间的误差;
网络模型的训练过程即:通过随机梯度下降的方法最小化代价函数以提高网络精度;
可以在代价函数中引入其他约束以满足设定要求。
x2
Y=F(X)
a
F(a)

0
x1
反向传播算法
反向传播算法可表示为以下几个步骤:
1.进行前馈传导计算,利用前向传导公式,得到 2.对输出层(第 层),计算:
反向传播算法:
网络的实际输出与期望输出之间的差值即为误差信号。误 差信号由输出端开始逐层反向传播。在误差信号反向传播 的过程中,网络的权值根据误差的梯度进行调节,通过权 值的不断修正使网络的实际输出更加接近期望输出。
b1
输入
b2
隐含
输出
前馈网络结构
说明
代价函数
在遇到回归问题时,指定代价函数
相关文档
最新文档