两种方法测量输入电阻
单管放大电路仿真实验
单管放大电路仿真实验一、实验目的熟悉晶体管和场效应管放大电路以及集成运放的基本设计原则,并理解放大电路性能参数的调试和测试方法、静态工作点对动态参数的影响;熟悉仿真软件的基本分析和测量方法。
二、实验内容及理论分析本部分主要针对仿真电路进行初步的理论分析,以及依据理论预测实验现象,以便于和最后的仿真结果作对比。
1、仿真题2-1(3分):利用晶体管2N2222A(模型参数中的BF即β=220,RB即r bb’=0.13Ω)设计一个单电源供电的单管放大电路,电源电压为V CC = +15V。
具体要求如下:(1)设计并调整电路参数,使电路具有合适的静态工作点,测量静态工作点。
(2)测量动态参数A u、R i、R o、f L、f H,比较A u、R i、R o的理论计算值与实测值,并说明电路的特点。
注意测量时输出信号不能失真。
(3)调整电路参数,改善某一性能指标(如增大A u、或增大R i、或减小R o、或增大f H)。
要求先进行理论分析,然后再实验验证。
(4)调整电路参数或输入信号大小,使输出波形产生失真,分析是何种失真,可采取哪些措施消除并进行实验验证。
(通常,当失真度较大时,能够观察到波形顶部或底部变平或者曲率变小,而当失真度较小时,则需要借助失真度仪(Distortion Analyzer)来测量。
)设计采用如下图所示的电路实现:(1)分析电路的直流通路和静态工作点I BQ R b+(1+β)I BQ R e+U BEQ=V CCI BQ=V CC−U BEQ R b+(1+β)R eU CEQ=V CC−(1+β)I BQ R e经查阅2N2222A的参数,取U BEQ=0.7V进行估算,并且要求I CQ=βI BQ<10mA,即R b+(1+β)R e>314.6kΩ。
另外,由IV分析仪测得2N2222A的特性,认为4V<U CE<8V时晶体管处在放大区,所以U CEQ =V CC −(1+β)I BQ R e =V CC −221×14.3R e R b +221R e解得,66.3R e <R b <230.47R e 。
Multisim7快速入门第9章
第9章在模拟电路设计中的应用本章通过一些实际模拟电路的设计运用,让读者掌握通过该软件设计模拟电路的方法。
介绍了常用的晶体管电路、集成运算放大器电路、波形发生电路、常用滤波电路和音频放大电路。
通过这些电路的设计和分析,既加深了对模拟电路的理解,又掌握了设计常用电路的方法,让读者能够真正设计自己的应用电路。
9.1单管放大电路仿真分析9.1.1 单管放大电路工作原理首先建立如图9-1所示的工作点稳定的三极管放大电路(它又称为分压偏置放大电路)。
由于三极管是一种温度敏感的电子元件,温度变化导致I C变化,导致静态工作点不稳定。
因此,通过该电路可以根据温度变化自动调节基极电流I B,使集电极电流I C维持不变,以稳定静态工作点。
图9-1工作点稳定的单管放大电路当流过R2上的电流大于I B时,静态工作点可按下式估算:博嘉科技编程模板 213Ω==Ω==≈-=Ω≈++==+-≈≈==≈-==+≈k R r k r R R r r R R A k I r V I R R V U AI I mA I R U U I VV R R R U o be i beu Cbe C CC CE EB C BEB E CC B 283.1////7.80//732.226)1(3004.5)(1165.1432165353212输出电阻输入电阻电压放大倍数ββμβ注意:上式中r be 是三极管基极和发射极之间的电阻,β为电流放大系数。
用鼠标双击图9-1中三极管,单击Edit Model ,从仿真模型参数可看出,此处电流放大系数β为153.575,忽略函数发生器内阻,U BE 为三极管基极和发射极电压,此处取0.7V 。
对图9-1所示的工作点稳定的单管放大电路,用户需完成以下分析任务: ● 静态工作点分析; ● 放大倍数分析;● 频率特性分析(交流小信号分析); ●输入和输出电阻分析。
9.1.2 静态工作点分析1.函数信号发生器设置双击图9-1中函数发生器,将弹出如图9-2所示对话框,通过设置参数可调整输入波形参数,对其说明如下:● Waveforms (波形选择):选择输出信号类型,该函数发生器提供常用的三种信号,正弦波、三角波和方波信号,本例选择正弦波。
电压与阻抗的测量技术与方法
电压与阻抗的测量技术与方法1)测量特点;电压测量:①频率范围宽;电子电路中电压的频率可以从直流到数百兆赫范围内变化,对于甚低频或高频范围的电压测量,一般万用表是不能胜任的。
②电压范围广;电子电路中,电压范围由微伏级到千伏以上高压,对于不同的电压档级必须采用不同的电压表进行测量。
③存在非正弦量电压;被测信号除了正弦电压外,还有大量的非正弦电压。
如用普通仪器测量非正弦电压,将造成测量误差。
④交直流电压并存;被测电压中常常是交流与直流并存,甚至还夹杂有噪声干扰等成分。
⑤要求测量仪器有高输入阻抗;由于电子电路一般是高阻抗电路,为了使仪器对被测电路的影响减至足够小,要求测量仪器有高的输入电阻。
阻抗测量:①保证测量条件与工作条件尽量一致;测量时所加的电流、电压、频率、环境条件等必须尽可能接近被测元件的实际工作条件,否则,测量结果很可能无多大价值。
②了解RLC的自身特性;在选用RLC元件时就要了解各种类型元件的自身特性。
例如,线绕电阻只能用于低频状态;电解电容的引线电感较大;铁芯电感要防止大电流引起的饱和。
2)测量原理;①电压测量:绝对误差Ux=(Rv/(Rv+Ro))·Uo△U=Ux-Uo相对误差γ=△U/Uo=(Ux-Uo)/Uo=Rv/(Ro+Rv)-1=-Ro/(Ro+Rv)要减少误差,就必须使电压表的输入电阻Rv远大于Ro。
②电阻测量:Z=U/I=R+JX=ZEjw=Z(cosa+jsina)Z=R2+X2开根号A=arctg X/R3)测量方法;①电压测量:1.高内阻回路测量直流电压,2.检波放大式电压表测量交流电压,3.放大检波式电压表测量交流电压。
(1)输入电阻的测量用替代法测量输入电阻用换算法测量输入电阻Ri=(Ui/Us-Ui)*RRi=(Uo2/Uo1-Uo2)R(2).输出电阻的测量Ro=(Uo/UoL)*Rl4)注意的问题;①电压测量1.测量直流电压时要减少误差,就必须使电压表的输入电阻远大于输出电阻,为了提高仪表输入电阻和有利于弱直流信号电压的测量,在电压表中常加入集成运算放大器构成集成运放型电压表,如果再加上场效应管电路作输入级,则可构成一种高内阻电压表,2.检波放大式电压表放大器放大的是直流电压,所以对放大器的频率响应要求低,检波二极管导通时有一定起始电压(死区电压),使刻度呈非线性;此外,还存在输入阻抗低,直流放大器有零点漂移,因此灵敏度不高,不适宜测小信号,3放大检波式电压表测量电压的频率范围受放大器的频带的限制。
用OrCAD测量电子电路的常用方法
第五章 用OrCAD/Pspice测量电子电路的常用方法
在第三章中,按照电路特性分类介绍了用Pspice分析电路的基本方法。一般来说,测量电子电路用的就是这些方法。有些电路指标的测试可以直接用基本方法,比如测量静态工作点用静态工作点分析方法,测量频率特性用交流分析方法等。但也有些电路指标的测试可使用多种方法,有些指标的测试需要一点技巧。下面介绍几种常用测试方法和测试技巧。
单击此处添加大标题内容
三 .测量最大输出幅度、输出功率
设置直流扫描分析 通过直流扫描分析,可得到电路的输入输出特性曲线,从曲线上可读出最大输出幅度。 通过直流扫描分析,也可得到电路的输出功率、管耗和电源提供的功率随输出电压变化的曲线,从曲线上可读出最大输出功率或某一输出幅值下的功率。 但这一方法不能用于有隔直电容的电路。
举例:互补对称功率放大器如图所示。求最大不失真输出幅度Vom、最大输出功率Pom和电源提供的功率Pv。
解:分别用上述两种方法测量。 (1)用直流扫描分析。 ① 求最大不失真输出幅度Vom。 进行直流(DC)扫描分析:设置输入信号VIN为变量,扫描范围为-12~+12V。运行后,得到如图2.5.6所示的电压传输特性曲线。启动标尺,可读出最大不失真输出幅度Vom≈6.5V。
② 设置直流扫描分析:在参数设置框中,选Global Parameter作变量类型,“扫描变量”选为Rval,变量的变化范围:10~30k,步长:2k。 ③ 运行后,得到VO与Re的关系曲线,启动标尺测出Re=15k时,VO=0V。
举例:放大电路如图所示,要求Vi=0时VO=0,求Re的取值。 解:用上述两种方法分析 (1)用直流扫描分析。① 将Re设置成全局变量{Rval}。
.根据指标要求确定某元件的参数值
直流电阻测量
直流电阻测量在直流条件下测得的电阻称直流电阻。
在工程和实验应用中,所需测量的电阻范围很宽,约为10-6~1011Ω或更宽。
从测量角度出发,一般将电阻分为小电阻(1Ω以下,如接触电阻、导线电阻等),中值电阻(1~16Ω)和大电阻(106Ω 以上,如绝缘材料电阻)。
电阻的测量方法很多,按原理可分为直接测量法、比较测量法、间接测量法;也可分为电表法、电桥法、谐振法及利用变换器测量电阻等方法。
1.电表法电表法测量电阻的原理建立在欧姆定律之上,电压-电流表法(简称伏-安法)、欧姆表法及三表法是电表法的常见形式。
(1)伏-安法测量直流电阻的伏-安法是一种间接测量法,利用电流表和电压表同时测出流经被测电阻RX的电流及其两端电压,根据欧姆定律,被测电阻RX的阻值为(1)式中,UV和IA分别为电压表和电流表的示值。
伏-安法测量电阻有两种方案,如图1所示,图中RV、RA分别为电压表和电流表的内阻。
图1(a)所示方案电流表示值包含了流过电压表的电流,适用于测量阻值较小的电阻;图1(b)所示方案电压表的示值包含了电流表上的压降,适用于测量阻值较大的元件。
伏-安法的优点是可按被测电阻的工作电流测量,因此非常适合测量电阻值与电流有关的非线性元件(如热敏电阻等),且测量简单。
但由于电表有内阻,图1伏-安法测量直流电阻故无论用哪种方案均存在方法误差,因此,伏-安法测量精度不高。
(2)欧姆表法从式(2-70)可知,如果UV保持不变,被测电阻Rx 将与通过电流表A的电流IA成单值的反比关系,而磁电式电流表指针的偏转角θ与通过的电流IA成正比,则电流表指针的偏转角能反映Rx值大小。
因此,如将电流表按欧姆值刻度,就成为可直接测量电阻值Rx的仪表,称为欧姆表。
欧姆表测量电阻的电路如图2所示。
图中RA为欧姆表内阻,这里欧姆表实际是按欧姆值刻度的磁电式微安表;R1为限流电阻,S是短接开关;欧姆表中以电池的电压US作为恒定电压源,考虑到电池的电压会逐渐降低,为了消除电压变化对电阻测量的影响,设有调零电阻R2。
单片机测量电阻原理
单片机测量电阻原理引言:电阻是电路中常见的元件之一,用于限制电流的流动。
在电子产品的设计和维修中,经常需要测量电路中的电阻值。
单片机是一种微型电脑,具有高集成度、低功耗等特点,可以用来测量电路中的电阻值。
本文将介绍单片机测量电阻的原理及实现方法。
一、电阻的基本原理电阻是电流通过时产生的电压降与电流之比,用欧姆定律表示为V=IR,其中V表示电压,I表示电流,R表示电阻。
二、单片机测量电阻的原理单片机测量电阻的原理是利用单片机的模拟输入引脚和内部的模数转换器(ADC)来实现。
具体步骤如下:1. 将待测电阻与单片机连接,一端接地,另一端接模拟输入引脚。
2. 单片机通过模拟输入引脚读取电阻两端的电压值。
3. 单片机将模拟电压值转换为数字信号。
4. 单片机通过数值计算得到电阻值。
三、实现方法单片机测量电阻的实现方法有多种,下面介绍一种简单的方法。
1. 硬件连接:将待测电阻与单片机的模拟输入引脚连接,一端接地,另一端接模拟输入引脚。
2. 程序设计:编写单片机的程序,实现测量电阻的功能。
具体步骤如下:(1)设置模拟输入引脚为输入模式。
(2)读取模拟输入引脚的电压值。
(3)将读取的模拟电压值转换为数字信号。
(4)通过一定的计算公式,得到电阻值。
(5)将电阻值输出。
四、注意事项在进行单片机测量电阻时,需要注意以下几点:1. 选择合适的单片机型号,确保其具备模拟输入引脚和ADC功能。
2. 确保电路连接正确,避免短路或接触不良等问题。
3. 根据实际情况选择合适的电阻范围和精度。
4. 考虑电阻测量的精度要求,可以采用多次测量取平均值的方法提高测量精度。
五、总结通过单片机测量电阻的原理及实现方法,我们可以方便地测量电路中的电阻值。
单片机具有较高的测量精度和稳定性,可以满足大多数电阻测量的需求。
在实际应用中,我们可以根据具体情况选择合适的单片机型号和测量方法,以实现准确、快速的电阻测量。
六、参考文献[1] 陈红. 单片机原理与应用[M]. 机械工业出版社, 2017.[2] 陈志强. 单片机原理与应用实验教程[M]. 高等教育出版社, 2014.。
电阻的测量方法
电阻的测量方法
电阻的测量方法可以通过以下步骤进行:
1. 准备工作:将待测电阻与万用表或电阻测量器相连,并确保电路处于断开状态。
2. 选择合适的测量范围:根据待测电阻的预估值,选择合适的测量范围以确保精准测量。
3. 接线:将测量器的电极分别与待测电阻的两个引脚相连,确保连接稳固可靠,避免电极之间出现松动或接触不良。
4. 测量:将电路闭合,测量器会输出电阻的值。
在某些测量器上可以选择直流或交流模式进行测量,根据实际需求进行选择。
5. 记录结果:将测量得到的电阻值记录下来,保持准确性。
6. 检查:确保测量结果符合预期,测量器是否正常运行。
注意事项:
- 在测量前,确保待测电阻与电源完全断开,避免电流通过电
阻造成测量误差或损坏测量器。
- 在测量过程中,确保测量器的电极与待测电阻的引脚接触良好,避免接触不良或松动导致测量误差。
- 根据测量器的使用说明和实际情况,选择合适的测量范围,
避免超出量程范围导致测量失真或损坏测量器。
- 对于高精度测量需求,可以采用多次测量取平均值的方法,
提高测量结果的准确性。
- 在测量完成后,及时断开电路并记录测量结果,确保测量数据的准确性和保存。
单管共射极放大电路实验报告
单管共射极放大电路实验报告Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT实验一、单管共射极放大电路实验1. 实验目的(1) 掌握单管放大电路的静态工作点和电压放大倍数的测量方法。
(2) 了解电路中元件的参数改变对静态工作点及电压放大倍数的影响。
(3) 掌握放大电路的输入和输出电阻的测量方法。
2. 实验仪器① 示波器② 低频模拟电路实验箱 ③ 低频信号发生器 ④ 数字式万用表 3. 实验原理(图)实验原理图如图1所示——共射极放大电路。
4. 实验步骤 (1) 按图1连接共射极放大电路。
(2)测量静态工作点。
② 仔细检查已连接好的电路,确认无误后接通直流电源。
③ 调节RP1使RP1+RB11=30k④ 按表1测量各静态电压值,并将结果记入表1中。
表1 静态工作点实验数据Rs 4.7K(1)测量电压放大倍数①将低频信号发生器和万用表接入放大器的输入端Ui,放大电路输出端接入示波器,如图2所示,信号发生器和示波器接入直流电源,调整信号发生器的频率为1KHZ,输入信号幅度为20mv左右的正弦波,从示波器上观察放大电路的输出电压UO的波形,分别测Ui和UO的值,求出放大电路电压放大倍数AU。
图2 实验电路与所用仪器连接图②保持输入信号大小不变,改变RL,观察负载电阻的改变对电压放大倍数的影响,并将测量结果记入表2中。
表2 电压放大倍数实测数据(保持U I不变)(4)观察工作点变化对输出波形的影响①实验电路为共射极放大电路②调整信号发生器的输出电压幅值(增大放大器的输入电压U i),观察放大电路的输出电压的波形,使放大电路处于最大不失真状态时(同时调节RP1与输入电压使输出电压达到最大又不失真),记录此时的RP1+RB11值,测量此时的静态工作点,保持输入信号不变。
改变RP1使RP1+RB11分别为25KΩ和100K Ω,将所测量的结果记入表3中。
电路元件参数测量方法和仪器
电阻和电位器在电路中多用来进行限流、分压、分流以及阻抗匹配等,是电路中应用最多的元件之一。
一、电阻和电位器的参数电阻的参数包括标称阻值、额定功率、精度、最高工作温度、最高工作电压、噪声系数及高频特性等,主要参数为标称阻值和额定功率。
标称阻值是指电阻上标注的电阻值;额定功率是指电阻在一定条件下长期连续工作所允许承受的最大功率。
1.电阻规格的直标法直标法是将电阻的类别和主要技术参数的数值直接标注在电阻的表面上2.电阻规格的色环法色环法是是将电阻的类别和主要技术参数的数值用颜色(色环)标注在电阻的表面上。
3.电位器的标识法二、测量原理和常规测试方法电阻工作于低频时其电阻分量起主要作用,电抗部分可以忽略不计。
1.电阻的频率特性2.固定电阻的测量①万用表测量②电桥法测量当对电阻值的测量精度要求很高时,可用直流电桥法进行测量。
③伏安法测量伏安法测量原理如图3.4(a)、(b)所示,有电流表内接和电流表外接两种测量电路。
3.电位器的测量①性能测量主要测量电阻标称值和端片接触情况。
②用示波器测量电位器的噪声示波器可以用来测量电位器、变阻器的噪声。
4.非线性电阻的测量光敏、气敏、压敏、热敏电阻器等,它们的阻值随着外界光线的强弱、气体浓度的高低、压力的大小电压的高低、温度的高低而变化。
一般可采用伏安法,即逐点改变电压的大小,然后测量相应的电流,最后作出伏安特性曲线。
3.2.2电容的测量电容器在电路中多用来滤波、隔直、交流耦合、交流旁路及与电感元件构成振荡电路等,是电路中应用最多的元件之一。
一、电容的参数和标注方法1.电容的参数电容器的参数主要有以下几项。
(1)标称电容量和允许误差注在电容器上的电容量,称作标称电容量。
电容器的实际电容量与标称电容量的允许最大偏差范围,称为允许误差。
(2)额定工作电压指在规定的温度范围内,电容器能够长期可靠工作的最高电压。
科分为直流工作电压和交流工作电压。
(3)漏电电阻和漏电电流电容器的漏电流越大,绝缘电阻越小。
讲议二、电阻测定的两种方法、滑动变阻器的两种接法
讲议二、电阻测定的两种方法、滑动变阻器的两种接法(一)伏安法测电阻用电压表测出电阻两端的电压,用电流表测出通过电阻的电流,利用部分电路欧姆定律可以算出电阻值,由于实际测量中用到的电表不理想,所以所测得电压或电流产生系统误差。
1.内接法:如图9—36所示,待测电阻的测量值测R :x A RA R R I U U I U R +=+==测测测测显然x R R >测,所以A x R R R -=测当A R R >>测时x R R ≈测,系统的相对误差很小,可以忽略不计,所以内接法适用于测量高阻值电阻.2.外接法:如图9—37所示,待测电阻的测量值测R :xV xV RV R R R R I I U I U R +=+==测测测测显然有:x R R <测 所以VV V x R R R R R R R R 测测测测-=-=1 当V x R R <<时,0→VxR R ,x R R ≈测,系统的相对误差可以忽略,所以外接法适用于测量低阻值电阻.3.内接法与外接法的选择:所谓伏安法测电阻中的内、外接法是相对电流表而言,无论内接法还是外接法,由于电表内阻影响都会带来误差,但合理的选择接法有利于减小误差只。
(1)若x R 、V R 、A R 的大小可以估计时,可用以下方法选择内外接法.①x R 较大,满足A R R >>测时,电流表的分压作用很微弱,应采用内接法.x R 较小,满足V x R R <<,时,电压表的分流作用很微弱,应采用外接法.②当x R 比A R 大很多,但又比V R 小很多时,可采用计算临界电阻值的方法,先计算临界电阻V A R R R =0,若0R R x >,可视为x R 较大,采用内接法;若0R R x <,可视为xR 较小,采用外接法(2)若x R 、V R 、A R 的大小关系没有给定,也无法粗略估计时,可借助试触法确定内、外接法.具体作法是:在如图9—38所示电路中、改变电表的连接方式,拿电压表的一个接线柱分别接触M 、N 两点,观察电流表和电压表的示数变化,如果电流表示数变化明显,说明电压表内阻对电路影响较大,应采用内接法.如果电压表示数变化明显,说明电流表内阻对电路影响较大,应采用外接法.4.滑动变阻器的限流接法和分压接法的选择:滑动变阻器的两种电路连接都能控制调节负载的电流和电压,但在相同条件下调节效果不同,实际应用中要根据具体情况恰当地选择限流接法和分压接法.(1)通常情况下(满足安全条件),由于限流电路能耗较小,电路结构简单,因此优先考虑. (2)在下列情况下必须采用分压接法. ①要使某部分电路的电压或电流从零开始连续调节,只有分压接法才能满足.②如果实验所提供的电表量程或其他元件允许通过的最大电流很小,若采用限流接法,无论怎样调节,电路中实际电流(或电压)都会超过电表量程或元件允许的最大电流(或电压),为了保护电表或其他元件,必须采用分压接法.③伏安法测电阻实验中,当滑动变阻器的阻值远小于待测电阻时,若采用限流接法,待测电阻上的电流(或电压)变化很小,不利于多次测量取平均值或用图像法处理数据.也起不到保护用电器的作用.为了在上述情况下尽可能大范围地调节待测电阻上的电流(或电压),应选择分压接法.(二)实验器材的选择1.仪器的选择一般应考虑三方面的因素:(1)安全性:如各电表的读数不能超过量程,电阻类元件的电流不应超过其最大允许电流等.(2)精确性:如选用电表量程应考虑尽可能减小测量值的相对误差,电压表、电流表在使用时,要用尽可能使指针接近满刻度的量程,其指针应偏转到满刻度的3/2以上,使用欧姆表时宜选用指针尽可能在中间刻度附近的倍率挡位.(3)操作性:如选用滑动变阻器时应考虑对外供电电压的变化范围既能满足实验要求,又便于调节,滑动变阻器调节时应用到大部分电阻线,否则不便于操作. 2.选择器材的步骤:(1)根据实验要求设计合理的实验电路.(2)估算电路中电流和电压可能达到的最大值,以此选择电流表和电压表及量程. (3)根据电路选择滑动变阻器. (三)实物图连接的一般步骤①画出实验电路图;②分析各元件连接方式,明确电流表和电压表的量程;③依照电路图,把元件符号与实物一一对应,再连接实物,一般的连接方法是:从电源正极出发,沿电流方向把元件一一连接,最后连到电源负极上,按先串联后并联,先干路后辅路的顺序. ④检查纠正.5 (1997年全国高考题)某电压表的内阻在Ωk 50~20之间,现要测量其内阻,实验室可提供下列可选择器材:待测电压表(量程3 V) 电流表A l (量程200mA) 电流表A 2 (量程5 mA) 电流表A 3 (量程0.6 A) 滑动变阻器R(最大值Ωk 1)电源E(电动势4V),电键S ,导线.(1)所提供的电流表中,应选用_________(填字母代号).(2)为了尽量减小误差,要求多测几组数据,试在方框图9—39中画出符合要求的实验电路图(其中电源和电键已连好).6 欲测量一未知电阻x R ,但不知其未知电阻约为多少,现采用如图9—41甲、乙所示两电路图进行测试,闭合开关,甲图中电压表示数为2.9 V ,电流表示数为4mA ,乙图中电压表示数为3 V ,安培表示数为3mA ,则下面对于兄的叙述正确的是 ( )A .采用甲图误差较小,x R 的测量值为Ω725B .采用乙图误差较小,x R 的测量值为Ω1000C .x R 的真实值应在ΩΩ1000~725之间D .若电源内阻不计,可知x R 的真实值为Ω9757 测一个阻值约为Ωk 25的电阻,备有下列器材 ( ) A 电流表(量程A μ100,内阻Ωk 2) B .电流表(量程A μ500,内阻Ω300)C 电压表(量程V 10,内阻Ωk 100)D .电压表(量程V 50,内阻Ωk 500)E .直流稳压电源(电动势V 15,允许最大电流1 A)F .滑动变阻器(最大电阻Ωk 1,额定功率1 W)G .导线若干(1)电流表应选______,电压表应选__________。
三极管电阻测量方法
三极管电阻测量方法三极管是一种常用的半导体器件,其内部结构复杂,但它在电子电路中的应用非常广泛。
在实际电路应用中,经常需要测量三极管的电阻值,这有助于确保电路的正常工作和故障排除。
本文将介绍三极管电阻测量的方法。
三极管一般由三个区域组成,即发射极、基极和集电极。
为了测量三极管的电阻,我们需要插入一个外部电阻到三极管的两个区域之间,并测量其电压差和电流。
根据欧姆定律(U=IR),我们可以得到所需的电阻值。
三极管的电阻值有两种类型:输入电阻和输出电阻。
输入电阻指的是当三极管的基极电压变化时,发射极电流的变化。
输出电阻是指当三极管的集电极电压变化时,集电极电流的变化。
下面将分别介绍两种类型的电阻测量方法。
1.输入电阻测量方法:(1)将一个电阻器连接到三极管的基极和发射极之间,并将电阻器的电阻值设为R1。
即在三极管的输入端串联一个待测电阻。
(2)将一个直流电源连接到三极管的发射极和集电极之间。
(3)使用万用表测量电阻器两端的电压差,记为U1。
(4)打开直流电源,测量三极管发射极到集电极之间的电流,记为I1。
(5)根据欧姆定律(U1=I1*R1),计算出三极管的输入电阻:Rin = U1/I1。
2.输出电阻测量方法:(1)将一个电阻器连接到三极管的集电极和公共接地之间,并将电阻器的电阻值设为R2。
即在三极管的输出端串联一个待测电阻。
(2)将一个直流电源连接到三极管的发射极和基极之间。
(3)使用万用表测量电阻器两端的电压差,记为U2。
(4)打开直流电源,测量三极管集电极到发射极之间的电流,记为I2。
(5)根据欧姆定律(U2=I2*R2),计算出三极管的输出电阻:Rout = U2/I2。
需要注意的是,在实际测量中,我们应该选择合适的电源电压和测量精度,以确保测量结果的准确性。
此外,在测量输入电阻时,需要注意将三极管工作在正确的工作点,避免过大的电流导致设备损坏。
测量输出电阻时,应注意将三极管工作在放大区,以保持其线性特性。
电阻测量的所有方法及典型例题
一、 实验常规1、器材选取原则2、实验仪器的读数3、滑动变阻器的两种接法------控制电路的选择4、实物图连线5、电阻的测量----伏安法和电流表内外接法的选择1、器材选取原则①安全性原则:通过电源,电表,滑动变阻器,用电器的电流不能超过其允许的最大电流。
定值电阻欧姆表法7、电阻测量的其他方法电流表内阻全电路欧姆定律法电源内阻定值电阻 比较法定值电阻电流表内阻 电压表内阻 半偏法电流表内阻电压表内阻伏安法测电压表的内阻伏安法测电流表的内阻 安安法测电流表的内阻6、伏安法测电阻的应用伏安法、安安法测电阻②精确性原则:选用电表量程应可能减小测量值的相对误差,电压表、电流表在使用时要有较大偏转(指针偏转一般在满偏角度的1/3以上)。
欧姆表指针指在中值电阻附近。
③便于操作原则:选择控制电路时,既要考虑供电电压的变化范围是否满足实验要求,又要注意便于操作。
2、实验仪器的读数高考要求会正确使用的电学仪器有:电流表、电压表、多用电表、滑动变阻器、电阻箱等等。
除了滑动变阻器以外,其它仪器都要求会正确读出数据。
读数的基本原则是:一、安培表、伏特表均有两个量程,其测量值的有效数字依量程及精度而定,但是可以概括如下原则:根据仪器的最小分度可以分别采用1/2、1/5、1/10的估读方法,一般: 最小分度是2的,(包括0.2、0.02等),采用1/2估读,如电流表0~0.6A 档; 最小分度是5的,(包括0.5、0.05等),采用1/5估读,如电压表0~15V 档; 最小分度是1的,(包括0.1、0.01等),采用1/10估读,如刻度尺、螺旋测微器、安培表0~3A 档、电压表0~3V 档等。
二、电阻箱是按照各个数量级上指针的对应数值读数的,指针必须指向某一个确定的数值,不能在两个数值之间,因此电阻箱测量结果的各位读数都是从电阻箱上指针所指位置直接读出的,不再向下估读。
例1. 右图是电压表的刻度盘。
若当时使用的是该表的0-3V 量程,那么电压表读数为多少?若当时使用的是该表的0-15V 量程,那么电压表读数又为多少?解析:0-3V 量程最小刻度是0.1V ,是10分度的,因此要向下估读一位,读1.15V (由于最后一1 2 351015位是估读的,有偶然误差,读成1.14V-1.17V 之间都算正确)。
模电实验指导书2
模电实验指导书2实验⼀常⽤仪器仪表的使⽤(⼀)1.实验⽬的(1)掌握万⽤表、直流稳压电源的使⽤⽅法。
(2)学会使⽤万⽤表测量电阻,掌握线性电阻元件伏安特性的测试⽅法。
(3)识别和检测电阻的⾊环、数值、标称值、额定功率、精度。
2.实验仪器万⽤表、直流稳压源DH1718D、电阻。
3.实验原理1)直流稳压源本实验采⽤直流稳压源DH1718D双路稳压稳流(CV/CC)跟踪电源是实验室通⽤电源。
具有恒压、恒流⼯作功能,且这两种模式可随负载变化⽽进⾏⾃动转换。
另外DH1718D具有串联主从⼯作功能,左边为主路,右为从路,在跟踪状态下,从路的输出电压随主路⽽变化。
这对于需要对称且可调双极性电源的场合特别适⽤。
使⽤⽅法如下:(1)左边的按键为左路仪表指⽰功能选择,按下时指⽰该路输出电流,否则指⽰该路输出电压。
(2)中间按键是跟踪/常态选择开关,将左路输出负端⾄右路输出正端之间加⼀短路线,按下此键后,开启电源开关,整机即⼯作在主----从跟踪状态。
(3)输出电压的调节亦在输出端开路时调节;输出电流的调节亦在输出短路时进⾏。
2)电阻的伏安特性电阻元件是⼀种对电流呈现阻⼒的元件,有阻碍电流流动的性能。
在电路中,线性电阻元件的值不随电压或电流⼤⼩的变化⽽改变,其两端的电压与流过它的电流成正⽐。
线性电阻元件R的伏安特性满⾜欧姆定律,在电压U和电流I的参考⽅向相关联的条件下,U=IR线性电阻元件的伏安特性还可以⽤其电流和电压的关系图形来表⽰,其伏安特性为⼀条通过坐标原点的直线,该直线斜率的倒数即为电阻值,它是⼀个常数。
3)⾊环阻值读值⽅法电阻的阻值或直接标注在元件的外壳上,或是⽤不同的颜⾊的⾊环标注在元件的外壳上。
⾊环电阻分为四⾊环和五⾊环,所谓四⾊环就是⽤四条有颜⾊的环代表阻值⼤⼩。
每种颜⾊代表不同的数字:四⾊环各⾊环表⽰意义如下:第⼀条⾊环:阻值的第⼀位数字;第⼆条⾊环:阻值的第⼆位数字;第三条⾊环:10的幂数;第四条⾊环:误差表⽰。
昆明理工大学电工学电工及电子技术基础实验思考题答案
实验1 常用电子仪器的使用七、实验报告及思考题1.总结如何正确使用双踪示波器、函数发生器等仪器,用示波器读取被测信号电压值、周期(频率)的方法。
答:要正确使用示波器、函数发生器等仪器,必须要弄清楚这些仪器面板上的每个旋钮及按键的功能,按照正确的操作步骤进行操作.用示波器读取电压时,先要根据示波器的灵敏度,知道屏幕上Y轴方向每一格所代表的电压值,再数出波形在Y轴上所占的总格数h,按公式计算出电压的有效值。
用示波器读取被测信号的周期及频率时,先要根据示波器的扫描速率,知道屏幕上X轴方向每一格所代表的时间,再数出波形在X轴上一个周期所占的格数d,按公式T= d ×ms/cm,,计算相应的周期和频率。
2.欲测量信号波形上任意两点间的电压应如何测量?答:先根据示波器的灵敏度,知道屏幕上Y轴方向每一格所代表的电压值,再数出任意两点间在垂直方向所占的格数,两者相乘即得所测电压。
3.被测信号参数与实验仪器技术指标之间有什么关系,如何根据实验要求选择仪器?答:被测信号参数应在所用仪器规定的指标范围内,应按照所测参量选择相应的仪器。
如示波器、函数发生器、直流或交流稳压电源、万用表、电压表、电流表等。
4.用示波器观察某信号波形时,要达到以下要求,应调节哪些旋纽?①波形清晰;②波形稳定;③改变所显示波形的周期数;④改变所显示波形的幅值。
答:①通过调节聚焦旋钮可使波形更清晰。
②通过配合调节电平、释抑旋钮可使波形稳定。
③调节扫描速度旋钮。
④调节灵敏度旋钮。
实验2 基尔霍夫定律和叠加原理的验证七、实验报告要求及思考题1.说明基尔霍夫定律和叠加原理的正确性。
计算相对误差,并分析误差原因。
答:根据实验数据可得出结论:基尔霍夫定律和叠加原理是完全正确的。
实验中所得的误差的原因可能有以下几点:(1)实验所使用的电压表虽内阻很大,但不可能达到无穷大,电流表虽内阻很小,但不可能为零,所以会产生一定的误差。
(2)读数时的视差。
(3)实验中所使用的元器件的标称值和实际值的误差。
万用表测量电阻的方法
万用表测量电阻的方法
首先,确保电路处于断电状态,以免发生触电事故。
然后,将待测电阻器件从
电路中取下,以确保测量的准确性。
接着,将万用表旋钮拨至电阻测量档位,并调整量程,使之稍大于待测电阻的预估值。
接下来,将待测电阻器件的两端引线分别与万用表的两个测量引线相连,确保连接牢固,避免接触不良导致测量不准确。
在连接完成后,等待数秒钟,直到万用表的数值稳定下来。
如果是数字万用表,直接读取显示屏上的电阻数值即可;如果是模拟万用表,则需要通过刻度盘上的指针来读取电阻数值。
需要注意的是,读数时要注意小数点的位置,以免出现读错数值的情况。
在测量完成后,及时断开连接,将待测电阻器件重新安装到电路中。
此外,还
需要注意一些测量电阻时的常见问题,比如测量引线的接触不良、待测电阻器件本身的损坏等,都可能导致测量结果不准确,因此在测量时需要仔细检查和排除这些可能出现的问题。
总的来说,使用万用表测量电阻的方法并不复杂,只需要注意一些细节和技巧
即可。
希望以上内容能够对大家在实际工作中有所帮助。
放大器的性能指标及测量方法
放大器的性能指标及测量方法1、放大器的性能指标 〔1〕静态工作点放大器的静态工作点是U BE 、I B 、I C 、U CE 。
一般只测量U BE 、I C 、U CE 三个参数。
〔2〕电压放大倍数 放大器的电压放大倍数ioV V V A 〔3〕输入电阻 〔4〕输出电阻 〔5〕最大动态范围 〔6〕通频带2、放大器性能指标的测试方法 以单管共射放大器电路说明。
〔1〕放大器静态工作点的调试与测量 ①静态工作点的调试放大器静态工作点的调试是指对管子集电极电流I C 〔或U CE 〕的调整与测试。
静态工作点是否适宜,对放大器的性能和输出波形都有很大影响。
如工作点偏高,放大器在参加交流信号以后易产生饱和失真,此时u O 的负半周将被削底,如图2-2〔a 〕所示;如工作点偏低那么易产生截止失真,即u O 的正半周被缩顶〔一般截止失真不如饱和失真明显〕,如图2-2〔b 〕所示。
这些情况都不符合图2-1单管共射放大器电路不失真放大的要求。
所以在选定工作点以后还必须进展动态调试,即在放大器的输入端参加一定的输入电压u i,检查输出电压u O的大小和波形是否满足要求。
如不满足,那么应调节静态工作点的位置。
〔a〕〔b〕图2-2 静态工作点对u O波形失真的影响改变电路参数U CC、R C、R B〔R B1、R B2〕都会引起静态工作点的变化,如图2-3所示。
但通常多采用调节偏置电阻R B2的方法来改变静态工作点,如减小R B2,那么可使静态工作点进步等。
图2-3 电路参数对静态工作点的影响最后还要说明的是,上面所说的工作点“偏高〞或“偏低〞不是绝对的,应该是相对信号的幅度而言,如输入信号幅度很小,即使工作点较高或较低也不一定会出现失真。
所以确切地说,产生波形失真是信号幅度与静态工作点设置配合不当所致。
如需满足较大信号幅度的要求,静态工作点最好尽量靠近交流负载线的中点。
②静态工作点的测量测量放大器的静态工作点,应在输入信号u i=0的情况下进展,即将放大器输入端与地端短接,然后选用量程适宜的直流毫安表和直流电压表,分别测量晶体管的集电极电流I C以及各电极对地的电位U B、U C和U E。
隔离开关接触电阻测量方法比较
隔离开关接触电阻测量方法比较隔离开关接触电阻测量方法比较隔离开关接触电阻的测量方法有几种,下面我将逐步介绍这些方法并进行比较。
第一种方法是使用万用表进行测量。
首先,将隔离开关的电源关闭并断开输入和输出电缆。
然后,将万用表的测量模式选择为电阻测量,并将测量引针连接到隔离开关的输入和输出端。
接下来,记录下所测得的电阻值,并将其与隔离开关的规格进行比较,以确定接触电阻是否在正常范围内。
第二种方法是使用专用测试仪器进行测量。
这种方法需要使用特定的测试仪器,例如接触电阻测试仪。
首先,将测试仪器连接到隔离开关的输入和输出端。
然后,按照测试仪器的操作说明进行操作,开始测量接触电阻。
测试仪器将会自动进行测量,并显示出测得的接触电阻值。
这种方法通常比手动使用万用表更精确和方便。
在比较这两种方法时,可以考虑以下几个因素:1. 精确度:使用专用测试仪器进行测量可以提供更准确的结果,因为这些仪器使用了更先进的测量技术和算法。
相比之下,手动使用万用表可能会受到人为误差的影响。
2. 方便性:手动使用万用表进行测量相对来说比较简单和便捷,因为万用表通常是一种常见的工具,容易获得并操作。
而使用专用测试仪器则需要额外的设备和学习操作方法。
3. 效率:使用专用测试仪器进行测量可以更快速地完成测量过程,因为仪器可以自动进行测量并显示结果。
手动使用万用表则需要更多的时间和努力。
综上所述,根据精确度、方便性和效率等因素综合考虑,使用专用测试仪器进行隔离开关接触电阻测量是更好的选择。
然而,在没有测试仪器的情况下,手动使用万用表仍然是一种可行的方法,只需注意减少人为误差的影响。
测电阻的方法有哪些
测电阻的方法有哪些测量电阻是电子学和电工学中常见的实验和测量方法之一。
下面将详细介绍测电阻的一些常用方法。
1. 万用表法:万用表是最常用的测量电阻的工具之一。
通过将万用表的两个探头连接到电阻的两个端点,可以直接读取电阻值。
一般情况下,万用表有多个量程可选,从几欧姆到几兆欧姆范围内都可测量。
2. 电桥法:电桥法是测量电阻精度较高的方法之一。
常见的电桥有韦斯顿电桥和麦克斯韦电桥。
通过调节电桥上的可变元件(如可变电阻、可变电容等),使得电桥两侧电压为零,从而确定未知电阻。
3. 阻值计法:阻值计也是一种测量电阻的常用装置。
阻值计通过内部电路原理,可以直接测量小电阻值。
阻值计有手摇式和数字式两种,数字式阻值计通常具有更高的测量精度和功能。
4. 电压法:电压法是一种间接测量电阻的方法。
通过在电路中施加电压,测量电流的大小,然后根据欧姆定律利用电压和电流关系来计算电阻。
电压法适用于测量较大阻值的电阻。
5. 恒流法:恒流法也是一种间接测量电阻的方法。
通过在电路中施加恒定电流,测量电压的大小,然后根据欧姆定律利用电流和电压关系来计算电阻。
恒流法适用于测量较小阻值的电阻。
6. 二线法和四线法:二线法和四线法是测量电阻时常用的接线方式。
二线法是最简单的接线方式,将测量电阻的两个端点与测量设备的两个引线相连。
但是由于测试线的电阻和电容对测量结果会产生影响,精度较低。
四线法则通过使用多组测试线,分别施加电流和测量电压,可以消除引线电阻对测量结果的影响,提高测量精度。
7. 逆变法:逆变法是一种使用逆变器测量电阻的方法。
逆变器将直流电压通过变频器转换为交流电压,经过测试电阻后再通过变频器转换为直流电压进行测量。
根据变频器的输出频率和输入电阻的变化关系,可以计算出测试电阻的值。
8. 频率法:频率法是一种通过测量电阻在不同频率下的阻抗来计算电阻值的方法。
在不同频率下,电阻的阻抗会发生变化,通过对阻抗进行测量和分析,可以得到电阻的值。
运放输入阻抗
运放输入阻抗运放输入阻抗是指运放输入端的电阻,也就是运放输入端对外界信号的电阻。
在运放电路中,输入阻抗是一个非常重要的参数,它直接影响到运放电路的性能和稳定性。
因此,了解和掌握输入阻抗的相关知识对于电子工程师来说是非常必要的。
一、运放输入阻抗的概念运放输入阻抗是指运放输入端所呈现的电阻,它是输入信号与运放输入端之间的阻抗。
运放输入阻抗的大小直接影响到运放电路的输入信号的大小,同时也影响到运放电路的输入电流大小。
因此,输入阻抗的大小对于运放电路的性能和稳定性都有着非常重要的影响。
二、运放输入阻抗的计算方法运放输入阻抗的计算方法有两种,一种是理论计算方法,另一种是实际测量方法。
1、理论计算方法运放输入阻抗的理论计算方法是根据运放的内部电路结构和电路参数来计算的。
一般来说,运放的输入端有两种结构,一种是差分输入结构,另一种是单端输入结构。
对于差分输入结构,其输入阻抗的大小可以通过下面的公式来计算:Rin = 2β/(gm+gds)其中,Rin为输入阻抗,β为差分输入电阻,gm为差分输入电流放大系数,gds为差分输入电源电路中的导通电阻。
对于单端输入结构,其输入阻抗的大小可以通过下面的公式来计算:Rin = β/gm其中,Rin为输入阻抗,β为单端输入电阻,gm为单端输入电流放大系数。
2、实际测量方法运放输入阻抗的实际测量方法是通过将一个已知的电阻连接到运放的输入端,然后测量输入电压和输入电流来计算的。
具体的测量方法可以参考下面的步骤:(1)将一个已知的电阻连接到运放的输入端。
(2)通过万用表测量电阻的阻值。
(3)将一个信号源连接到运放的输入端。
(4)通过万用表测量输入电压和输入电流。
(5)根据测量结果计算输入阻抗的大小。
三、运放输入阻抗的影响因素运放输入阻抗的大小受到多种因素的影响,主要包括以下几个方面:1、运放的内部电路结构和电路参数。
不同类型的运放具有不同的内部电路结构和电路参数,因此它们的输入阻抗大小也不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013.3.24
测量输入电阻1
输入电阻: 输入电阻的大小是表明放大电路从信号源或前级放大电路获取电流的多少,Ri大,索取的前级电流则小,对前级的影响就越小。
串联电阻法:在被测的放大电路的输入端与信号源之间串入一个已知电阻Rn,只要分别测出放大器的输入电压Ui和输入电流Ii,就可以求出:
测量时应注意以下几点:(1)由于电阻Rn两端没有电路公共接地点,所以测量Rn两端电压时必须分别测出US和Ui,然后按UR=US-Ui,求出UR。
(2)电阻Rn的值不宜取得过大,过大会引入干扰;但也不宜取得太小,太小易引起较大的测量误差。
最好取Rn和Ri的阻值为同一数量级。
(3)测Ri时输出端应该接上RL,并监视输出波形,保证在波形不失真的条件下进行测量。
输出电阻
输出电阻是负载开路、输入信号源电压为零时,输出端口呈现的放大电路的等效交流电阻。
它表明放大电路带负载的能力,输出电阻Ro 小,放大电路带负载的能力越强。
.放大器输出电阻Ro的测试放大器输出端可以等效成一个理想电压源Uo和Ro相串联,如图2-3所示。
在放大器输入端加入Ui电压,测出输出端不接负载RL输出电压Uo 和接入负载RL输出电压UL,即
注意:要求在接入负载RL前后,输入信号的大小不变,放大器的输出波形无失真。
3、幅频特性
放大器的增益与输入信号频率之间的关系曲线。
一般用逐点法进行测量。
在保持输入信号不变的情况下,改变输入信号的频率,逐点测量对应于不同频率时的电压增益,用对数坐标纸画出幅频特性曲线。
通常将放大倍数下降到中频电压放大倍数的0.707倍时所对应的频率称为该放大电路的上、下限截止频率,用FH和FL表示,该放大电路的通频带为:
BW= FH -FL
三、实验内容
1. 调整静态工作点
•(1)按图电路,接好并检查无误后,接通直流电源+12V,在无信号输入情况下,调整偏置可变电阻RP,使IC=1mA,(即URC=3V) (2)测量UCQ、UCEQ、UEQ、UBEQ和UBQ的值。
2.测量输入电阻
在静态工作点不变的情况下,在输入端加入Us=10mV、f=1KHZ的正弦信号,测量US,Ui值。
测量结果记入表2-1中,按“串联电阻法”测量原理,计算出输入电阻的大小。
3.测量输出电阻
保持静态工作点不变,输入信号的频率、电压不变,分别测出不接负载和接负载时的输出电压U0、Ui, 测量结果记入表2-2 中,计算出输出电阻的大小。
4、测量放大器的幅频特性
保持输入信号幅度不变,在输出信号不失真的前提下,改变输入信号的频率,测出输出电压的大小,找出FH和FL计算出B值, 结果记入表2-3中。
四、注意事项:
1、直流稳压电源输出端不能短路,以免损坏电源。
2、正确使用三极管
3、旁路电容Ce对电路的影响
4、示波器的使用触发源、触发方式的选择,电平调节
测量输入电阻2。