多元函数微分法及其应用-期末复习题-高等数学下册-(上海电机学院)

合集下载

第9章 多元函数微分法及其应用(题库)答案

第9章 多元函数微分法及其应用(题库)答案

C ).
x 1 y 1 z 1 1 2 3
第 9 章 多元函数微分法及其应用(题库)答案
第 4 页
共计 10 页
C.
x 1 y 1 z 1 1 2 3
D.
x 1 y 2 z 3 1 1 1
C ).
28.(8-6)曲面 xyz 6 在点 1, 2,3 处的切平面方程是( A. 6 x 3 y 2 y 1 0 C. 6 x 3 y 2 z 18 0
t
22.(8-4)设 z uv sin t ,而 u e , v cos t ,求 解:
dz z du z dv z vet u sin t cos t et cos t sin t cos t . dt u dt v dt t
2 2
B.
x 2 y 1 == 4 2
z4 -1
D. 2 x y 4 z 6 0 C ).
31.(8-6)旋转抛物面 z x y 1 在点 2,1, 4 处法线方程为( A. 4 x 2 2 y 1 z 4 0 C. B.
第 3 页 共计 10 页
dz . dt
第 9 章 多元函数微分法及其应用(题库)答案
23.(8-5)已知方程 x y 1 0 在点 0,1 的某邻域内能唯一确定一个单值可导且 x 0
2 2

y 1 的隐函数 y f x ,求这函数的一阶导数在 x 0 的值
z . x
z 2x 3y x
2

z x
2
x 1 y 2
2 1 3 2 8 .
z . y

大学高数下册试题及答案,第7章(共7页)

大学高数下册试题及答案,第7章(共7页)

大学高数下册试题及答案,第7章第七章多元函数微分学作业1多元函数 1.填空题已知函数,则;的定义域是;的定义域是;函数的连续范围是全平面;函数在处间断. 2.求下列极限;解:. 解:由于。

故 3.讨论极限是否存在. 解:沿着曲线,有因而异,从而极限不存在4.证明在点分别对于每个自变量或都连续,但作为二元函数在点却不连续. 解:由于从而可知在点分别对于每个自变量或都连续,但沿着曲线,有因而异,从而极限不存在,故作为二元函数在点却不连续.作业2偏导数 1.填空题设,则;设,则;设,则;曲线在点处的切线与轴正向的倾角是. 2.设。

证明. 证:因为所以3. 设,求,. 解从而4.设,证明.解:因为所以 5.设函数. 试求的偏导函数;解:当,当,考察偏导函数在点处是否连续. ,故在点处连续,不存在,从而在点处不连续作业3全微分及其应用 1.填空题在点处偏导数存在是在该点可微的必要条件;函数在点处,当时有全增量,全微分;设在点处的全增量为,全微分为,则在点处的全增量与全微分的关系式是;在点处的; ,则; ,则; ,则. 2.证明:在点处连续,与存在,但在处不可微. 证:由于从而但是不存在,从而在处不可微.3.设函数试证:函数在点处是可微的;证:因为又所以函数在点处是可微的函数在点处不连续. 证:当不存在,故在点处不连续作业4 多元复合函数的求导法则 1.填空题设,则;设,则;设,则;设,则. 2.求下列函数的偏导数设其中具有一阶连续偏导数,求和;解:设,其中均可微,求和. 解:因为从而所以 3.验证下列各式设,其中可微,则;证:因为所以设,其中可微,则. 证:因为所以4.设其中函数具有二阶连续偏导数,求. 解:因为所以4.设其中函数具有二阶连续偏导数,试证:. 证:因为从而左边作业5隐函数求导法 1.填空题已知,则;已知,则;已知,则;已知,则;已知,其中具有一阶连续偏导数,则 . 2.设其中具有二阶连续偏导数,求.解:3.求由方程组所确定的及的导数及. 解:由已知4.设函数,又方程确定是的函数,其中与均可微;连续,且. 试证:. 证:因为。

(完整版)多元函数微积分复习试题

(完整版)多元函数微积分复习试题

多元函数微积分复习题一、单项选择题1.函数()y x f ,在点()00,y x 处连续是函数在该点可微分的 ( B )(A) 充分而不必要条件; (B) 必要而不充分条件; (C) 必要而且充分条件; (D) 既不必要也不充分条件.2.设函数()y x f ,在点()00,y x 处连续是函数在该点可偏导的 ( D )(A) 充分而不必要条件; (B) 必要而不充分条件;(C) 必要而且充分条件; (D) 既不必要也不充分条件.3.函数()y x f ,在点()00,y x 处偏导数存在是函数在该点可微分的 ( B ).(A) 充分而不必要条件; (B) 必要而不充分条件;(C) 必要而且充分条件; (D) 既不必要也不充分条件. 4.对于二元函数(,)z f x y =, 下列结论正确的是 ( C ).A. 若0lim x xy y A →→=, 则必有0lim (,)x x f x y A →=且有0lim (,)y y f x y A →=; B. 若在00(,)x y 处zx∂∂和z y ∂∂都存在, 则在点00(,)x y 处(,)z f x y =可微; C. 若在00(,)x y 处zx∂∂和z y ∂∂存在且连续, 则在点00(,)x y 处(,)z f x y =可微; D. 若22z x ∂∂和22z y ∂∂都存在, 则. 22z x ∂∂=22zy ∂∂.5.二元函数(,)z f x y =在点00(,)x y 处满足关系( C ).A. 可微(指全微分存在)⇔可导(指偏导数存在)⇒连续;B. 可微⇒可导⇒连续;C. 可微⇒可导, 或可微⇒连续, 但可导不一定连续;D. 可导⇒连续, 但可导不一定可微.6.向量()()3,1,2,1,2,1a b =--=-,则a b = ( A ) (A) 3 (B) 3- (C) 2- (D) 25.已知三点M (1,2,1),A (2,1,1),B (2,1,2) ,则→→•AB MA = ( C ) (A) -1; (B) 1; (C) 0 ; (D) 2;6.已知三点M (0,1,1),A (2,2,1),B (2,1,3) ,则||→→+AB MA =( B )(A);2-(B) (C)2; (D)-2;7.设D 为园域222x y ax +≤ (0)a >, 化积分(,)DF x y d σ⎰⎰为二次积分的正确方法是_____D____.A. 20(,)aa adx f x y dy -⎰⎰B. 202(,)adx f x y dy ⎰C. 2cos 0(cos ,sin )a a ad f d θθρθρθρρ-⎰⎰D. 2cos 202(cos ,sin )a d f d πθπθρθρθρρ-⎰⎰8.设3ln 1(,)x Idx f x y dy =⎰⎰, 改变积分次序, 则______.I= BA. ln30(,)y e dy f x y dx ⎰⎰B. ln330(,)y edy f x y dx ⎰⎰C. ln33(,)dy f x y dx ⎰⎰ D. 3ln 1(,)x dy f x y dx ⎰⎰9. 二次积分cos 20(cos ,sin )d f d πθθρθρθρρ⎰⎰可以写成___________. DA. 1(,)dy f x y dx ⎰⎰B. 100(,)dy f x y dx ⎰C. 11(,)dx f x y dy ⎰⎰ D. 10(,)dx f x y dy ⎰10. 设Ω是由曲面222x y z +=及2z =所围成的空间区域,在柱面坐标系下将三重积分(,,)I f x y z dx dy dz Ω=⎰⎰⎰表示为三次积分,________.I = CA . 22120(cos ,sin ,)d d f z dz ρπθρρθρθ⎰⎰⎰B. 22220(cos ,sin ,)d d f z dz ρπθρρθρθρ⎰⎰⎰C . 22222(cos ,sin ,)d d f z dz πρθρρθρθρ⎰⎰⎰D . 222(cos ,sin ,)d d f z dz πθρρθρθρ⎰⎰⎰11.设L 为y x 0面内直线段,其方程为d y c a x L ≤≤=,:,则()=⎰Ldx y x P , ( C )(A ) a (B ) c(C ) 0 (D ) d12.设L 为y x 0面内直线段,其方程为d x c a y L ≤≤=,:,则()=⎰Ldy y x P , ( C )(A ) a (B ) c (C ) 0 (D ) d13.设有级数∑∞=1n n u ,则0lim =∞→n n u 是级数收敛的 ( D )(A) 充分条件; (B) 充分必要条件; (C) 既不充分也不必要条件; (D) 必要条件;14.幂级数∑∞=1n n nx 的收径半径R = ( D )(A) 3 (B) 0 (C) 2 (D) 115.幂级数∑∞=11n n x n的收敛半径=R ( A )(A) 1 (B) 0 (C) 2 (D) 316.若幂级数∑∞=0n nn x a 的收敛半径为R ,则∑∞=+02n n n x a 的收敛半径为 ( A )(A) R (B) 2R(C) R (D) 无法求得17. 若lim 0n n u →∞=, 则级数1n n u ∞=∑( ) DA. 收敛且和为B. 收敛但和不一定为C. 发散D. 可能收敛也可能发散18. 若1n n u ∞=∑为正项级数, 则( B )A. 若lim 0n n u →∞=, 则1n n u ∞=∑收敛 B. 若1n n u ∞=∑收敛, 则21n n u ∞=∑收敛C. 若21n n u ∞=∑, 则1n n u ∞=∑也收敛 D. 若1n n u ∞=∑发散, 则lim 0n n u →∞≠19. 设幂级数1n n n C x ∞=∑在点3x =处收敛, 则该级数在点1x =-处( A )A. 绝对收敛B. 条件收敛C. 发散D. 敛散性不定 20. 级数1sin (0)!n nx x n ∞=≠∑, 则该级数( B )A. 是发散级数B. 是绝对收敛级数C. 是条件收敛级数D. 可能收敛也可能发散二、填空题1.设22(,)sin (1)ln()f x y x y x y =+-+,则 =')1,0(x f ___1___.2.设()()()22ln 1cos ,y x y x y x f +-+=,则)1,0('x f =____0______.3.二重积分的变量从直角坐标变换为极坐标的公式是()()⎰⎰⎰⎰=DDd d f dxdy y x f θρρθρθρsin ,cos ,4.三重积分的变量从直角坐标变换为柱面坐标的公式是()()⎰⎰⎰⎰⎰⎰ΩΩ=dz d d z f dxdydz z y x f ϕρρϕρϕρ,sin ,cos ,,5.柱面坐标下的体积元素 z d d d dv θρρ=6.设积分区域222:D x y a +≤, 且9Ddxdy π=⎰⎰, 则a = 3 。

高数下多元微分学复习

高数下多元微分学复习


解:
z x
2xy
1 y2

2z xy
2x2
2 y3

7.已知 z ln ex ey ,求 z 和 2 z 。 x xy
解:
z x
ex ex ey

2z xy
exey ex ey

2
8.设 z exy yx2 ,则 zx 1,2 [ C ]。
(A) e 4 ; (B) e2 4 ;(C) 2e2 4 ;(D) 2e 4 。
9.已知
f
x,
y
cos x cos x
y y
,求
fy
,
4

解:
f
,
y
cos y cos y
1,故
fy
,
4
0。
10.已知 f x, y, z ex2 y2 z2 ,求 fyy 5,1, 0 。 解: f 5, y,0 e25y2 , f y 5, y,0 2 ye25 y2 ,
f yy 5, y, 0 2 4 y2 e25y2 , fyy 5,1,0 6e26 。
11.试证函数 z y arcsin x 满足 x z y z 0 。
x
y
x y
解:
z x
y x2
arcsin
x y
y x
1 1
1 x y2 y
y x2
arcsin
x y
x
y; y2 x2
2 x2 y2 z2
x2 y2 z2
15.若 z f x, y 在点 x0, y0 处有连续一阶偏导数,
则 f x, y 在 x0, y0 处 [ B ]。
(A)不一定可微;

高数下册各章总复习题及答案

高数下册各章总复习题及答案

第八章 多元函数微分法及其应用8.01 在“充分”,“必要”,“充分必要”中选择一个正确的填入下列空格内:(1)()y ,x f 在点()y ,x 可微分是()y ,x f 在该点连续的充 分条件;()y ,x f 在点()y ,x 连续是()y ,x f 在该点可微分的必 要条件。

(2))y ,x (f z =在点()y ,x 的偏导数x z ∂∂及y z∂∂存在是()y ,x f 在该点可微分的必 要条件;)y ,x (f z =在点()y ,x 可微分是函数在该点的偏导数x z ∂∂及y z∂∂存的充 分条件。

(3))y ,x (f z =的偏导数x z ∂∂及y z∂∂点()y ,x 存在且连续是()y ,x f 在该点可微分的充 分条件。

(4)函数()y ,x f z =的两个二阶混合偏导数y x z 2∂∂∂及x y z2∂∂∂在区域D 内连续是这两个二阶混合偏导数在D 内相等的充 分条件。

8.02求函数()()222yx 1ln y x 4y ,x f ---=的定义域,并求()y ,x f lim 0y 21x →→。

解:1)⎩⎨⎧≤<+<⇒⎪⎩⎪⎨⎧≠-->--≥-x4y 1y x 01y x 10y x 10y x 422222222,定义域:(){}x 4y ,1y x 0y ,x D 222≤<+<=2)由初等函数的连续性知:43ln 20211ln 0214)0,21(f )y ,x (f lim 2220y 21x =⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--⨯==→→+8.03 证明极限422y 0x y x xy lim+→→不存在。

证明:当点()y ,x 沿用x k y 1=趋于点()0,0时,有222220x 4220x k y 0x k 1k x k x kx lim y x xy lim 1+=+=+++→→=→,显然它是随着k 的不同而改变的,故:极限422y 0x y x xy lim+→→+不存在。

多元函数微分法和应用期末复习题高等数学(下册)(上海电机学院)

多元函数微分法和应用期末复习题高等数学(下册)(上海电机学院)

第八章 偏导数与全微分一、选择题1.若u=u(x, y)是可微函数,且,1),(2==x y y x u ,2x xuxy =∂∂=则=∂∂=2x y y u [A ] A. 21-B. 21C. -1D. 12.函数62622++-+=y x y x z [ D ]A. 在点(-1, 3)处取极大值B. 在点(-1, 3)处取极小值C. 在点(3, -1)处取极大值D. 在点(3, -1)处取极小值3.二元函数(),f x y 在点()00,x y 处的两个偏导数()()0000,,,x y f x y f x y 存在是函数f 在该点可微的 [ B ]A. 充分而非必要条件B.必要而非充分条件C.充分必要条件D.既非充分也非必要条件 4. 设u=2x +22y +32z +xy+3x-2y-6z 在点O(0, 0, 0)指向点A(1, 1, 1)方向的导数=∂∂lu[ D ] A.635 B.635- C.335 D. 335- 5. 函数xy y x z 333-+= [ B ]A. 在点(0, 0)处取极大值B. 在点(1, 1)处取极小值C. 在点(0, 0), (1, 1)处都取极大值 D . 在点(0, 0), (1, 1)处都取极小值 6.二元函数(),f x y 在点()00,x y 处可微是(),f x y 在该点连续的[ A ] A. 充分而非必要条件 B.必要而非充分条件 C.充分必要条件D.既非充分也非必要条件 7. 已知)10(0sin <<=--εεx y y , 则dxdy= [ B ] A. y cos 1ε+ B.y cos 11ε- C. y cos 1ε- D. ycos 11ε+8. 函数yx xy z 2050++= (x>0,y>0)[ D ] A. 在点(2, 5)处取极大值 B. 在点(2, 5)处取极小值C.在点(5, 2)处取极大值D. 在点(5, 2)处取极小值9.二元函数(),f x y 在点()00,x y 处连续的是(),f x y 在点()00,x y 处可微的 [A ] A. 必要而非充分条件 B. 充分而非必要条件C.充分必要条件D.既非充分也非必要条件 10. 曲线x=t, y=2t -, z=3t 所有切线中与平面x+2y+z=4平行的切线有 [ B ] A. 1 条 B.2条 C. 3条 D.不存在 11.设22(,)xy f x y y x =-,则(,)x yf y x= B A. 42xyy x - B. 2244x y y x - C. 2244x y y x +- D. 2244y x y x --12.为使二元函数(,)x yf x y x y+=-沿某一特殊路径趋向(0,0)的极限为2,这条路线应选择为 B A.4x y = B. 3x y = C. 2x y = D. 23x y = 13.设函数(,)z f x y =满足222zy∂=∂,且(,1)2f x x =+,(,1)1y f x x '=+,则(,)f x y =BA.2(1)2y x y +++ B. 2(1)2y x y +-+ C. 2(1)2y x y +-- D. 2(1)2y x y ++- 14.设(,)32f x y x y =+,则(,(,))f xy f x y = CA.344xy x y ++B. 2xy x y ++C. 364xy x y ++D. 346xy x y ++15.为使二元函数222(,)xy f x y x y =+在全平面连续,则它在(0,0)处应被补充定义为 BA.-1B.0C.1D. 16.已知函数22(,)f x y x y x y +-=-,则(,)(,)f x y f x y x y∂∂+=∂∂ C A.22x y - B. 22x y + C. x y + D. x y -17.若()yf x=(0)x >,则()f x =BB. C.xD. 18.若xz y =,则在点 D 处有z z y x∂∂=∂∂ A.(0,1) B.(,1)e C.(1,)e D. (,)e e19.设2y z x =,则下列结论正确的是 AA.220z z x y y x ∂∂-=∂∂∂∂ B. 220z zx y y x ∂∂->∂∂∂∂ C.220z zx y y x∂∂-<∂∂∂∂ D.两者大小无法确定 20.函数0,0(,)11sin sin ,0xy f x y x y xy y x =⎧⎪=⎨+≠⎪⎩,则极限00lim (,)x y f x y →→ ( C ). (A) 等于1 (B) 等于2 (C) 等于0 (D) 不存在 21.函数z xy =在点(0,0) ( D ).(A) 有极大值 (B) 有极小值 (C) 不是驻点 (D) 无极值 22.二元函数z =在原点(0,0)处( A ).(A) 连续,但偏导不存在 (B) 可微(C) 偏导存在,但不连续 (D) 偏导存在,但不可微23.设()u f r =,而r =,()f r 具有二阶连续导数,则222222u u ux y z∂∂∂++=∂∂∂( B ).(A) 1''()'()f r f r r +(B) 2''()'()f r f r r+ (C) 211''()'()f r f r r r + (D) 212''()'()f r f r r r+24.函数(,)z f x y =在点00(,)x y 处连续是它在该点偏导存在的( D ). (A) 必要而非充分条件 (B) 充分而非必要条件(C) 充分必要条件 (D) 既非充分又非必要条件 25.函数221z x y =--的极大值点是 ( D ).(A) (1,1) (B) (1,0) (C) (0,1) (D) (0,0)26.设(,)f x y =(2,1)x f '=(B ). (A)14(B) 14- (C) 12(D) 12-27.极限24200lim x y x y x y →→+( B ).(A) 等于0 (B) 不存在 (C) 等于12 (D) 存在且不等于0及1228.(,)z f x y =若在点000(,)P x y 处的两个一阶偏导数存在,则(B ). (A) (,)f x y 在点0P 连续 (B) 0(,)z f x y =在点0x 连续 (C) 00||P P z zdz dx dy x y ∂∂=⋅+⋅∂∂ (D) A,B,C 都不对 29. 设函数y x z =,则z d =( A ). (A).y x x x yxy y d ln d 1+- (B).y x x yx y y d d 1+-(C).y x x x x yy d ln d + (D).y y x x yxy y d ln d 1+-30. 已知=∂∂===y zxy v y x u v u z 则 ,,,ln 2( C )(A )y x xy yx 3232ln 2+ (B )y xxy y x 3232ln 2- (C )y x xy y x 3232ln 2+- (D )y x xy y x 22ln 2+31.函数z=22y x 1--的定义域是( D ) (A.) D={(x,y)|x 2+y 2=1}(B.)D={(x,y)|x 2+y 2≥1} (C.) D={(x,y)|x 2+y 2<1}(D.)D={(x,y)|x 2+y 2≤1}32.设22),(y x xyy x f +=,则下列式中正确的是( C );)A ( ),(,y x f x y x f =⎪⎭⎫⎝⎛; )B (),(),(y x f y x y x f =-+;)C ( ),(),(y x f x y f =; )D ( ),(),(y x f y x f =-33.设e cos xz y =,则=∂∂∂yx z2( D ); )A ( e sin xy ; )B ( e e sin xxy +;)C ( e cos xy -; )D ( e sin xy - 34.已知22),(y x y x y x f -=-+,则x f ∂∂=∂∂+yf ( C );)A ( y x 22+; )B ( y x -; )C ( y x 22- )D ( y x +.35. 设y xy x z 2232-+=,则=∂∂∂y x z( B )(A )6 (B )3 (C )-2 (D )2.36.设()=∂∂=⎪⎭⎫ ⎝⎛x zy x y x f z 00, ,,则( B )(A )()()x y x f y y x x f x ∆-∆+∆+→∆00000,,lim(B )()()x y x f y x x f x ∆-∆+→∆0000,,lim(C )()()x y x f y x x f x ∆-∆+→∆00000,,lim(D )()x y x x f x ∆∆+→∆000,lim37. 设由方程0=-xyz e z确定的隐函数()=∂∂=x z y x f z 则,,( B )(A )z z+1 (B )()1-z x z (C )()z x y +1 (D )()z x y -138. 二次函数 11)4ln(2222-++--=y x y x z 的定义域是( D )A. 1 < 22y x + ≤ 4;B. –1 ≤ 22y x + < 4; C. –1 ≤ 22y x + ≤ 4; D. 1 < 22y x + < 4。

多元函数微分学复习题

多元函数微分学复习题

多元函数微分学复习题多元函数微分学复习题一、偏导数与全微分在多元函数微分学中,偏导数与全微分是非常重要的概念。

偏导数用来描述一个函数在某一点上沿着某个坐标轴方向的变化率,而全微分则是描述函数在某一点上的变化率。

下面我们通过一些具体的例子来复习一下这两个概念。

例1:计算函数 f(x,y) = x^2 + 3xy + y^2 在点 (1,2) 处的偏导数。

解:对于 f(x,y) = x^2 + 3xy + y^2 ,我们分别对 x 和 y 求偏导数。

对于 x 的偏导数,我们将 y 视为常数,即有:∂f/∂x = 2x + 3y对于 y 的偏导数,我们将 x 视为常数,即有:∂f/∂y = 3x + 2y所以,在点 (1,2) 处的偏导数分别为:∂f/∂x = 2(1) + 3(2) = 8∂f/∂y = 3(1) + 2(2) = 7例2:计算函数 f(x,y) = e^x + ln(y) 在点 (1,2) 处的全微分。

解:对于 f(x,y) = e^x + ln(y) ,我们需要先计算其偏导数。

对于 x 的偏导数,我们有:∂f/∂x = e^x对于 y 的偏导数,我们有:∂f/∂y = 1/y所以,在点 (1,2) 处的全微分为:df = ∂f/∂x dx + ∂f/∂y dy= e^x dx + (1/y) dy= e^1 dx + (1/2) dy= e dx + (1/2) dy二、梯度与方向导数梯度和方向导数是多元函数微分学中与偏导数和全微分密切相关的概念。

梯度描述了一个函数在某一点上的变化率最大的方向,而方向导数则描述了函数在某一点上沿着某个给定方向的变化率。

例3:计算函数 f(x,y) = x^2 + y^2 在点 (1,1) 处的梯度和方向导数,以及在方向(1,1) 上的方向导数。

解:对于函数 f(x,y) = x^2 + y^2 ,我们先计算其梯度。

梯度的定义为:grad(f) = (∂f/∂x, ∂f/∂y)= (2x, 2y)所以,在点 (1,1) 处的梯度为:grad(f) = (2(1), 2(1)) = (2, 2)接下来,我们计算函数在点 (1,1) 处沿着方向 (1,1) 的方向导数。

多元函数微分学复习题

多元函数微分学复习题

多元函数微分学复习题多元函数微分学复习题一、偏导数与全微分在多元函数微分学中,偏导数和全微分是非常重要的概念。

偏导数表示函数在某一变量上的变化率,而全微分则表示函数在所有变量上的变化率。

1. 对于函数 f(x, y) = x^2 + 2xy + y^2,求关于 x 的偏导数∂f/∂x 和关于 y 的偏导数∂f/∂y。

2. 对于函数 z = e^(x+y),求关于 x 的全微分 dz。

3. 对于函数 f(x, y, z) = x^2 + y^2 + z^2,求关于 x, y, z 的全微分 df。

二、链式法则与隐函数定理链式法则和隐函数定理是多元函数微分学中的重要工具,它们用于求解复杂的多元函数导数和隐函数的导数。

1. 对于函数 z = f(x, y) = x^2 + y^2,其中x = rcosθ,y = rsinθ,求 dz/dr 和dz/dθ。

2. 对于方程 x^2 + y^2 + z^2 = 1,求 dz/dx 和 dz/dy。

三、方向导数与梯度方向导数和梯度是用来描述函数在某一方向上的变化率的工具,它们在多元函数微分学中也是非常重要的概念。

1. 对于函数 f(x, y) = x^2 + 2xy + y^2,求点 (1, 2) 处沿着向量 v = (3, 4) 的方向导数。

2. 对于函数 f(x, y, z) = x^2 + y^2 + z^2,求点 (1, 1, 1) 处的梯度。

四、极值与最值极值和最值是多元函数微分学中的核心概念,它们用于求解函数的最大值和最小值。

1. 对于函数 f(x, y) = x^2 + 2xy + y^2,求函数的极值点和极值值。

2. 对于函数 f(x, y, z) = x^2 + y^2 + z^2,求函数在单位球面上的最大值和最小值。

五、拉格朗日乘数法拉格朗日乘数法是一种求解多元函数在约束条件下的极值问题的方法,它在实际问题中有广泛的应用。

1. 在平面上,求到点 (3, 4) 的最短距离的直线方程。

多元函数微分学复习习题及答案

多元函数微分学复习习题及答案

欢迎阅读第八章 多元函数微分法及其应用复习题及解答一、选择题1.极限=( B )lim x y x yx y →→+00242(A)等于0;(B)不存在; (C)等于 ;(D)存在且不等于0或121223 0x y →→4、函数在点处具有偏导数是它在该点存在全微分的( A )z f x y =(,)(,)x y 00(A)必要而非充分条件; (B)充分而非必要条件;(C)充分必要条件;(D)既非充分又非必要条件5、设,则= ( B )u y x =arctan∂∂ux(A); (B) ; (C);(D)x x y 22+-+yx y 22yx y 22+-+x x y 226、设,则 ( A )f x y yx(,)arcsin=f x '(,)21=(A );(B ); (C ); (D )-1414-12127、若,则 ( C ))ln(y x z -==∂∂+∂∂yz y x z x 8、设9、若1011((12f (A )点是函数的极大值点; (B )点是函数的极小值点;P 0z P 0z (C )点非函数的极值点;(D )条件不够,无法判定。

P 0z 二、填空题1、极限= ??????? 。

答:limsin()x y xy x→→0ππ2、极限=??????? 。

答:limln()x y x y e x y→→++01222ln 23、函数的定义域为 ??????? 。

答:z x y =+ln()x y +≥14、函数的定义域为 ??????? 。

答:,z xy=arcsin -≤≤11x y ≠05、设函数,则= ??????? 。

答:f x y x y xy y x (,)ln =++⎛⎝ ⎫⎭⎪22f kx ky (,)k f x y 2⋅(,)678,x xy =ln 91解:(1)要使函数有意义,必须有,即有.z =2210x y --≥221x y +≤故所求函数的定义域为,图形为图3.122{(,)|1}D x y x y =+≤(2)要使函数有意义,必须有.故所有函数的定义域为,ln()z x y =+0x y +>{}(,)|0D x y x y =+>图形为图3.2(3)要使函数有意义,必须有,即且.1ln()z x y =+ln()0x y +≠0x y +>1x y +≠欢迎阅读故该函数的定义域为,图形为图3.3{}(,)|01D x y x y x y =+>+≠,(4)要使函数有意义,必须有.故该函数的定义域为,ln(1)z xy =-10xy ->{(,)|1}D x y xy =>图形为图3.4图3.1 图3.2图3.3 图3.42解:x y 34、设解:z 1单y 解:L 利润目标函数)]33(01.032400[)910(),(22y xy x y x y x y x L +++++-+=,)0,0(,400)33(01.06822>>-++-+=y x y xy x y x 令,解得唯一驻点(120,80).⎩⎨⎧=+-='=+-='0)6(01.060)6(01.08y x L y x L yx又因,得06.0,01.0,006.0-=''=-=''=<-=''=yy xy xx L C L B L A .0105.332>⨯=--B ACe n d欢迎阅读得极大值. 根据实际情况,此极大值就是最大值.故生产120单位产品甲与320)80,120(=L 80单位产品乙时所得利润最大320元.五、证明题1、设? 求证? )11(y x e z +-=z yz y x z x 222=∂∂+∂∂2? 3?? ? ? x y F y x -=∂∂y z F z -=∂∂zx F x z -=∂∂所以 ?1)()((-=-⋅-⋅-=∂∂⋅∂∂∂∂zx y z x y F F F F F F x z z yy x。

多元函数微积分期末练习题及答案

多元函数微积分期末练习题及答案

多元函数微积分期末练习题及答案(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--多元函数微积分期末练习题及答案一.填空:1.空间直角坐标系中,点P(2,3,4)Q(2,4,-1)距离∣PQ∣=2.过点P(1,2,3)且与xoy平面平行的平面方程为3.函数z =x2-y2 + 2x - 4y的驻点为4.已知z =f(x,y)的二阶偏导数连续且fxy (x,y) = 4xy+ x 则fyx(x,y)=5.已知在平面区域D内f (x,y)>O,则由D为底 z = f (x,y)为顶的曲顶柱体体积可表示为二.单项选择填空1.点P(0,2,-1)在A 第V卦限B 第 VIII 卦限C x轴上D yoz平面2.方程x2+y2=1在空间直角坐标系中表示A 单位圆B 单位圆包围的平面区域C 圆柱面D 平面3.z =f (x,y) 在(x0, y)点偏导数存在,则在该点A 全微存在B 偏导数连续C 函数连续D A,B,C均不对4.z = f(x,y)在驻点(x0, y)处存在二阶偏导数,且fxy(x。

,y。

) 2-f xx (x。

,y。

)-fyy(x。

,y。

)>O fxx(x。

,y。

) >O 则 (x。

,y。

) 点为函数z = f(x,y)的A 极大值点B 极小值点C 不是极值点D 不能确定25.则等式成立的是A =B =C =D =三.计算题1.求2.z=求全微分dz3.设cos(x+y)+y=0,求4.设x+y2+z2=xy+2z,求5.求 z=2x-4y-x2-y2+5的极值6.改变二次积分积分次序7. D y=x2 y=x围成答案:一、填空:1 2 3 (-1,-2) 435二、单项选择:D C D C A三、计算题:12 34 56 74。

多元函数微分法及其应用期末复习题高等数学下册(上海电机学院)

多元函数微分法及其应用期末复习题高等数学下册(上海电机学院)

第八章 偏导数与全微分一、选择题1.若u=u(x, y)是可微函数,且,1),(2==x y y x u ,2x xuxy =∂∂=则=∂∂=2x y y u [A ] A. 21-B. 21C. -1D. 12.函数62622++-+=y x y x z [ D ]A. 在点(-1, 3)处取极大值B. 在点(-1, 3)处取极小值C. 在点(3, -1)处取极大值D. 在点(3, -1)处取极小值3.二元函数(),f x y 在点()00,x y 处的两个偏导数()()0000,,,x y f x y f x y 存在是函数f 在该点可微的 [ B ]A. 充分而非必要条件B.必要而非充分条件C.充分必要条件D.既非充分也非必要条件4. 设u=2x +22y +32z +xy+3x-2y-6z 在点O(0, 0, 0)指向点A(1, 1, 1)方向的导数=∂∂lu[ D ] A.635 B.635- C.335 D. 335- 5. 函数xy y x z 333-+= [ B ]A. 在点(0, 0)处取极大值B. 在点(1, 1)处取极小值C. 在点(0, 0), (1, 1)处都取极大值 D . 在点(0, 0), (1, 1)处都取极小值 6.二元函数(),f x y 在点()00,x y 处可微是(),f x y 在该点连续的[ A ] A. 充分而非必要条件 B.必要而非充分条件 C.充分必要条件D.既非充分也非必要条件 7. 已知)10(0sin <<=--εεx y y , 则dxdy= [ B ] A. y cos 1ε+ B.y cos 11ε- C. y cos 1ε- D. ycos 11ε+8. 函数yx xy z 2050++= (x>0,y>0)[ D ] A. 在点(2, 5)处取极大值 B. 在点(2, 5)处取极小值C.在点(5, 2)处取极大值D. 在点(5, 2)处取极小值9.二元函数(),f x y 在点()00,x y 处连续的是(),f x y 在点()00,x y 处可微的 [A ] A. 必要而非充分条件 B. 充分而非必要条件 C.充分必要条件 D.既非充分也非必要条件 10. 曲线x=t, y=2t -, z=3t 所有切线中与平面x+2y+z=4平行的切线有 [ B ] A. 1 条 B.2条 C. 3条 D.不存在 11.设22(,)xy f x y y x =-,则(,)x yf y x= B A. 42xyy x - B. 2244x y y x - C. 2244x y y x +- D. 2244y x y x --12.为使二元函数(,)x yf x y x y+=-沿某一特殊路径趋向(0,0)的极限为2,这条路线应选择为 B A.4x y = B. 3x y = C. 2x y = D. 23x y = 13.设函数(,)z f x y =满足222zy∂=∂,且(,1)2f x x =+,(,1)1y f x x '=+,则(,)f x y =BA.2(1)2y x y +++ B. 2(1)2y x y +-+ C. 2(1)2y x y +-- D. 2(1)2y x y ++- 14.设(,)32f x y x y =+,则(,(,))f xy f x y = CA.344xy x y ++B. 2xy x y ++C. 364xy x y ++D. 346xy x y ++15.为使二元函数222(,)xy f x y x y=+在全平面连续,则它在(0,0)处应被补充定义为 B A.-1 B.0 C.1 D. 16.已知函数22(,)f x y x y x y +-=-,则(,)(,)f x y f x y x y∂∂+=∂∂ C A.22x y - B. 22x y + C. x y + D. x y -17.若()yf x=(0)x >,则()f x =BB. C.xD.18.若xz y =,则在点 D 处有z z y x∂∂=∂∂ A.(0,1) B.(,1)e C.(1,)e D. (,)e e19.设2y z x =,则下列结论正确的是 AA.220z z x y y x ∂∂-=∂∂∂∂ B. 220z zx y y x ∂∂->∂∂∂∂ C.220z zx y y x∂∂-<∂∂∂∂ D.两者大小无法确定 20.函数0,0(,)11sin sin ,0xy f x y x y xy y x =⎧⎪=⎨+≠⎪⎩,则极限00lim (,)x y f x y →→ ( C ). (A) 等于1 (B) 等于2 (C) 等于0 (D) 不存在 21.函数z xy =在点(0,0) ( D ).(A) 有极大值 (B) 有极小值 (C) 不是驻点 (D) 无极值 22.二元函数z =在原点(0,0)处( A ).(A) 连续,但偏导不存在 (B) 可微(C) 偏导存在,但不连续 (D) 偏导存在,但不可微23.设()u f r =,而r =()f r 具有二阶连续导数,则222222u u ux y z∂∂∂++=∂∂∂( B ).(A) 1''()'()f r f r r +(B) 2''()'()f r f r r+ (C) 211''()'()f r f r r r + (D) 212''()'()f r f r r r+24.函数(,)z f x y =在点00(,)x y 处连续是它在该点偏导存在的( D ). (A) 必要而非充分条件 (B) 充分而非必要条件(C) 充分必要条件 (D) 既非充分又非必要条件 25.函数221z x y =--的极大值点是 ( D ).(A) (1,1) (B) (1,0) (C) (0,1) (D) (0,0)26.设(,)f x y =(2,1)x f '=(B ).(A)14 (B) 14- (C) 12 (D) 12-27.极限24200lim x y x yx y →→+( B ).(A) 等于0 (B) 不存在 (C) 等于12 (D) 存在且不等于0及1228.(,)z f x y =若在点000(,)P x y 处的两个一阶偏导数存在,则(B ). (A) (,)f x y 在点0P 连续 (B) 0(,)z f x y =在点0x 连续 (C) 00||P P z zdz dx dy x y ∂∂=⋅+⋅∂∂ (D) A,B,C 都不对 29. 设函数y x z =,则z d =( A ). (A).y x x x yxy y d ln d 1+- (B).y x x yx y y d d 1+-(C).y x x x x yy d ln d + (D).y y x x yxy y d ln d 1+-30. 已知=∂∂===y zxy v y x u v u z 则 ,,,ln 2( C )(A )y x xy y x 3232ln 2+ (B )y xxy y x 3232ln 2-(C )y x xy y x 3232ln 2+- (D )y x xy y x 22ln 2+31.函数z=22y x 1--的定义域是( D ) (A.) D={(x,y)|x 2+y 2=1}(B.)D={(x,y)|x 2+y 2≥1}(C.) D={(x,y)|x 2+y 2<1}(D.)D={(x,y)|x 2+y 2≤1}32.设22),(yx xyy x f +=,则下列式中正确的是( C );)A ( ),(,y x f x y x f =⎪⎭⎫⎝⎛; )B (),(),(y x f y x y x f =-+;)C ( ),(),(y x f x y f =; )D ( ),(),(y x f y x f =-33.设e cos xz y =,则=∂∂∂yx z2( D );)A ( e sin x y ; )B ( e e sin x x y +;)C ( e cos xy -; )D ( e sin xy -34.已知22),(y x y x y x f -=-+,则x f ∂∂=∂∂+yf ( C ); )A ( y x 22+; )B ( y x -; )C ( y x 22- )D ( y x +.35. 设y xy x z 2232-+=,则=∂∂∂y x z( B )(A )6 (B )3 (C )-2 (D )2.36.设()=∂∂=⎪⎭⎫ ⎝⎛x zy x y x f z 00, ,,则( B )(A )()()x y x f y y x x f x ∆-∆+∆+→∆00000,,lim(B )()()x y x f y x x f x ∆-∆+→∆0000,,lim(C )()()x y x f y x x f x ∆-∆+→∆00000,,lim(D )()x y x x f x ∆∆+→∆000,lim37. 设由方程0=-xyz e z确定的隐函数()=∂∂=x z y x f z 则,,( B )(A )z z+1 (B )()1-z x z (C )()z x y +1 (D )()z x y -138. 二次函数 11)4ln(2222-++--=y x y x z 的定义域是( D )A. 1 < 22y x + ≤ 4;B. –1 ≤ 22y x + < 4; C. –1 ≤ 22y x + ≤ 4; D. 1 < 22y x + < 4。

多元函数微分法及其应用习题

多元函数微分法及其应用习题

多元函数微分法及其应用习题一、主要内容平面点集和区域多元函数概念多元函数的极限极限运算多元连续函数的性质多元函数连续的概念全微分概念方向导数全微分的应用复合函数求导法则高阶偏导数偏导数概念全微分形式的不变性隐函数求导法则多元函数的极值微分法在几何上的应用1、区域(1)邻域(2)区域连通的开集称为区域或开区域.(3)聚点(4)n维空间2、多元函数概念定义类似地可定义三元及三元以上函数.3、多元函数的极限(1)定义中的方式是任意的;(2)二元函数的极限也叫二重极限说明:(3)二元函数的极限运算法则与一元函数类似.4、极限的运算5、多元函数的连续性6、多元连续函数的性质(1)最大值和最小值定理在有界闭区域D上的多元连续函数,在D上至少取得它的最大值和最小值各一次.(2)介值定理在有界闭区域D上的多元连续函数,如果在D上取得两个不同的函数值,则它在D上取得介于这两值之间的任何值至少一次.7、偏导数概念8、高阶偏导数纯偏导混合偏导定义二阶及二阶以上的偏导数统称为高阶偏导数.9、全微分概念函数连续函数可导函数可微偏导数连续多元函数连续、可导、可微的关系10、全微分的应用主要方面:近似计算与误差估计.以上公式中的导数称为全导数.11、复合函数求导法则无论是自变量的函数或中间变量的函数,它的全微分形式是一样的.12、全微分形式不变性13、隐函数的求导法则隐函数的求导公式14、微分法在几何上的应用(1)空间曲线的切线与法平面切线方程为法平面方程为(2)曲面的切平面与法线切平面方程为法线方程为15、方向导数记为三元函数方向导数的定义梯度的概念梯度与方向导数的关系16、多元函数的极值定义多元函数取得极值的条件定义一阶偏导数同时为零的点,均称为多元函数的驻点.驻点极值点注意条件极值:对自变量有附加条件的极值.二、典型例题例1解例2解例3解于是可得,例4解例5解例6解分析:得测验题测验题答案设是平面上的一个点,是某一正数,与点距离小于的点的全体,称为点的邻域,记为,设E是平面上的一个点集,P是平面上的一个点,如果点P的任何一个邻域内总有无限多个点属于点集E,则称P为E的聚点.设为取定的一个自然数,我们称元数组的全体为维空间,而每个元数组称为维空间中的一个点,数称为该点的第个坐标.设是平面上的一个点集,如果对于每个点,变量按照一定的法则总有确定的值和它对应,则称是变量的二元函数,记为(或记为).当时,元函数统称为多元函数.定义设函数的定义域为是其聚点,如果对于任意给定的正数,总存在正数,使得对于适合不等式的一切点,都有成立,则称为函数当,时的极限,记为(或这里).定义设元函数的定义域为点集是其聚点且,如果则称元函数在点处连续.设是函数的定义域的聚点,如果在点处不连续,则称是函数的间断点.定义设函数在点的某一邻域内有定义,当固定在而在处有增量时,相应地函数有增量,如果存在,则称此极限为函数在点处对的偏导数,记为同理可定义函数在点处对的偏导数,为记为,,或.,,或.如果函数在区域内任一点处对的偏导数都存在,那么这个偏导数就是、的函数,它就称为函数对自变量的偏导数,记作,,或.同理可以定义函数对自变量的偏导数,记作,,或.函数的二阶偏导数为如果函数在点的全增量可以表示为,其中A,B不依赖于而仅与有关,,则称函数在点可微分,称为函数在点的全微分,记为,即=.定理如果函数及都在点可导,函数在对应点具有连续偏导数,则复合函数在对应点可导,且其导数可用下列公式计算:.如果及都在点具有对和的偏导数,且函数在对应点具有连续偏导数,则复合函数在对应点的两个偏导数存在,且可用下列公式计算..隐函数存在定理1设函数在点的某一邻域内具有连续的偏导数,且,,则方程在点的某一邻域内恒能唯一确定一个单值连续且具有连续导数的函数,它满足条件,并有.隐函数存在定理2设函数在点的某一邻域内有连续的偏导数,且,,则方程在点的某一邻域内恒能唯一确定一个单值连续且具有连续偏导数的函数,它满足条件,并有,.隐函数存在定理3设、在点的某一邻域内有对各个变量的连续偏导数,且,,且偏导数所组成的函数行列式(或称雅可比式)在点不等于零,则方程组、在点的某一邻域内恒能唯一确定一组单值连续且具有连续偏导数的函数,,它们满足条件,,并有定理如果函数在点是可微分的,那末函数在该点沿任意方向L的方向导数都存在,且有,其中为轴到方向L的转角.(其中)定义设函数在平面区域D内具有一阶连续偏导数,则对于每一点,都可定出一个向量,这向量称为函数在点的梯度,记为.函数在某点的梯度是这样一个向量,它的方向与取得最大方向导数的方向一致,而它的模为方向导数的最大值.梯度的模为.设函数在点的某邻域内有定义,对于该邻域内异于的点:若满足不等式,则称函数在有极大值;若满足不等式,则称函数在有极小值;极大值、极小值统称为极值.使函数取得极值的点称为极值点.定理1(必要条件)设函数在点具有偏导数,且在点处有极值,则它在该点的偏导数必然为零:,.定理2(充分条件)设函数在点的某邻域内连续,有一阶及二阶连续偏导数,则在点处是否取得极值的条件如下:(1)时有极值,当时有极大值,当时有极小值;(2)时没有极值;(3)时可能有极值.又,,令第二步对于每一个驻点,求函数极值的一般步骤:第三步定出的符号,再判定是否是极值. 求出实数解,得驻点.第一步解方程组求出二阶偏导数的值.拉格朗日乘数法要找函数在条件下的可能极值点,先构造函数,其中为某一常数,可由解出,其中就是可能的极值点的坐标. 选择题:二元函数的定义(A);(B);(C);(D).2、设,则().(A);(B);(C);(D).3、().(A)0;(B)1;(C)2;(D).4、函数在点处连续,且两个偏导数存在是在该点可微的().(A)充分条件,但不是必要条件;(B)必要条件,但不是充分条件;(C)充分必要条件;(D)既不是充分条件,也不是必要条件.5、设则在原点处().(A)偏导数不存在;(B)不可微;(C)偏导数存在且连续;(D)可微.6、设其中具有二阶连续偏导数.则().(A);(B);(C);(D).7、曲面的切平面与三个坐标面所围成的四面体的体积V=(). (A);(B);(C);(D).8、二元函数的极值点是().(A)(1,2);(B)(1.-2);(C)(-1,2);(D)(-1,-1).9、函数满足的条件极值是().(A)1;(B)0;(C);(D).10、设函数在点的某邻域内可微分,则在点处有().二、讨论函数的连续性,并指出间断点类型.三、求下列函数的一阶偏导数:1、;2、;3、.四、设,而是由方程所确的函数,求.五、设,其中具有连续的二阶偏导数,求.设,试求和.设轴正向到方向的转角为求函数在点(1,1)沿方向的方向导数,并分别确定转角使这导数有(1)最大值;(2)最小值;(3)等于零.求平面和柱面的交线上与平面距离最短的点.九、在第一卦限内作椭球面的切平面,使该切平面与三坐标面所围成的四面体的体积最小,求这切平面的切点,并求此最小体积.一、1、A;2、B;3、B;4、B;5、D;6、C;7、A;8、A;9、D;10、B.二、(1)当时,在点函数连续;(2)当时,而不是原点时,则为可去间断点,为无穷间断点.三、1、,;2、.3、.四、.五、.六、七、八、九、切点.。

多元函数微分学习题及详细解答

多元函数微分学习题及详细解答

C. 可能确定两个具有连续偏导数的隐函数 x x( y, z) 和 z z(x, y)
D. 可能确定两个具有连续偏导数的隐函数 x x( y, z) 和 y y(x, z)
3.证明:函数 f (x, y) xy 在点 O(0, 0) 处可微。
证明:由定义,
f
x
(0,
0)
lim
x0
(f x, 0) x
f
(0, 0)
0
4.设
z
xy+f
(u),
,u
y x
,f
(u)
为可微函数,求:
x
z x
y
z y
解: z x
y
xf
(u)
y x2
f (u)
f (u)
y
y x
f (u)
z x xf (u) 1 x f (u).
y
x

x
z x
y z y
x
f
(u)
y
f
(u) x
y
yx
f (u)
xf (u) xy yf (u) xy yf (u)
(3)如果函数 f (x, y) 在点 0, 0 处连续,那么下列命题正确的是( B )
A.若极限 lim f (x, y) 存在,则 f (x, y) 在点 0,0 处可微
x0 x y
y0
B.
若极限 lim x0
f (x, y) 存在,则 x2 y2
f (x, y) 在点 0, 0 处可微
y0
2 ,求
f
xx
(0,0,1),f
yz
(0,
1,0),f
zzx
(2,0,1)

多元函数的微分法及其应用试题

多元函数的微分法及其应用试题

多元函数微分学练习题一、判断题(正确的在括号内打√,错误 的在括号内打⨯)( )1.(,)lim2x y →=( )2.z =的定义域为221x y +≥( )3. 若函数(,)z f x y =在点00(,)x y 处0000(,),(,)x y f x y f x y 存在,则(,)z f x y =在点00(,)x y 连续.( )4. 函数z =2x 2+4y 2在点(0, 0)处有极大值.( )5. 在有界闭区域D 上的多元连续函数, 必定在D 上有界, 且能取得它的最大值和最小值.( )6. 在有界闭区域D 上的多元连续函数必取得介于最大值和最小值之间的任何值.( )7. 函数2222222 0(,)0 0x y x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在(0,0)连续( )8. 设函数(,)z f x y =的全微分为2(1)dz x dx y dy =--,则(,)f x y 在(1,0)点处无极值( )9. 若二元函数z =f (x , y )在点(x , y ) 偏导数x z ∂∂、yz ∂∂连续,则函数在该点可微.( )10. 若二元函数z =f (x , y )的全微分dz xdx ydy =+,则(0,0)不是z =f (x , y )的连续点. ( )11. 二元函数的驻点一定是极值点. ( )12. 设44z x y =+,则(0,0)0dz=二、选择题(将最佳答案的序号填写在括号内)1. 函数(),f x y 在点()00,x y 处的两个偏导数()()0000,,,x y f x y f x y 都存在是 函数(),f x y 在该点可微的( )A 、 充分条件B 、 必要条件C 、 充要条件D 、无关条件2. 二元函数()222222,0,0,0xy x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在()0,0处( )A 、 极限存在B 、 连续C 、 可微D 、 关于,x y 得偏导数存在 3 设函数2x z x y y =+,则z x∂=∂( ) A 、2yxy x+B 、 2xy y +C 、 22x xy y -D 、12xy y +4. 曲面()2222321,0x y z z ++=>上某点的切平面平行于已知平面460x y z ++=则该点的坐标为( )A 、()1,2,2B 、 ()1,2,2---C 、()1,2,2±±±D 、()1,2,2-5. 点()2,2-为函数()()22,4f x y x y x y =---的( )A 、极大值点B 、极小值点C 、临界点但非极值点D 、无法确定6. 设(,)x yf x y x y+=-,则下列命题不正确的是( ) A 、00lim (,)x y f x y →→不存在 B 、0lim (,)1x f x y →=C 、0lim (,)1x f x y →=- D 、0lim (,)1y f x y →=7.设(,)f x y 在00(,)x y 点的充分小邻域内可微,且(,)f x y 在00(,)x y 点 取得极值,则下列命题正确的是( )A 、(,)f x y 在00(,)x y 点不连续B 、(,)f x y 在00(,)x y 点可能连续,也可能不连续C 、00(,)0df x y =D 、0000(,)(,)f f x y x y x y∂∂≠∂∂ 8. 若Z=f(x,y)有连续的二阶偏导数,且(,)()xyx y Kf =''常数,则(,)y f x y '=( )A 、22kB 、K yC 、 )(x ky ϕ+D 、)(y kx ϕ+9. 下列结论不正确的是( ) A、函数z =在点(0, 0)处有极小值.B 、函数(1)(1)z x y =--在点(1, 1)处既取不到极大值也取不极小值.C 、若二元函数z =f (x , y )在点(x , y ) 可微,则函数在该点的偏导数x z ∂∂、yz ∂∂存在且连续.D 、22z x y =-在(0,0)点处有极小值三、填空题(将最佳答案填写在横线中)1. ()101lim 1xx y xy →→+= .2. 设函数z=x 2+y 2,当x=1,y=1,时01.0,02.0=∆=∆y x ,全微分dz= . 3.()22(,)(0,0)1limsinx y xy y→+= 4. 函数z =f (x , y )在点(x 0, y 0)具有偏导数, 则在点(x 0, y 0)处有极值的必要条件是 5. 设ln(1)xz y =+,则11x y dz === 6. 若点1(,1)4是函数2ln ()()z y x x y a x y b =+++-的一个极值点,则a = 7. 设(,)f x y xy =,其中221x y +=,则(,)f x y 的极大值为 8. 设函数()y f x =由方程2cos()1x y e xy e +-=-确定,则曲线()y f x =在点(0,1)处的法线方程为9. 设ln cos z u v t =+,其中,cos tu e v t ==,则dzdt= 10. 若cos xz e y =,则zx∂=∂ ,z y ∂=∂11. 若22arctan()z x y =+,则zx∂=∂ ,z y ∂=∂12.若z =,则22z z x y ⎛⎫∂∂⎛⎫+= ⎪ ⎪∂∂⎝⎭⎝⎭ 13. 若sin xz y y =则2z x y∂∂∂在点(,2)π处的值为14. 若sin xz xye=,则22zx∂=∂15、设cos ,uz e v =而,,y x v xy u +==则zx∂=∂ ,z y ∂=∂16、设(,)z z x y =而cos ,sin x r y r θθ==,则zr∂=∂ zθ∂=∂ 17、设22ln()xyz x y e =-+,则zx∂=∂ ,z y ∂=∂18、设y z u xye -=,其中3sin ,,x t y t z t ===,则dudt= 四、证明题1. 若1111,f z x y x ⎛⎫-=- ⎪⎝⎭证明:222z z xy z x y ∂∂+=∂∂. 2. 设()()y x at x at ϕψ=++- (其中ϕ,ψ具有二阶连续导数)证明:22222y y a t x∂∂=∂∂ 3. 已知 (,)0(,),(,),(,)x yF z z x y F u v z x y z z==确定其中均有连续编导数,求证z yz y x z x=∂∂+∂∂ 4. 函数22ln y x z +=满足方程02222=∂∂+∂∂y z x z 五、计算题1. 设3xyz x y e =+,求 222,z zx x y∂∂∂∂∂. 2. 设()sin ln tz t =,求dz dt. 3. 设arctan 0x y y -+=,求22d ydx.4. 求曲线226,12y x z x ==在12x =处的切线方程及法平面方程. 5. 已知2sin(x+2y-3z)=x+2y-3z ,求zy∂∂6. 设23,sin ,u vzeu x v x -===,求全导数dzdx.7. 设函数(,())z f xy yg x =,其中函数f 具有二阶连续偏导数,函数()g x 可导且在1x =处取得极小值(1)1g =,求211x y zx y==∂∂∂.8.设2ln(zz y y x∂=+∂∂求9. 设()x y z x y z e-++++=确定(,)z z x y =,求全微分dz10 求曲线 2223023540x y z x x y z ++-=⎧⎨⎩-+-= 在点(1,1,1)处的切线与法平面方程11. 设 ),(v u f 具有二阶连续偏导数,且满足,12222=∂∂+∂∂v fu f2222221(,),(),2g g g x y f xy x y x y ∂∂⎡⎤=-+⎢⎥∂∂⎣⎦求 12. 求函数22442y xy x y x z ---+=的极值第十章 重积分一、填空题1. 交换⎰⎰--21222),(x x xdy y x f dx 得2. 求曲线2,422ayx ax y ==所围成图形的面积为 ,(a >0) 3. 设D 为0),0(222≥>≤+y a a y x 围成闭区域,则dxdy x D⎰⎰2化为化为极坐标下的二次积分的表达式为 4. 设Ω:2222R z y x ≤++,则dxdydz z D⎰⎰⎰2= 二、选择题1. 设积分区域D :是圆环:,4122≤+≤y x 则二重积分⎰⎰+Ddxdy y x 22=(A )dr r d ⎰⎰πθ2012(B )dr d r⎰⎰πθ204(C )dr r d ⎰⎰πθ20212(D )dr r d ⎰⎰πθ20212.下列结果中正确的是( )A 、若D :122≤+y x ,D 1:122≤+y x ,x,y ≥0,则⎰⎰--Ddxdy y x 221=4⎰⎰--1221D dxdy y xB 、若D :122≤+y x ,D 1:122≤+y x ,x,y ≥0,则⎰⎰Dxydxdy =4⎰⎰1D xydxdyC 、二重积分⎰⎰D dxdy y x f ),(的几何意义是以Z=f(x,y)为曲顶,以O 为底的曲顶柱体的体积。

高数第八章 多元函数 复习题答案

高数第八章 多元函数 复习题答案

第八章 多元函数微分学 复习题答案一、单项选择题:1、以下各式中不正确的有(A )A 、01lim 2222=+++∞→∞→y x y x y xB 、1lim 2210=+→→y x yy x C 、2ln )ln(lim2201=++→→y x e x y y x D 、不存在2200limy x xyy x +→→2、设y ez xcos sin = ,则=∂∂∂),(202πx y z( B )A 、0B 、1-C 、1D 、e3、设函数221ln y x z ++= ,则它在点)1,1(处的全微分=dz ( A )A 、)(31dy dx + B 、dy dx + C 、)(3dy dx + D 、)(2dy dx +4、(,)f x y 在点00(,)x y 处具有连续偏导数是(,)f x y 在点00(,)x y 处可微的( B ) A. 必要条件 B. 充分条件 C. 充要条件 D. 无关条件5、函数xyxe z =,则=∂∂xz ( D ) A.xy xye B.xye x 2C.xye D.()xye xy +16、函数xy z =在(0,0)处( D )A.()0,0不是驻点B.有极小值C. 有极大值D. 无极值..;..;.;.) B (,],[,],[.7无关条件充要条件充分条件必要条件是函数在该点可微的连续在点的偏导数函数D C B A ;y x yzx z y x f z ∂∂∂∂=二、填空题:1、22(,)(2,0)sin lim x y xy y→= 2 ; 2、设2x xyz y e =+,则(1,2)z y∂=∂ 21e + ;3、函数)1ln(912222-++--=y x yx z 的定义域是}91|),{(22<+<y x y x ;4、函数22y x z =在点)1,2(-处当01.0,02.0-=∆=∆y x 时的全微分,=dz 0.16 5、函数2221ln 4yx y x z ---=的连续区域为}4,0,0,1|),{(222yx y x y x y x ≥≠≠<+ ;6、设()y x z z ,=是由方程yzx ln=确定的隐函数,则=∂∂x z z; 7、函数222222,0(,)0,0xy x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在点(0,0)处 不连续 ;(填写“连续”或“不连续”)8、若函数),(y x f z =可微,,2x y =则函数),(2x x f z =的全导数=dxdz''2y x xff +9、函数z =1,1)处的全微分dz =)(31dy dx +10、设)1ln(y xz +=,则=)1,1(dz )(21dy dx - ;11、211lim 0y x x y x x +→∞→⎪⎭⎫ ⎝⎛+= 1 ;;.12————————————条件充分条件而不是必要微分存在的各偏导数的存在只是全三、计算题:1、设,24,3,22y x v y x u u z v +=+==求yz x z ∂∂∂∂,。

高等数学第四章多元函数的微分知识点及习题

高等数学第四章多元函数的微分知识点及习题
法线方程:
− − −
=
=



特别:曲线方程写成: = , 时,令 , , = , − 则在 , ,
的法向量为 = , , −
例题、求曲面 2 + 2 2 + 3 2 = 36在点
线方程。




三、全微分
全微分: = (, ) ,
= (, , ) ,
ⅆ =



ⅆ =
+






+



例题、计算 = ⅇ 在点 2,1 处的全微分。
+



例题、计算 = +
解:


=1

sin
2
+ ⅇ 的全微分。

求证

+
1
ln
= 2
例题、设 = arcsin
例题、设 = 1 +


,求 , 。
2
2

+


,求 , 。

例题、设 =


ln tan ,求 , 。


例题、设 =
2


sin

1, −2,1 处的切线方程和法平面方程。
十一、曲面的切平面和法平面方程
曲面: , , = 在 , , 处的法向量
= , , , , , , , ,
切线方程:
− + − + − =

高等数学(下册)复习大全----往届考题及答案讲解

高等数学(下册)复习大全----往届考题及答案讲解

高等数学下册总复习资料财管双语班财管双语班目录目录〈一〉内容提要 (1)第八章多元函数微分法及其应用 (1)第九章重积分 (5)第十章曲线积分与曲面积分..................................................... 错误!未定义书签。

第十一章无穷级数 (7)第十二章微分方程 (13)〈二〉强化训练 (16)(Ⅰ)04、05、06期末试卷 (16)2004—2005学年第二学期期末考试试卷 (16)2005—2006学年第二学期期末考试试卷 (20)2006—2007学年期末考试试卷 (22)(Ⅱ)自测训练 (25)试卷一 (25)附参考答案: (28)试卷二 (29)附参考答案: (32)试卷三 (33)附参考答案: (36)2005-2006学年第二学期期末考试试卷(2005级快班试卷) (38)2006-2007学年第二学期期末考试(2006级快班试卷) (41)试卷四 (44)参考答案及提示 (48)试卷五 (52)参考答案及提示: (56)高等数学下册总复习资料1高等数学下册总复习〈一〉内容提要第八章 多元函数微分法及其应用一、基本概念1.多元函数(1)知道多元函数的定义n 元函数:),,,(21n x x x f y =(2)会求二元函数的定义域1°:分母不为0; 2°:真数大于0;3°:开偶次方数不小于0;4°:u z arcsin =或u arccos 中||u ≤1 (3)会对二元函数作几何解释 2.二重极限A y x f y y x x =→→),(lim 0这里动点),(y x 是沿任意路线趋于定点),(00y x 的.(1) 理解二重极限的定义(2) 一元函数中极限的运算法则对二重极限也适用,会求二重极限; (3) 会证二元函数的极限不存在(主要用沿不同路径得不同结果的方法). 3.多元函数的连续性(1)理解定义:)()(lim 00P f P f P P =→.(2)知道一切多元初等函数在其定义域内连续的结论; (3)知道多元函数在闭区域上的最大最小值定理、介值定理。

(完整版)多元函数微分学复习题及答案精选全文完整版

(完整版)多元函数微分学复习题及答案精选全文完整版

可编辑修改精选全文完整版第八章 多元函数微分法及其应用 复习题及解答一、选择题 1. 极限= (提示:令22y k x =) ( B )(A) 等于0 (B) 不存在 (C) 等于(D) 存在且不等于0或2、设函数,则极限= ( C )(提示:有界函数与无穷小的乘积仍为无穷小)(A) 不存在 (B) 等于1 (C) 等于0 (D) 等于2 3、设函数,则(,)f x y ( A )(提示:①在220x y +≠,(,)f x y 处处连续;②在0,0x y →→ ,令y kx =,200(0,0)x x y f →→→=== ,故在220x y +=,函数亦连续.所以,(,)f x y 在整个定义域内处处连续.)(A) 处处连续 (B) 处处有极限,但不连续 (C) 仅在(0,0)点连续 (D) 除(0,0)点外处处连续4、函数在点处具有偏导数是它在该点存在全微分的 ( A ) (A)必要而非充分条件(B)充分而非必要条件(C)充分必要条件 (D)既非充分又非必要条件 5、设,则= ( B )(A)(B)(C)(D)6、设,则 ( A )(A ) (B ) (C ) (D )7、设yxz arctan=,v u x +=,v u y -=,则=+v u z z ( C ) (A )22v u v u -- (B )22v u u v -- (C )22v u v u +- (D )22v u uv +-8、若,则= ( D ) (A) (B)(C)(D)9、设,则( A )(A) 2 (B) 1+ln2 (C) 0 (D) 1 10、设,则 ( D )(A) (B)(C) (D)11、曲线在点处的法平面方程是 (C ) (A) (B)(C)(D)12、曲线在点处的切线方程是 (A )(A) 842204x z y --=-=(B) (C) (D)13、曲面在点处的切平面方程为 (D )(A ) (B )(C )(D )14、曲面在点处的法线方程为 (A )(A ) (B ) (C ) (D )15、设函数,则点是函数 的 ( B )(A )极大值点但非最大值点 (B )极大值点且是最大值点(C )极小值点但非最小值点 (D )极小值点且是最小值点 16、设函数具有二阶连续偏导数,在处,有2)()(,0)()(,0)(,0)(000000======P f P f P f P f P f P f yx xy yy xx y x ,则( C )(A )点是函数的极大值点 (B )点是函数的极小值点(C )点非函数的极值点 (D )条件不够,无法判定17、函数在222421x y z ++=条件下的极大值是 ( C )(A) (B) (C) (D)二、填空题 1、极限= ⎽⎽⎽⎽⎽⎽⎽ .答:2、极限=⎽⎽⎽⎽⎽⎽⎽ .答:3、函数的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:4、函数的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:,5、设函数,则= ⎽⎽⎽⎽⎽⎽⎽ .答:6、设函数,则= ⎽⎽⎽⎽⎽⎽⎽ .答:222x y x-(22()()(,)()()2x y x y x y f x y x y x y x y x+--+-==++-)7、设,要使处处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:8、设,要使在(0,0)处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:19、函数221x y z x +=-的间断点是 .答:直线10x -=上的所有点10、函数的间断点为 ⎽⎽⎽⎽⎽⎽⎽ .答:直线及11、设,则_________ .答:3cos5 12、设,则= _________ .答:1 13、设,则=_________ .答:14、设,则在极坐标系下,= _________ .答:015、设,则= _________.答:16、设,则= ___________ .答:17、函数由所确定,则= ___________ .答:18、设函数由方程所确定,则= _______ .答:19、由方程所确定的函数在点(1,0,-1)处的全微分= _________ .答:20、曲线在点处的切线方程是_________.答:21、曲线在对应于点处的法平面方程是___________. 答:01132=+--e y x22、曲面在点处的法线方程为_________ .答:eze y x 22212=-+=- 23、曲面在点处的切平面方程是_________.答:24、设函数由方程确定,则函数的驻点是_________ .答:(-1,2) 27、函数的驻点是_________.答:(1,1)25、若函数在点处取得极值,则常数_________,_________.答:0,426、函数在条件下的极大值是_______答:三、计算题1、求下列二元函数的定义域,并绘出定义域的图形.(1) z = (2)ln()z x y =+ (3)1ln()z x y =+ (4)ln(1)z xy =-解:(1)要使函数z =有意义,必须有2210x y --≥,即有221x y +≤.故所求函数的定义域为22{(,)|1}D x y x y =+≤,图形为图3.1(2)要使函数ln()z x y =+有意义,必须有0x y +>.故所有函数的定义域为{}(,)|0D x y x y =+>,图形为图3.2(3)要使函数1ln()z x y =+有意义,必须有ln()0x y +≠,即0x y +>且1x y +≠.故该函数的定义域为{}(,)|01D x y x y x y =+>+≠,,图形为图3.3(4)要使函数ln(1)z xy =-有意义,必须有10xy ->.故该函数的定义域为{(,)|1}D x y xy =>,图形为图3.4图3.1 图3.2图3.3 图3.4 2、求极限 .解:= 43、求极限 .解:原式=4、求极限 .解:= -85、设,求.解:6、设,求.解:7、设函数由所确定,试求(其中).解一:原式两边对求导得,则同理可得:解二:xy xz F F y z xy yz F F x z x y y x ++-=-=++-=-=∂∂∂∂, 8、求函数的极值.解:由,得驻点074334>=--==yyyxxy xx z z z z D,函数在点处取极小值.9、设,而,求.解:=-++(sin )3432t t e x y10、设,求.解:11、设,求.解:,,12、求函数的全微分.解:四、应用题1、要造一容积为128立方米的长方体敞口水池,已知水池侧壁的单位造价是底部的2倍,问水池的尺寸应如何选择,方能使其造价最低? 解:设水池的长、宽、高分别为米.水池底部的单位造价为. 则水池造价 且令由 ⎪⎪⎩⎪⎪⎨⎧=-==++==++==++=01280440404xyz L xy y x L xz z x L yz z y L z y x λλλλ得由于实际问题必定存在最小值,因此当水池的长、宽、高分别为8米、8米、2米时,其造价最低.2、某工厂生产两种商品的日产量分别为x 和y (件),总成本函数22128),(y xy x y x C +-=(元).商品的限额为42=+y x ,求最小成本. 解:约束条件为042),(=-+=y x y x ϕ,构造拉格朗日函数22(,,)812(42)F x y x xy y x y λλ=-+++-,解方程组160240420x y F x y F x y F x y λλλ'⎧=-+=⎪'=-++=⎨⎪'=+-=⎩,得唯一驻点)17,25(),(=y x ,由实际情况知,)17,25(),(=y x 就是使总成本最小的点,最小成本为8043)17,25(=C (元).3、某工厂生产两种产品甲和乙,出售单价分别为10元与9元,生产x 单位的产品甲与生产y 单位的产品乙的总费用是)33(01.03240022y xy x y x +++++元, 求取得最大利润时,两种产品的产量各为多少?解:),(y x L 表示获得的总利润,则总利润等于总收益与总费用之差,即有利润目标函数)]33(01.032400[)910(),(22y xy x y x y x y x L +++++-+=)0,0(,400)33(01.06822>>-++-+=y x y xy x y x ,令⎩⎨⎧=+-='=+-='0)6(01.060)6(01.08y x L y x L yx,解得唯一驻点(120,80).又因06.0,01.0,006.0-=''=-=''=<-=''=yy xy xx L C L B L A ,得0105.332>⨯=--B AC .得极大值320)80,120(=L . 根据实际情况,此极大值就是最大值.故生产120单位产品甲与80单位产品乙时所得利润最大320元. 五、证明题 1、设)11(yx e z +-=, 求证z yz y x z x 222=∂∂+∂∂.证明: 因为2)11(1x e x z y x ⋅=∂∂+-, 2)11(1ye y z y x ⋅=∂∂+-, 所以z e e yz y x z x y x y x 2)11()11(22=+=∂∂+∂∂+-+- 2、证明函数nx ey tkn sin 2-=满足关系式22x y k t y ∂∂=∂∂ 证明:因为nx e kn kn nx e ty tkn t kn sin )(sin 2222⋅-=-⋅⋅=∂∂--, nx nex y tkn cos 2-=∂∂, nx e n xy t kn sin 2222--=∂∂, nx ekn xy k tkn sin 2222--=∂∂, 所以22xy k t y ∂∂=∂∂.3、设z =xy +xF (u ), 而xyu =, F (u )为可导函数, 证明xy z y z y x z x +=∂∂+∂∂⋅.证明:y z y x z x ∂∂⋅+∂∂⋅])([])()([yu u F x x y x u u F x u F y x ∂∂'+⋅+∂∂'++=)]([)]()([u F x y u F xyu F y x '+⋅+'-+==xy +xF (u )+xy =z +xy .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多元函数微分法及其应用-期末复习题-高等数学下册-(上海电机学院)————————————————————————————————作者:————————————————————————————————日期:第八章 偏导数与全微分一、选择题1.若u=u(x, y)是可微函数,且,1),(2==x y y x u ,2x xuxy =∂∂=则=∂∂=2x y y u [A ] A. 21-B. 21C. -1D. 1 2.函数62622++-+=y x y x z [ D ]A. 在点(-1, 3)处取极大值B. 在点(-1, 3)处取极小值C. 在点(3, -1)处取极大值D. 在点(3, -1)处取极小值3.二元函数(),f x y 在点()00,x y 处的两个偏导数()()0000,,,x y f x y f x y 存在是函数f 在该点可微的 [ B ]A. 充分而非必要条件B.必要而非充分条件C.充分必要条件D.既非充分也非必要条件 4. 设u=2x +22y +32z +xy+3x-2y-6z 在点O(0, 0, 0)指向点A(1, 1, 1)方向的导数=∂∂lu[ D ] A.635 B.635- C.335 D. 335- 5. 函数xy y x z 333-+= [ B ]A. 在点(0, 0)处取极大值B. 在点(1, 1)处取极小值C. 在点(0, 0), (1, 1)处都取极大值 D . 在点(0, 0), (1, 1)处都取极小值 6.二元函数(),f x y 在点()00,x y 处可微是(),f x y 在该点连续的[ A ] A. 充分而非必要条件 B.必要而非充分条件 C.充分必要条件D.既非充分也非必要条件 7. 已知)10(0sin <<=--εεx y y , 则dxdy= [ B ] A. y cos 1ε+ B.y cos 11ε- C. y cos 1ε- D. ycos 11ε+8. 函数yx xy z 2050++= (x>0,y>0)[ D ] A. 在点(2, 5)处取极大值 B. 在点(2, 5)处取极小值C.在点(5, 2)处取极大值D. 在点(5, 2)处取极小值9.二元函数(),f x y 在点()00,x y 处连续的是(),f x y 在点()00,x y 处可微的 [A ] A. 必要而非充分条件 B. 充分而非必要条件C.充分必要条件D.既非充分也非必要条件 10. 曲线x=t, y=2t -, z=3t 所有切线中与平面x+2y+z=4平行的切线有 [ B ] A. 1 条 B.2条 C. 3条 D.不存在 11.设22(,)xy f x y y x =-,则(,)x yf y x= B A. 42xyy x - B. 2244x y y x - C. 2244x y y x +- D. 2244y x y x --12.为使二元函数(,)x yf x y x y+=-沿某一特殊路径趋向(0,0)的极限为2,这条路线应选择为 B A.4x y = B. 3x y = C. 2x y = D. 23x y = 13.设函数(,)z f x y =满足222zy∂=∂,且(,1)2f x x =+,(,1)1y f x x '=+,则(,)f x y =BA.2(1)2y x y +++ B. 2(1)2y x y +-+ C. 2(1)2y x y +-- D. 2(1)2y x y ++- 14.设(,)32f x y x y =+,则(,(,))f xy f x y = CA.344xy x y ++B. 2xy x y ++C. 364xy x y ++D. 346xy x y ++15.为使二元函数222(,)xy f x y x y =+在全平面内连续,则它在(0,0)处应被补充定义为 BA.-1B.0C.1D. 16.已知函数22(,)f x y x y x y +-=-,则(,)(,)f x y f x y x y∂∂+=∂∂ C A.22x y - B. 22x y + C. x y + D. x y -17.若22()x y yf xx+=(0)x >,则()f x =B A.21x - B. 21x + C.21x x+ D. 21x x -18.若xz y =,则在点 D 处有z z y x∂∂=∂∂ A.(0,1) B.(,1)e C.(1,)e D. (,)e e19.设2y z x =,则下列结论正确的是 AA.220z z x y y x ∂∂-=∂∂∂∂ B. 220z zx y y x ∂∂->∂∂∂∂ C.220z zx y y x∂∂-<∂∂∂∂ D.两者大小无法确定 20.函数0,0(,)11sin sin ,0xy f x y x y xy y x =⎧⎪=⎨+≠⎪⎩,则极限00lim (,)x y f x y →→ ( C ). (A) 等于1 (B) 等于2 (C) 等于0 (D) 不存在 21.函数z xy =在点(0,0) ( D ).(A) 有极大值 (B) 有极小值 (C) 不是驻点 (D) 无极值 22.二元函数22z x y =+在原点(0,0)处( A ).(A) 连续,但偏导不存在 (B) 可微(C) 偏导存在,但不连续 (D) 偏导存在,但不可微23.设()u f r =,而222r x y z =++,()f r 具有二阶连续导数,则222222u u ux y z∂∂∂++=∂∂∂( B ).(A) 1''()'()f r f r r +(B) 2''()'()f r f r r+ (C) 211''()'()f r f r r r + (D) 212''()'()f r f r r r+24.函数(,)z f x y =在点00(,)x y 处连续是它在该点偏导存在的( D ). (A) 必要而非充分条件 (B) 充分而非必要条件(C) 充分必要条件 (D) 既非充分又非必要条件 25.函数221z x y =--的极大值点是 ( D ).(A) (1,1) (B) (1,0) (C) (0,1) (D) (0,0)26.设(,)arcsin yf x y x=,则(2,1)x f '=(B ). (A)14(B) 14- (C) 12(D) 12-27.极限24200lim x y x y x y →→+( B ).(A) 等于0 (B) 不存在 (C) 等于12 (D) 存在且不等于0及1228.(,)z f x y =若在点000(,)P x y 处的两个一阶偏导数存在,则(B ). (A) (,)f x y 在点0P 连续 (B) 0(,)z f x y =在点0x 连续 (C) 00||P P z zdz dx dy x y ∂∂=⋅+⋅∂∂ (D) A,B,C 都不对 29. 设函数y x z =,则z d =( A ). (A).y x x x yxy y d ln d 1+- (B).y x x yx y y d d 1+-(C).y x x x x yy d ln d + (D).y y x x yxy y d ln d 1+-30. 已知=∂∂===y zxy v y x u v u z 则 ,,,ln 2( C )(A )y x xy y x 3232ln 2+ (B )y xxy y x 3232ln 2-(C )y x xy y x 3232ln 2+- (D )y x xy y x 22ln 2+31.函数z=22y x 1--的定义域是( D ) (A.) D={(x,y)|x 2+y 2=1}(B.)D={(x,y)|x 2+y 2≥1} (C.) D={(x,y)|x 2+y 2<1}(D.)D={(x,y)|x 2+y 2≤1}32.设22),(y x xyy x f +=,则下列式中正确的是( C );)A ( ),(,y x f x y x f =⎪⎭⎫⎝⎛; )B (),(),(y x f y x y x f =-+;)C ( ),(),(y x f x y f =; )D ( ),(),(y x f y x f =-33.设e cos xz y =,则=∂∂∂yx z2( D ); )A ( e sin xy ; )B ( e e sin xxy +;)C ( e cos xy -; )D ( e sin xy - 34.已知22),(y x y x y x f -=-+,则x f ∂∂=∂∂+yf ( C );)A ( y x 22+; )B ( y x -; )C ( y x 22- )D ( y x +.35. 设y xy x z 2232-+=,则=∂∂∂y x z( B )(A )6 (B )3 (C )-2 (D )2.36.设()=∂∂=⎪⎭⎫ ⎝⎛x zy x y x f z 00, ,,则( B )(A )()()x y x f y y x x f x ∆-∆+∆+→∆00000,,lim(B )()()x y x f y x x f x ∆-∆+→∆0000,,lim(C )()()x y x f y x x f x ∆-∆+→∆00000,,lim(D )()x y x x f x ∆∆+→∆000,lim37. 设由方程0=-xyz e z确定的隐函数()=∂∂=x z y x f z 则,,( B )(A )z z+1 (B )()1-z x z (C )()z x y +1 (D )()z x y -138. 二次函数 11)4ln(2222-++--=y x y x z 的定义域是( D )A. 1 < 22y x + ≤ 4;B. –1 ≤ 22y x + < 4; C. –1 ≤ 22y x + ≤ 4; D. 1 < 22y x + < 4。

39. ),(y x f 在点),(y x 处的偏导数),(y x f x 和),(y x f y 连续是),(y x f 可微分的( B ) A.充分必要条件; B.充分非必要条件; C.必要非充分条件; D.非充分又非必要条件。

40. 抛物面 22y x z +=上点P 处的切平面平行于平面 032=++-z y x ,则点P 的坐标是( C ) A. )0,21,1(; B. )0,21,1(-; C. )45,21,1(-; D. )45,21,1( 41. 设 2yx ez xy+= ,则yz∂∂︱=)2,1(( B ) A. 1+e ; B. 12+e ; C. 12+e ; D. 12-e 。

相关文档
最新文档