高中数学应用题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏新高考
“在考查基础知识的同时,侧重考查能力”是高考的重要意向,而应用能力的考查又是近二十年来
的能力考查重点.江苏卷一直在坚持以建模为主.所以如何由实际问题转化为数学问题的建模过程的探
索应是复习的关键.
应用题的载体很多,前几年主要考函数建模,以三角、导数、不等式知识解决问题.2013年应用考题是解不等式模型,2014年应用考题可以理解为一次函数模型,也可以理解为条件不等式
模型,这样在建模上增添新意,还是有趣的,2015、2016年应用考题都先构造函数,再利用导数求解.2016、2017年应用考题是立体几何模型,2017年应用考题需利用空间中的垂直关系和解三角
形的知识求解.
[常考题型突破]
函数模型的构建及求解
[例1](2016·江苏高考)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥
P-A1B1C1D1,下部的形状是正四棱柱ABCD-A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.
(1)若AB=6 m,PO1=2 m,则仓库的容积是多少?
(2)若正四棱锥的侧棱长为 6 m,则当PO1为多少时,仓库的容积最大?
[方法归纳]
解函数应用题的四步骤
[变式训练]
1.(2017·苏锡常镇二模)某科研小组研究发现:一棵水蜜桃树的产量w(单位:百千克)与肥料费用
x(单位:百元)满足如下关系:w=4-
3
x+1
,且投入的肥料费用不超过5百元.此外,还需要投入其他
成本(如施肥的人工费等)2x百元.已知这种水蜜桃的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水蜜桃树获得的利润为L(x)(单位:百元).
(1)求利润函数L(x)的函数关系式,并写出定义域;
(2)当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少?
2.(2017·南通三模)如图,半圆AOB是某爱国主义教育基地一景点的平面示意图,半径OA的长为1百米.为了保护景点,基地管理部门从道路l上选取一点C,修建参观线路C-D-E-F,且CD,DE,EF均与半圆相切,四边形CDEF是等腰梯形.设DE=t百米,记修建每1百米参观线路的费用
为f(t)万元,经测算f(t)=5,0 1 3 ,8- 1 t , 1 3 (1)用t表示线段EF的长; (2)求修建该参观线路的最低费用. 基本不等式的实际应用 [例2](2017·南京考前模拟)某企业准备投入适当的广告费对产品进行促销,在一年内预计销售 Q(万件)与广告费x(万元)之间的函数关系为Q=4x+1 x+1 (x≥0).已知生产此产品的年固定投入为 4.5万元, 每生产1万件此产品仍需再投入32万元,且能全部销售完.若每件销售价定为:“平均每件生产成本的150%”与“年平均每件所占广告费的25%”之和. (1)试将年利润W(万元)表示为年广告费x(万元)的函数; (2)当年广告费投入多少万元时,企业年利润最大?最大利润为多少? [方法归纳] 利用基本不等式求解实际应用题的注意点 (1)此类型的题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数 学问题求解. (2)当运用基本不等式求最值时,若等号成立的自变量不在定义域内时,就不能使用基本不等式求 解,此时可根据变量的范围对应函数的单调性求解. [变式训练] (2017·苏州期末)某湿地公园内有一条河,现打算建一座桥(如图1)将河两岸的路连接起来,剖面设计图纸(图2)如下, 其中,点A,E为x轴上关于原点对称的两点,曲线段BCD是桥的主体,C为桥顶,并且曲线段 BCD在图纸上的图形对应函数的解析式为y= 8 4+x2 (x∈[-2,2]),曲线段AB,DE均为开口向上的抛 物线段,且A,E分别为两抛物线的顶点.设计时要求:保持两曲线在各衔接处(B,D)的切线的斜率相等. (1)求曲线段AB在图纸上对应函数的解析式,并写出定义域; (2)车辆从A经B到C爬坡,定义车辆上桥过程中某点P所需要的爬坡能力为:M=(该点P与桥顶间的水平距离)×(设计图纸上该点P处的切线的斜率)其中M P的单位:米.若该景区可提供三种类型 的观光车:①游客踏乘;②蓄电池动力;③内燃机动力,它们的爬坡能力分别为0.8米,1.5米,2.0米,用已知图纸上一个单位长度表示实际长度1米,试问三种类型的观光车是否都可以顺利过桥? 三角函数的实际应用 [例3](2017·江苏高考)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均 为32 cm,容器Ⅰ的底面对角线AC的长为107 cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14 cm和62 cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12 cm.现有一根玻璃棒l,其长度为40 cm.(容器厚度、玻璃棒粗细均忽略不计) (1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度; (2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度. [方法归纳] 解三角形应用题是数学知识在生活中的应用,要想解决好,就要把实际问题抽象概括,建立相应 的数学模型,然后求解. 解三角形应用题常见的两种情况: 实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.