多光谱高光谱及成像光谱仪的区别
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光谱技术知识讲堂1.2
多光谱、高光谱与高光谱成像仪的区别
高光谱成像是新一代光电检测技术,兴起于20世纪80年代,目前仍在迅猛发展中。高光谱成像是相对多光谱成像而言,高光谱成像方法获得的高光谱图像与多光谱图像相比具有更丰富的图像和光谱信息。如果根据传感器的光谱分辨率对光谱成像技术进行分类,光谱成像技术一般可分成3类。
(1) 多光谱仪——光谱分辨率在10-1λ数量级范围内称为多光谱(Multi-spectral),传感器在可见光和近红外区域一般只有几个波段,不能成像。
(2) 高光谱仪——光谱分辨率在10-2λ数量级范围内称为高光谱(Hyper-spectral),这样的传感器在可见光和近红外区域有几十到数百个波段,光谱分辨率可达nm级,但不能成像。
(3) 高光谱成像仪——光谱分辨率小于10nm,传感器在可见光和近红外区域可达数百个波段,而且测量结果以图像方式表达出来,每一个像元均由光谱曲线组成,可以更为准确地获取目的物的反射光谱。比起高光谱仪,高光谱成像仪对样品的测量定位更为精准。
众所周知,光谱技术能检测到被测物体的物理结构、化学成分等指标。多光谱仪及高光谱仪是基于点的测量,而高光谱成像仪的测量所得到是目的物面上的光谱图。因此,高光谱成像技术是光谱分析技术和图像分析技术发展的必然结果,是二者完美结合的产物。高光谱成像技术不仅具有光谱分辨能力,还具有图像分辨能力,利用高光谱成像技术不仅可以对待检测物体进行定性和定量分析,而且还能进对其进行定位分析。
高光谱成像系统的主要工作部件是成像光谱仪,它是一种新型传感器,研制这类仪器的目的是为获取大量窄波段连续光谱图像数据,使每个像元具有几乎连续的光谱数据。它是一系列光波在不同波长处的光学图像,通常包含数十到数百个波段,光谱分辨率一般为小于l0nm(如美国SOC公司的SOC730,具有300个波段,光谱分辨率达2nm)。由于高光谱成像所获得的高光谱图像对图像中的每个像素都能提供一条几乎连续的光谱曲线,其在待测物上获得空间信息的同时又能获得比多光谱更为丰富光谱数据信息,这些数据信息可用来生成复杂模型,来进行判别、分类、识别图像中的材料。
通过高光谱成像获取待测物的高光谱图像包含
了待测物的丰富的空间、光谱和辐射三重信息。这些
信息不仅表现了地物空间分布的影像特征,同时也可
能以其中某一像元或像元组为目标获取它们的辐射强
度以及光谱特征。影像、辐射与光谱是高光谱图像中
的3个重要特征,这3个特征的有机结合就是高光谱
图像。
高光谱图像数据为数据立方体(cube)。通常图像
像素的横坐标和纵坐标分别用z和Y来表示,光谱的
波长信息以(Z即轴)表示。该数据立方体由沿着光谱
轴的以一定光谱分辨率间隔的连续二维图像组成。
地面使用的成像光谱仪多为推扫式,配备旋转位移台或线形位移台,以产生两种效果:成像光谱仪运动而待测物目标静止,或者成像光谱仪静止而待测目标运动的效果。目前,已经有新型的地面成像光谱仪,如美国SOC710,利用仪器内部的扫描装置实现推扫成像,即光谱仪和被测物均不运动即可完成高光谱成像,而不需要配备位移云台,重量仅3kg,仪器更为轻巧便携,便于野外使用。
(本节完)
18