2015-2016学年江苏省无锡市宜兴市七年级(下)期末数学试卷

合集下载

无锡市七年级数学试卷七年级苏科下册期末练习题(含答案)

无锡市七年级数学试卷七年级苏科下册期末练习题(含答案)

无锡市七年级数学试卷七年级苏科下册期末练习题(含答案)一、幂的运算易错压轴解答题1.计算(1)|﹣1|+(﹣2)3+(7﹣π)0﹣()﹣1(2)(﹣a2)3﹣6a2•a4(3)3x﹣2(x﹣1)﹣3(x+1)(4)(m4)2+m5•m3+(﹣m)4•m4.2.我们规定:,例如,请解决以下问题:(1)试求的值;(2)想一想与相等吗?请说明理由.3.阅读下列材料:一般地,n个相同的因数a相乘记为a n,记为a n.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24=________,log216=________,log264=________.(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?log a M+log a N=________;(a>0且a≠1,M>0,N>0)(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义证明上述结论.二、平面图形的认识(二)压轴解答题4.如图1,直线CB∥OA,∠A=∠B=120°,E ,F在BC上,且满足∠FOC =∠AOC,并且OE 平分∠BOF.(1)求∠AOB及∠EOC的度数;(2)如图2,若平行移动AC,那么∠OCB: ∠OFB的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值;5.请阅读小明同学在学习平行线这章知识点时的一段笔记,然后解决问题.小明:老师说在解决有关平行线的问题时,如果无法直接得到角的关系,就需要借助辅助线来帮助解答,今天老师介绍了一个“美味”的模型一“猪蹄模型”.即已知:如图1,,为、之间一点,连接,得到 .求证:小明笔记上写出的证明过程如下:证明:过点作,∴∵,∴∴ .∵∴请你利用“猪蹄模型”得到的结论或解题方法,完成下面的两个问题.(1)如图,若,,则 ________.(2)如图,,平分,平分,,则________.6.如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°.(1)请判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的结论下,当∠E=90°保持不变,移动直角顶点E,使∠MCE=∠ECD.当直角顶点E点移动时,问∠BAE与∠MCD是否存在确定的数量关系?并说明理由;(3)如图3,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(点C除外),∠CPQ+∠CQP与∠BAC有何数量关系?直接写出结论,其数量关系为________.三、整式乘法与因式分解易错压轴解答题7.如图1,有A型、B型正方形卡片和C型长方形卡片各若干张.(1)用1张A型卡片,1张B型卡片,2张C型卡片拼成一个正方形,如图2,用两种方法计算这个正方形面积,可以得到一个等式,请你写出这个等式________;(2)选取1张A型卡片,10张C型卡片,________张B型卡片,可以拼成一个正方形,这个正方形的边长用含a,b的代数式表示为________;(3)如图3,两个正方形边长分别为m、n,m+n=10,mn=19,求阴影部分的面积.8.若一个数能表示成某个整数的平方的形式,则称这个数为完全平方数,完全平方数是非负数.例如:0=02, 1=12, 4=22, 9=32, 16=42, 25=52, 36=62, 121=112….(1)若28+210+2n是完全平方数,求n的值.(2)若一个正整数,它加上61是一个完全平方数,当减去11是另一个完全平方数,写出所有符合的正整数.9.阅读理解.因为,①因为②所以由①得:,由②得:所以试根据上面公式的变形解答下列问题:(1)已知,则下列等式成立的是()① ;② ;③ ;④ ;A.①B.①②C.①②③D.①②③④;(2)已知,求下列代数式的值:① ;② ;③ .四、二元一次方程组易错压轴解答题10.在平面直角坐标系中,对于点,若点的坐标为,则称点是点的“ 演化点”.例如,点的“ 演化点”为,即 .(1)已知点的“ 演化点”是,则的坐标为________;(2)已知点,且点的“ 演化点”是,则的面积为________;(3)己知,,,,且点的“ 演化点”为,当时, ________.11.菜矿泉水厂在山脚下筑有水池蓄水,山泉水不停地流入水池,水池底部有大小两个排水口,(1)当蓄水到吨时,需要截住泉水清理水池。

15—16学年下学期七年级期末考试数学试题(附答案)

15—16学年下学期七年级期末考试数学试题(附答案)

2015-2016学年第二学期期末联考试卷七年级数学一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果座位表上“5列2行”记作(5,2),那么(4,3)表示()A.3列5行B.5列3行C.4列3行D.3列4行2.如果a>b,那么下列不等式中一定成立的是()A.a2>b2B.1﹣a>1﹣b C.1+a>1﹣b D.1+a>b﹣13.在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有()A.1个B.2个C.3个D.4个4.下面调查中,适合采用普查的是()A.调查全国中学生心理健康现状B.调查你所在的班级同学的身高情况C.调查我市食品合格情况D.调查南京市电视台《今日生活》收视率5.若是方程kx﹣2y=2的一个解,则k等于()A.B.C.6 D.﹣6.如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE7.如图,在平面直角坐标系中,A(﹣3,2)、B(﹣1,0)、C(﹣1,3),将△ABC向右平移4个单位,再向下平移3个单位,得到△A1B1C1,点A、B、C的对应点分别A1、B1、C1,则点A1的坐标为()A.(3,﹣3)B.(1,﹣1)C.(3,0)D.(2,﹣1)8.在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是()A.B.C.D.9.若关于x的不等式组无解,则a的取值范围是()A.a≤3 B.a≥3 C.a<3 D.a>310.已知方程组和有相同的解,则a,b的值为()A.B.C.D.11.小明要制作一个长方形的相片框架,这个框架的长为25cm,面积不小于500cm2,则宽的长度xcm应满足的不等式组为()A.B.C.D.12.为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.如图是张磊家2015年9月和10月所交电费的收据,则该市规定的第一阶梯电价和第二阶梯电价分别为每度()A.0.5元、0.6元B.0. 4元、0.5元C.0.3元、0.4元D.0.6元、0.7元第6题图第7题图第12题图二、填空题:本大题共6小题,每小题3分,共18分.把答案填在题中横线上.13.的整数部分是.14.某学校为了了解八年级学生的体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为.15.已知2x﹣3y﹣1=0,请用含x的代数式表示y:.16.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为°.17.若不等式组的解集是﹣1<x <1,则b a 212 的立方根为 . 18.如图,正方形ABCD 的顶点B 、C 都在直角坐标系的x 轴上,若点D 的坐标是(3,4),则点A 的坐标是 .第14题图 第16题图 第18题图三、解答题:本大题共6小题,共46分.解答应写出必要的文字说明、证明过程或演算步骤.19.(5分)解方程组:20.(6分)解不等式组请结合题意填空,完成本题的解答. (1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .21.(7分)请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.22.(8分)已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4.证明:AD∥BE.证明:∵AB∥CD(已知)∴∠4=①(②)∵∠3=∠4(已知)∴∠3=③(④)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等量代换)即∠BAF=∠DAC∴∠3= ⑤(等量代换)∴AD∥BE(⑥)23.(9分)某中学图书馆将图书分为自然科学、文学艺术、社会百科、哲学四类.在“读书月”活动中,为了了解图书的借阅情况,图书管理员对本月各类图书的借阅进行了统计,表)和图是图书管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:(1)表中m=,n=;(2)在图中,将表示“自然科学”的部分补充完整;(3)若该学校打算采购一万册图书,请你估算“哲学”类图书应采购多少册较合适?(4)根据图表提供的信息,请你提出一条合理化的建议.24.(11分)在南宁市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和1台电子白板共需要2万元,购买2台电脑和1台电子白板共需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过32万元,但不低于30万元,请你通过计算求出有几种购买方案,哪种方案费用最低.2015-2016学年第二学期期末联考七年级数学评分细则一、选择题(本题共12小题,每小题3分,共36分)1-5 CDBBC 6-10 DBBAD 11-12 AA二、填空题(本题共6小题,每小题3分,共18分)13. 4 14. 0.4 15. y=16. 35 17. 2 18. (﹣1,4)三、解答题(本大题共6小题,共46分)注:解答题解法多样,非本细则所述的其他正确解法请阅卷老师酌情给分19. 解:,①+②×2得:7x=7,即x=1,------- 3分把x=1代入①得:y=1,------- 4分则方程组的解为------- 5分20. 解:(1)x<2,------- 1分(2)x≥﹣1,------- 3分(3)------- 5分(4)-1≤x<2.------- 6分21. 解:(1)设魔方的棱长为x cm,可得:x3=216,------- 2分解得:x=6.------- 3分(2)设该长方体纸盒的长为y cm,6y2=600,------- 5分y2=100,即y=10.------- 6分答:魔方的棱长6 cm,长方体纸盒的长为10 cm.------- 7分22. 解:①∠BAE ,------- 1分②(两直线平行,同位角相等),------- 3分③∠BAE ------- 4分④(等量代换),------- 5分⑤∠DAC ,------- 6分⑥(内错角相等,两直线平行).------- 8分23. 解:(1)m= 500 ,------- 2分n= 0.05 ;------- 3分(2)自然科学:2000×0.20=400 册如图,------- 5分(3)10000×0.05=500(册),即估算“哲学”类图书应采购500册较合适;------- 7分(4)鼓励学生多借阅哲学类的书.------- 9分24. 解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,------- 3分解得,即每台电脑0.5万元,每台电子白板1.5万元;------- 5分(2)设需购进电脑a台,则购进电子白板(30﹣a)台,根据题意得:,------- 7分解得:13≤a≤15,∵a只能取整数,∴a=13,14,15,------- 9分∴有三种购买方案,方案1:需购进电脑13台,则购进电子白板17台,13×0.5+1.5×17=32(万元),方案2:需购进电脑14台,则购进电子白板16台,14×0.5+1.5×16=31(万元),方案3:需购进电脑15台,则购进电子白板15台,15×0.5+1.5×15=30(万元),∵30<31<32,∴购买电脑15台,电子白板15台最省钱.------- 11分。

2015-2016学年苏科版第二学期初一数学期末试卷及答案

2015-2016学年苏科版第二学期初一数学期末试卷及答案

2015-2016学年第二学期初一数学期末试卷分值:130分;一、选择题:(本题共12小题,每小题2分,共24分)1.下列计算正确的是………………………………………………………………( )A .2223a a a += ;B .824a a a ÷=;C .326a a a ⋅=;D .()236a a =;2. 已知等腰三角形的两条边长分别为2和3,则它的周长为…………………………( )A .7B .8C .5D .7或8 3.若2m a =,3n a =,则m n a +等于………………………………………………( )A .5B .6C .8D .104.下列命题:①同旁内角互补,两直线平行:②全等三角形的周长相等;③直角都相等;④相等的角是对项角.它们的逆命题是真命题的个数是………………………………( )A .1个B .2个C .3个D .4个5.(2014.梅州)如图,直线a ∥b ,射线DC 与直线a 相交于点C ,过点D 作DE ⊥b 于点E ,已知∠1=25°,则∠2的度数为……………………………………………………( )A .115°;B .125°;C .155°;D .165°;6.从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是…………( )A .6 ;B .7 ;C .8;D .9;7.到三角形的三边距离相等的点是………………………………………………… ( )A .三角形三条高的交点;B .三角形三条内角平分线的交点;C .三角形三条中线的交点;D .三角形三条边的垂直平分线的交点;8.如图,把纸片△ABC 沿DE 折叠,当点A 落在四边形BCDE 内时,则下列结论正确的是…( )A .∠A=∠1+∠2 ;B .2∠A=∠1+∠2;C .3∠A=∠1+∠2;D .3∠A=2(∠1+∠2);9.如图,在△ABC 中,AB=AC ,∠A=40°,点P 为△ABC 内的一点, 且∠PBC=∠PCA ,则∠BPC 的大小( )A .110°B .120°C .130°D .140°10.在数学中,为了书写简便,我们记()11231n k k n n ==++++-+∑ ,()()()112nk x k x x =+=+++∑+…()x n +++ ,则化简()()311k x k x k =---⎡⎤⎣⎦∑的的结果是…………………( )第9题图第8题图第5题图第17题图 A .231520x x -+; B .2398x x -+; C .23620x x --; D .23129x x --;二、填空题:(本题共8小题,每小题3分,共24分)11.用科学计数法表示数:0.000123=___________.12.已知:32a b +=,1ab =,化简()()22a b --的结果是_______. 13.如果()22216x m x +++是完全平方式,则m 的值等于__________.14.如图,在△ABC 中,AB=AC=10cm ,AB 的垂直平分线交AC 于点D ,且△BCD 的周长为17cm ,则BC=_________cm .15.如图,△ABC 是等腰三角形,且AB=AC ,BM 、CM 分别平分∠ABC 、∠ACB ,DE 经过点M ,且DE ∥BC ,则图中有________个等腰三角形.16.如图,△ABC 中,∠ACB=90°,∠A=42°,D 是AB 中点,则∠ADC=_______°.17.(2014•老河口市模拟)如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA=2,则PQ 的最小值为 .18.如果等式2(21)1a a +-=,则a 的值可以是 .三、解答题:(本大题共79分)19.计算:(本题满分8分) (1)()()2201302013113.14323π-⎛⎫⎛⎫--+⨯- ⎪ ⎪⎝⎭⎝⎭; (2)()()2222321ab a b ab -⋅--;20. (本题满分7分)分解因式:(1) 3169a a -;(2) 22344ab a b b --; 21. (本小题5分)解不等式组:()()3261231x x x x ⎧--≤⎪⎨+>-⎪⎩第15题第16题第14题22.(本小题5分)先化简,再求值:()()()22253a b a a b a b +++--,其中3a =,23b =-.23. (本题5分)已知22610340a a b b ++-+=,求代数式()()2324a b a b ab +-+的值24.(6分)(1)如图(1),已知∠AOB 和线段CD ,求作一点P ,使PC=PD ,并且点P 到∠AOB 的两边距离相等(尺规作图....,不写作法,保留作图痕迹,写出结论); (2)如图(2)是一个台球桌,若击球者想通过击打E 球,让E 球先撞上AB 边上的点P ,反弹后再撞击F 球,请在图(2)中画出这一点P .(不写作法,保留作图痕迹,写出结论)25.(6分)如图,已知△ABC 中,AB=BD=DC ,∠ABC=105°,求∠A 、∠C 度数.26.(6分)已知:如图,△ABC 中,AB=AC ,D 是BC 上一点,点E 、F 分别在AB 、 AC 上,BD=CF ,CD=BE ,G 为EF 的中点.求证:(1)△BDE ≌△CFD ; (2)DG ⊥EF .27. (本题满分7分)如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点.将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.试猜想线段BE和EC的数量及位置关系,并证明你的猜想.28. (本题满分6分)二元一次方程组3102x yx y m+=⎧⎨+=⎩的解x、y()x y≠的值是一个等腰三角形两边的长,且这个等腰三角形的周长为8,求腰的长和m的值.29. (本题满分7分)某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.(1)求A、B两种品牌的化妆品每套进价分别为多少元?(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元,根据市场需求,化妆品店老板决定,购进B品牌化妆品的数量比购进A品牌化妆品数量的2倍还多4套,且B品牌化妆品最多可购进40套,这样化妆品全部售出后,可使总的获利不少于1200元,问有几种进货方案?如何进货?30. (本题满分8分)如图,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B 出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:(1)PC= cm.(用t的代数式表示)(2)当t为何值时,△ABP≌△DCP?(3)当点P从点B开始运动,同时,点Q从点C出发,以v cm/秒的速度沿CD向点D 运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.2015-2016学年第二学期初一数学期末试卷参考答案一、选择题:1.D ;2.D ;3.B ;4.B ;5.A ;6.C ;7.B ;8.B ;9.A ;10.A ;二、填空题:11. 41.2310-⨯;12.2;13.2或-6;14.7;15.5;16.96°17.2;18.-2,1,0;三、解答题:19.(1)-4;(2)4535241284a b a b a b --;20.(1)()()4343a a a +-;(2)()22b a b --;21. 04x ≤<;22. 1530ab =-;23.-41;24. 解:(1)如图(1):根据分析得OP 为∠AOB 的角平分线,PE 是线段CD 的中垂线.(2)如图(2)E'为E 以AB 为轴的对称点,由入射角∠EPQ=∠FPQ 则由E 点打击P 点可击中F 点.25.50°,25°;26. 解:(1)在△ABC 中,AB=AC ,∴∠B=∠C ,∵BD=CF ,CD=BE ,∴△BDE ≌△CFD ,∴DE=DF .(2)由(1)知DE=DF ,即△DEF 是等腰三角形,∵G 为EF 的中点,∴DG ⊥EF .27. 数量关系为:BE=EC ,位置关系是:BE ⊥EC .证明:∵△AED 是直角三角形,∠AED=90°,且有一个锐角是45°, ∴∠EAD=∠EDA=45°,∴AE=DE ,∵∠BAC=90°,∴∠EAB=∠EAD+∠BAC=45°+90°=135°,∠EDC=∠ADC-∠EDA=180°-45°=135°,∴∠EAB=∠EDC ,∵D 是AC 的中点,∴AD=CD=12AC ,∵AC=2AB ,∴AB=AD=DC ,∵在△EAB 和△EDC 中AE DE EAB EDC AB DC =⎧⎪∠=∠⎨⎪=⎩,∴△EAB ≌△EDC (SAS ),∴EB=EC ,且∠AEB=∠DEC , ∴∠BEC=∠DEC+∠BED=∠AEB+∠BED=90°,∴BE ⊥EC .28. 解:①x 为底边,y 为腰长,由题意得:31028x y x y +=⎧⎨+=⎩,解得:42x y =⎧⎨=⎩; ∵2+2=4,∴不能构成三角形,故此种情况不成立;②y 为底边,x 为腰长,由题意得:31028x y x y +=⎧⎨+=⎩,解之得 2.82.4x y =⎧⎨=⎩,∵2.4+2.8>2.8,∴能构成三角形,∴2.8+2.4=2m ,解得:m=2.6.29. 解:(1)设A 种品牌的化妆品每套进价为x 元,B 种品牌的化妆品每套进价为y 元.得5695032450x y x y +=⎧⎨+=⎩,解得10075x y =⎧⎨=⎩. 答:A 、B 两种品牌得化妆品每套进价分别为100元,75元.(2)设A 种品牌得化妆品购进m 套,则B 种品牌得化妆品购进(2m+4)套.根据题意得:()24403020241200m m m +≤⎧⎪⎨++≥⎪⎩,解得16≤m ≤18 ∵m 为正整数,∴m=16、17、18∴2m+4=36、38、40答:有三种进货方案(1)A 种品牌得化妆品购进16套,B 种品牌得化妆品购进36套.(2)A 种品牌得化妆品购进17套,B 种品牌得化妆品购进38套.(3)A 种品牌得化妆品购进18套,B 种品牌得化妆品购进40套.35.解:(1)点P 从点B 出发,以2cm/秒的速度沿BC 向点C 运动,点P 的运动时间为t 秒时,BP=2t ,则PC=10-2t ;(2)当t=2.5时,△ABP ≌△DCP ,∵当t=2.5时,BP=2.5×2=5,∴PC=10-5=5,∵在△ABP 和△DCP 中,90AB DC B C BP CP =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABP ≌△DCP (SAS );(2)①当BP=CQ ,AB=PC 时,△ABP ≌△PCQ ,∵AB=6,∴PC=6,∴BP=10-6=4,2t=4,解得:t=2,CQ=BP=4,v ×2=4,解得:v=2;②当BA=CQ ,PB=PC 时,△ABP ≌△QCP ,∵PB=PC ,∴BP=PC=12BC=5,2t=5,解得:t=2.5,CQ=BP=6,v ×2.5=6,解得:v=2.4.综上所述:当v=2.4或2时△ABP 与△PQC 全等.。

宜兴七年级下数学试卷

宜兴七年级下数学试卷

考试时间:120分钟满分:100分一、选择题(每题4分,共40分)1. 下列选项中,不是有理数的是()A. 2B. -1/3C. √4D. π2. 已知 a > b,则下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 < b - 2C. 2a > 2bD. a - 2 < b + 23. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 14. 如果 |x - 3| = 5,那么 x 的值为()A. 8 或 -2B. 8 或 2C. 5 或 -2D. 5 或 25. 已知一个等腰三角形的底边长为6cm,腰长为8cm,则这个三角形的周长为()A. 16cmB. 18cmC. 20cmD. 22cm6. 若 a = 2,b = -3,则a² + b² 的值为()A. 1B. 5C. 9D. 137. 在直角坐标系中,点A(-2,3)关于原点对称的点B的坐标为()A. (-2,-3)B. (2,-3)C. (-2,3)D. (2,3)8. 下列关于函数 y = 2x + 1 的说法正确的是()A. 当 x 增加时,y 减小B. 当 x 减小时,y 增大C. y 的值总是正数D. x 的值总是正数9. 若一个数加上它的倒数等于2,那么这个数是()A. 1B. 2C. 1/210. 在梯形ABCD中,AD平行于BC,若AD = 5cm,BC = 10cm,AB = CD = 6cm,则梯形的高为()A. 2cmB. 3cmC. 4cmD. 5cm二、填空题(每题5分,共25分)11. 计算:-3 + 4 - 2 + 1 + 5 - 6 = _______12. 如果 a = -1,b = 2,那么 2a - 3b 的值为 _______13. 已知一个数的倒数是 -1/2,那么这个数是 _______14. 在直角坐标系中,点P(-3,2)关于x轴的对称点坐标为 _______15. 函数 y = 3x - 4 的图像是一条直线,当 x = 0 时,y 的值为 _______三、解答题(共35分)16. (10分)解方程:2(x - 3) = 4x + 617. (10分)计算:√(16 + 9) - √(25 - 16)18. (10分)在梯形ABCD中,AD平行于BC,AD = 6cm,BC = 10cm,AB = CD = 8cm,求梯形的高。

宜兴初一期末考试数学试卷

宜兴初一期末考试数学试卷

一、选择题(每题3分,共30分)1. 下列各数中,正数是()A. -3B. 0C. 3.14D. -2.52. 下列代数式中,同类项是()A. 2x + 3yB. 4a^2 + 2aC. 5m - 7n + 2D. 3x^2 - 4x + 13. 若a > b,则下列不等式中正确的是()A. a + 1 > b + 1B. a - 1 < b - 1C. a + 1 < b + 1D. a - 1 > b - 14. 下列图形中,是轴对称图形的是()A. 长方形B. 等腰三角形C. 平行四边形D. 梯形5. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2D. y = 4x - 26. 若一个数的平方是25,则这个数是()A. ±5B. ±10C. ±15D. ±207. 下列各数中,是偶数的是()A. 1/2B. 3/4C. 1/8D. 2/38. 下列代数式中,系数最小的是()A. 3a^2B. -2bC. 5cD. -1/4d9. 若a、b、c是等差数列的前三项,且a + b + c = 12,则a = ()A. 2B. 4C. 6D. 810. 下列各数中,绝对值最大的是()A. -3B. -2C. -1D. 0二、填空题(每题3分,共30分)11. 若x^2 - 4x + 3 = 0,则x = _______。

12. 0.125的小数点向右移动两位后得到的数是 _______。

13. 2a - 3b + 4c = 0中,a、b、c的系数分别是 _______、_______、_______。

14. 一个等腰三角形的底边长是10cm,腰长是8cm,则这个三角形的周长是_______cm。

15. 下列函数中,y = 2x - 3是一次函数,其斜率k = _______,截距b =_______。

江苏省无锡市宜兴市七年级数学下学期期末试卷(含解析) 苏科版

江苏省无锡市宜兴市七年级数学下学期期末试卷(含解析) 苏科版

2015-2016学年江苏省无锡市宜兴市七年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是正确的,请用3B铅笔把答题卡上相应的选项标号涂黑1.下列运算中,正确的是()A.a8÷a2=a4B.(﹣m)2•(﹣m3)=﹣m5C.x3+x3=x6D.(a3)3=a62.若a>b,则下列结论正确的是()A.a+2<b+2 B.a﹣5<b﹣5 C.<D.3a>3b3.下列长度的3条线段,能首尾依次相接组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cm C.12cm,5cm,6cm D.1cm,3cm,4cm4.不等式组的解集在数轴上表示正确的是()A. B. C.D.5.若二次三项式x2﹣mx+16是一个完全平方式,则字母m的值是()A.4 B.﹣4 C.±4 D.±86.如图,有以下四个条件:①∠B+∠BCD=180°,②∠1=∠2,③∠3=∠4,④∠B=5,其中能判定AB∥CD的条件的个数有()A.1 B.2 C.3 D.47.连接A、B两地的高速公路全长为420km,一辆小汽车和一辆客车分别从A、B两地同时出发,相向而行,经过2.5h相遇,相遇时,小汽车比客车多行驶了70km,若设小汽车和客车的平均速度分别为xkm/h和ykm/h,则下列方程组正确的是()A.B.C.D.8.给出下列5个命题:①相等的角是对顶角;②互补的两个角中一定是一个为锐角,另一个为钝角;③平行于同一条直线的两条直线平行;④同旁内角的平分线互相垂直.其中真命题的个数为()A.1 B.2 C.3 D.49.若关于x的不等式组恰有3个整数解,则字母a的取值范围是()A.a≤﹣1 B.﹣2≤a<﹣1 C.a<﹣1 D.﹣2<a≤﹣110.如图,在△ABC中,D是AB的中点,E是BC上的一点,且BE=4EC,CD与AE相交于点F,若△CEF的面积为1,则△ABC的面积为()A.24 B.25 C.30 D.32二、填空题(本大题共8小题,每小题2分,共16分,不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)11.一种花瓣的花粉颗粒直径约为0.0000065m,这个数用科学记数法表示为______m.12.若a﹣b=1,ab=﹣2,则(a﹣2)(b+2)=______.13.若2m=3,2n=5,则23m﹣2n=______.14.写出命题“若2a=4b,则a=2b”的逆命题:______.15.已知n边形的内角和是一个五边形的外角和的2倍,则n=______.16.已知x、y满足,则x2﹣y2的值为______.17.如图,点O是△ABC的两条角平分线的交点,若∠BOC=110°,则∠A=______°.18.如图①,在长方形ABCD中,E点在AD上,并且∠ABE=30°,分别以BE、CE为折痕进行折叠并压平,如图②,若图②中∠AED=n°,则∠BCE的度数为______°(用含n的代数式表示).三、解答题(本大题共8小题,共64分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)()﹣3﹣20160﹣|﹣5|;(2)(3a2)2﹣a2•2a2+(﹣2a3)2+a2.20.因式分解:(1)x2y﹣2xy+xy2;(2)2x2﹣8.21.(1)解方程组:(2)解不等式组并写出这个不等式组的最大整数解.22.先化简,再求值:(x+y)2﹣2x(x+3y)+(x+2y)(x﹣2y),其中x=﹣1,y=2.23.如图:在正方形网格中有一个格点三角形ABC,(即△ABC的各顶点都在格点上),按要求进行下列作图:(1)画出△ABC中AB边上的高CD;(提醒:别忘了标注字母!)(2)画出将△ABC先向右平移5格,再向上平移3格后的△A′B′C′;(3)画一个锐角格点三角形MNP,使其面积等于△ABC的面积.24.如图,在四边形ABCD中,∠B=∠D=90°,AE平分∠BAD交CD于点E,CF平分∠BCD交AB于点F,求证:AE∥CF.25.如图1,已知直线m⊥n,垂足为点A,现有一个直角三角形ABC,其中∠ACB=90°,∠B=30°,现将这个三角形按如图1方式放置,使点C落在直线m上.操作:将△ABC绕点A逆时针旋转一周,如图2所示.通过操作我们发现,当旋转一定角度α时,△ABC会被直线m或n分成两个三角形,其中一个三角形有两个角相等,请直接写出所有符合条件的旋转角度α.26.已知某品牌的饮料有大瓶和小瓶装之分,某超市花了3800元购进一批该品牌的饮料共1000瓶,其中,大瓶和小瓶饮料的进价及售价如表所示.(1)问:该超市购进大瓶和小瓶饮料各多少瓶?(2)当大瓶饮料售出了200瓶,小瓶饮料售出了100瓶后,商家决定将剩下的小瓶饮料的售价降低0.5元销售,并把其中一定数量的小瓶饮料作为赠品,在顾客一次购买大瓶饮料时,每满2瓶就送1瓶饮料,送完即止.请问:超市要使这批饮料售完后获得的利润不低于12502015-2016学年江苏省无锡市宜兴市七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是正确的,请用3B铅笔把答题卡上相应的选项标号涂黑1.下列运算中,正确的是()A.a8÷a2=a4B.(﹣m)2•(﹣m3)=﹣m5C.x3+x3=x6D.(a3)3=a6【考点】整式的混合运算.【分析】计算出各个选项中式子的正确结果,即可得到哪个选项是正确的.【解答】解:∵a8÷a2=a6,故选项A错误;∵(﹣m)2•(﹣m3)=﹣m5,故选项B正确;∵x3+x3=2x3,故选项C错误;∵(a3)3=a9,故选项D错误;故选B.2.若a>b,则下列结论正确的是()A.a+2<b+2 B.a﹣5<b﹣5 C.<D.3a>3b【考点】不等式的性质.【分析】根据不等式的性质逐一判断,判断出结论正确的是哪个即可.【解答】解:∵a>b,∴a+2>b+2,∴选项A不正确;∵a>b,∴a﹣5>b﹣5,∴选项B不正确;∵a>b,∴>,∴选项C不正确;∵a>b,∴3a>3b,∴选项D正确.故选:D.3.下列长度的3条线段,能首尾依次相接组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cm C.12cm,5cm,6cm D.1cm,3cm,4cm 【考点】三角形三边关系.【分析】根据三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边,分别判断出即可.【解答】解:∵三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边,∴A.1cm,2cm,4cm,∵1+2<4,∴无法围成三角形,故此选项A错误;B.8cm,6cm,4cm,∵4+6>8,∴能围成三角形,故此选项B正确;C.12cm,5cm,6cm,∵5+6<12,∴无法围成三角形,故此选项C错误;D.1cm,3cm,4cm,∵1+3=4,∴无法围成三角形,故此选项D错误.故选B.4.不等式组的解集在数轴上表示正确的是()A. B. C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【解答】解:,由①得,x>﹣3,由②得,x≤1,故不等式组的解集为:﹣3<x≤1.在数轴上表示为:.5.若二次三项式x2﹣mx+16是一个完全平方式,则字母m的值是()A.4 B.﹣4 C.±4 D.±8【考点】完全平方式.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值.【解答】解:∵x2﹣mx+16=x2﹣mx+42,∴﹣mx=±2•x•4,解得m=±8.故选:D.6.如图,有以下四个条件:①∠B+∠BCD=180°,②∠1=∠2,③∠3=∠4,④∠B=5,其中能判定AB∥CD的条件的个数有()A.1 B.2 C.3 D.4【考点】平行线的判定.【分析】根据平行线的判定定理求解,即可求得答案.【解答】解:①∵∠B+∠BDC=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴能得到AB∥CD的条件是①③④.故选C.7.连接A、B两地的高速公路全长为420km,一辆小汽车和一辆客车分别从A、B两地同时出发,相向而行,经过2.5h相遇,相遇时,小汽车比客车多行驶了70km,若设小汽车和客车的平均速度分别为xkm/h和ykm/h,则下列方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设小汽车和客车的平均速度分别为xkm/h和ykm/h,根据题意可得,相向而行,经过2.5h相遇,相遇时,小汽车比客车多行驶了70km,据此列方程组.【解答】解:设小汽车和客车的平均速度分别为xkm/h和ykm/h,可得:,故选:A.8.给出下列5个命题:①相等的角是对顶角;②互补的两个角中一定是一个为锐角,另一个为钝角;③平行于同一条直线的两条直线平行;④同旁内角的平分线互相垂直.其中真命题的个数为()A.1 B.2 C.3 D.4【考点】命题与定理.【分析】根据对顶角、互补、同旁内角的定义即可判断①②④错误,根据平行公理可知③正确,由此即可解决问题.【解答】解:①错误,相等的角不一定是对顶角.②错误,两个角可能都是90°.③正确.④错误,同旁内角的平分线不一定互相垂直.正确的是③.故选A.9.若关于x的不等式组恰有3个整数解,则字母a的取值范围是()A.a≤﹣1 B.﹣2≤a<﹣1 C.a<﹣1 D.﹣2<a≤﹣1【考点】一元一次不等式组的整数解.【分析】先确定不等式组的整数解,再求出a的范围即可.【解答】解:∵x的不等式组恰有3个整数解,∴整数解为1,0,﹣1,∴﹣2≤a<﹣1,故选B.10.如图,在△ABC中,D是AB的中点,E是BC上的一点,且BE=4EC,CD与AE相交于点F,若△CEF的面积为1,则△ABC的面积为()A.24 B.25 C.30 D.32【考点】三角形的面积.【分析】作辅助线,构建平行线,利用三角形中位线定理得:DG=BE,与已知BE=4EC相结合得出DG与EC的比,因为△DGF∽△CEF,根据面积比等于相似比的平方可知S△DFG=4,可依次得出△DFE、△DEC、△BDE、△BDC的面积,由此得出结论.【解答】解:过D作DG∥BC,交AE于G,则△DGF∽△CEF,∵AD=BD,∴AG=GE,∴DG=BE,∵BE=4EC,∴=2,∵△DGF∽△CEF,∴=4, =2,∵S△CEF=1,∴S△DFG=4,∴=2,∴S△DEC=S△DFE+S△CEF=2+1=3,∴S△BDE=4S△DEC=4×3=12,∴S△BDC=S△BDE+S△DEC=12+3=15,∴S△ABC=2S△BDC=2×15=30.二、填空题(本大题共8小题,每小题2分,共16分,不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)11.一种花瓣的花粉颗粒直径约为0.0000065m,这个数用科学记数法表示为 6.5×10﹣6m.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000065=6.5×10﹣6;故答案为:6.5×10﹣6.12.若a﹣b=1,ab=﹣2,则(a﹣2)(b+2)= ﹣4 .【考点】整式的混合运算—化简求值.【分析】原式利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值.【解答】解:∵a﹣b=1,ab=﹣2,∴原式=ab+2(a﹣b)﹣4=﹣2+2﹣4=﹣4,故答案为:﹣413.若2m=3,2n=5,则23m﹣2n= .【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】首先应用含2m,2n的代数式表示23m﹣2n,然后将2m,2n值代入即可求解.【解答】解:∵2m=3,2n=5,∴23m﹣2n=(2m)3÷(2n)2,=27÷25,=,故答案为:.14.写出命题“若2a=4b,则a=2b”的逆命题:若a=2b,则2a=4b .【考点】命题与定理.【分析】交换原命题的题设与结论部分即可得到逆命题.【解答】解:命题“若2a=4b,则a=2b”的逆命题是“若a=2b,则2a=4b”.故答案为若a=2b,则2a=4b.15.已知n边形的内角和是一个五边形的外角和的2倍,则n= 6 .【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°和外角和定理列出方程,然后求解即可.【解答】解:设多边形的边数为n,由题意得,(n﹣2)•180°=2×360°,解得n=6.故答案为:6.16.已知x、y满足,则x2﹣y2的值为252 .【考点】二元一次方程组的解.【分析】根据已知方程组求得(x+y)、(x﹣y)的值;然后利用平方差公式来求代数式的值.【解答】解:,由①+②得到:x+y=2,由①﹣②得到:x﹣y=126,所以x2﹣y2=(x+y)(x﹣y)=2×126=252.故答案是:252.17.如图,点O是△ABC的两条角平分线的交点,若∠BOC=110°,则∠A= 40°°.【考点】三角形内角和定理.【分析】先利用三角形的内角和求出∠OBC+∠OCB,再用角平分线的意义,整体代换求出∠ABC+∠ACB,最后再用三角形的内角和即可.【解答】解:在△BOC中,∠OBC+∠OCB=180°﹣∠BOC=180°﹣110°=70°,∵点O是△ABC的两条角平分线的交点,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=2×70°=140°,在△ABC中,∠A=180°﹣(∠ABC+∠ACB)=180°﹣140°=40°,故答案为40°18.如图①,在长方形ABCD中,E点在AD上,并且∠ABE=30°,分别以BE、CE为折痕进行折叠并压平,如图②,若图②中∠AED=n°,则∠BCE的度数为n+30 °(用含n的代数式表示).【考点】平行线的性质.【分析】根据BE=2AE=2A′E,∠A=∠A′=90°,得出△ABE、△A′BE皆为30°、60°、90° 的三角形,然后求得∠AED′的度数,再根据∠AED=n°,即可求得∠DED′的度数,继而求得∠BCE的度数.【解答】解:根据题意得:∵BE=2AE=2A′E,∠A=∠A′=90°,∴△ABE、△A′BE都为30°、60°、90° 的三角形,∴∠1=∠AEB=60°,∴∠AED′=180°﹣∠1﹣∠AEB=180°﹣60°﹣60°=60°,∴∠DED′=∠AED+∠AED′=n°+60°=(n+60)°,∴∠2=∠DED′=(n+30)°,∵A′D′∥BC,∴∠BCE=∠2=(n+30)°.故答案为:(n+30).三、解答题(本大题共8小题,共64分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)()﹣3﹣20160﹣|﹣5|;(2)(3a2)2﹣a2•2a2+(﹣2a3)2+a2.【考点】单项式乘单项式;幂的乘方与积的乘方;零指数幂;负整数指数幂.【分析】(1)原式利用零指数幂、负整数指数幂法则,以及绝对值的代数意义化简,计算即可得到结果;(2)原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果.【解答】解:(1)原式=8﹣1﹣5=2;(2)原式=9a4﹣2a4+4a6+a2=7a4+4a6+a2.20.因式分解:(1)x2y﹣2xy+xy2;(2)2x2﹣8.【考点】提公因式法与公式法的综合运用.【分析】(1)根据提公因式法,可得答案;(2)根据提公因式法,可得平方差公式,根据平方差公式,可得答案.【解答】解:(1)原式=xy(x﹣2+y)'(2)原式=2(x2﹣4)=2(x+2)(x﹣2).21.(1)解方程组:(2)解不等式组并写出这个不等式组的最大整数解.【考点】一元一次不等式组的整数解;解二元一次方程组;解一元一次不等式组.【分析】(1)根据方程组的解法计算即可;(2)此题可先根据一元一次不等式组解出x的取值,根据x是最大整数解得出.【解答】解:(1)①×2得:10x+4y=50③,③﹣②,得:7x=35,解得:x=5,把x=5代入①得:y=0,所以方程组的解为:;(2)由①,得:x>﹣1,由②,得:x≤2,所以不等式组的解集为:﹣1<x≤2,所以不等式组的最大整数解是2.22.先化简,再求值:(x+y)2﹣2x(x+3y)+(x+2y)(x﹣2y),其中x=﹣1,y=2.【考点】整式的混合运算—化简求值.【分析】先利用完全平方公式,平方差公式和整式的乘法计算方法计算,再进一步合并化简后代入求得数值即可.【解答】解:(x+y)2﹣2x(x+3y)+(x+2y)(x﹣2y)=x+2xy+y﹣2x﹣6xy+x﹣4y=﹣4xy﹣3y2;当x=﹣1,y=2时,原式=﹣4×(﹣1)×2﹣3×22=﹣4.23.如图:在正方形网格中有一个格点三角形ABC,(即△ABC的各顶点都在格点上),按要求进行下列作图:(1)画出△ABC中AB边上的高CD;(提醒:别忘了标注字母!)(2)画出将△ABC先向右平移5格,再向上平移3格后的△A′B′C′;(3)画一个锐角格点三角形MNP,使其面积等于△ABC的面积.【考点】作图-平移变换;三角形的面积;作图—复杂作图.【分析】(1)直接利用钝角三角形高线的作法得出答案;(2)利用平移的性质得出各对应点位置进而得出答案;(3)利用三角形面积求法得出答案.【解答】解:(1)如图所示:CD即为所求;(2)如图所示:△A′B′C′,即为所求;(3)如图所示:△MNP即为所求.24.如图,在四边形ABCD中,∠B=∠D=90°,AE平分∠BAD交CD于点E,CF平分∠BCD交AB于点F,求证:AE∥CF.【考点】平行线的判定;余角和补角.【分析】根据∠BAD与∠BCD互补,得出∠EA与∠FCB互余,根据∠B=90°,得出∠CFB与∠FCB互余,进而得到∠CFB=∠EAB,并得出结论.【解答】证明:∵∠B=∠D=90°,∴∠DAB+∠DCB=180°,∠CFB+∠FCB=90°,∵AE平分∠BAD交CD于点E,CF平分∠BCD交AB于点F,∴∠EAB+∠FCB=∠DAB+∠DCB=90°,∴∠CFB=∠EAB,∴AE∥CF.25.如图1,已知直线m⊥n,垂足为点A,现有一个直角三角形ABC,其中∠ACB=90°,∠B=30°,现将这个三角形按如图1方式放置,使点C落在直线m上.操作:将△ABC绕点A逆时针旋转一周,如图2所示.通过操作我们发现,当旋转一定角度α时,△ABC会被直线m或n分成两个三角形,其中一个三角形有两个角相等,请直接写出所有符合条件的旋转角度α.【考点】作图-旋转变换.【分析】画出图形发现,符合条件的旋转角度α一共有8个,分别利用旋转角和三角形内角和及外角定理依次求出每个图形的等腰三角形.【解答】解:①当α=45°时,如图1,由旋转得:∠BAB′=45°,∵BC∥y轴,∴∠BAD=∠B=30°,∴∠DAB′=45°﹣30°=15°,∵∠B=∠B′=30°,∴∠C′DA=∠DAB′+∠B′=15°+30°=45°,∴△AC′D是等腰直角三角形;②当α=60°时,如图2,∵BC∥y轴,∴∠BAD=∠B=30°,∴∠DAB′=60°﹣30°=30°,∵∠B′=30°,∴∠B′=∠DAB′,∴△ADB′是等腰三角形;③当α=135°时,如图3,由旋转得:∠BAB′=135°,∵∠BAE=30°,∴∠B′AD=135°﹣90°﹣30°=15°,∵∠B′=30°,∴∠ADC′=30°+15°=45°,∵∠C′=90°,∴△AC′D是等腰直角三角形;④当α=150°时,如图4,∵∠CAC′=150°,∴∠DAC′=180°﹣150°=30°,∴∠B′AD=60°﹣30°=30°,∴∠B′AD=∠B′=30°,∴△ADB′是等腰三角形;⑤当α=225°时,如图5,∵∠CAC′=360°﹣225°=135°,∴∠DAC′=135°﹣90°=45°,∴△AC′D是等腰直角三角形;⑥当α=240°时,如图6,∵∠CAC′=360°﹣240°=120°,∴∠DAC′=120°﹣90°=30°,∴∠B′AD=60°﹣30°=30°,∴∠B′AD=∠B′=30°,∴△ADB′是等腰三角形;⑦当α=315°时,如图7,∵∠CAC′=360°﹣315°=45°,∴△ADC′是等腰直角三角形;⑧当α=330°时,如图8,∵∠CAC′=360°﹣330°=30°,∴∠B′AD=60°﹣30°=30°,∴∠B′AD=∠B′=30°,∴△ADB′是等腰三角形.综上所述,所有符合条件的旋转角度α为45°、60°、135°、150°、225°、240°、315°、330°.26.已知某品牌的饮料有大瓶和小瓶装之分,某超市花了3800元购进一批该品牌的饮料共1000瓶,其中,大瓶和小瓶饮料的进价及售价如表所示.(1)问:该超市购进大瓶和小瓶饮料各多少瓶?(2)当大瓶饮料售出了200瓶,小瓶饮料售出了100瓶后,商家决定将剩下的小瓶饮料的售价降低0.5元销售,并把其中一定数量的小瓶饮料作为赠品,在顾客一次购买大瓶饮料时,每满2瓶就送1瓶饮料,送完即止.请问:超市要使这批饮料售完后获得的利润不低于1250【分析】(1)设该超市购进大瓶饮料x瓶,小瓶饮料y瓶,根据:“该品牌的饮料共1000瓶、购进大、小瓶饮料共花费3800元”列不等式组求解可得;(2)设小瓶饮料作为赠品送出m瓶,根据:大瓶饮料的销售额+前100瓶小瓶饮料销售额+未赠送小瓶饮料销售额﹣总成本≥1250,列不等式求解可得.【解答】解:(1)设该超市购进大瓶饮料x瓶,小瓶饮料y瓶,根据题意,得:,解得:,答:该超市购进大瓶饮料600瓶,小瓶饮料400瓶;(2)设小瓶饮料作为赠品送出m瓶,由题意,得:7×600+3×100+(3﹣0.5)﹣3800≥1250,解得:m≤80,答:小瓶饮料作为赠品最多只能送出80瓶.。

宜兴市东坡中学七年级下册数学期末试卷综合测试卷(word含答案)

宜兴市东坡中学七年级下册数学期末试卷综合测试卷(word含答案)

宜兴市东坡中学七年级下册数学期末试卷综合测试卷(word 含答案) 一、解答题1.已知直线AB //CD ,点P 、Q 分别在AB 、CD 上,如图所示,射线PB 按逆时针方向以每秒12°的速度旋转至PA 便立即回转,并不断往返旋转;射线QC 按逆时针方向每秒3°旋转至QD 停止,此时射线PB 也停止旋转.(1)若射线PB 、QC 同时开始旋转,当旋转时间10秒时,PB '与QC '的位置关系为 ; (2)若射线QC 先转15秒,射线PB 才开始转动,当射线PB 旋转的时间为多少秒时,PB ′//QC ′.2.如图,已知AM //BN ,点P 是射线AM 上一动点(与点A 不重合),BC BD 、分别平分ABP ∠和PBN ∠,分别交射线AM 于点,C D .(1)当60A ∠=︒时,ABN ∠的度数是_______;(2)当A x ∠=︒,求CBD ∠的度数(用x 的代数式表示);(3)当点P 运动时,ADB ∠与APB ∠的度数之比是否随点P 的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律.(4)当点P 运动到使ACB ABD =∠∠时,请直接写出14DBN A +∠∠的度数.3.(1)(问题)如图1,若//AB CD ,40AEP ∠=︒,130PFD ∠=︒.求EPF ∠的度数; (2)(问题迁移)如图2,//AB CD ,点P 在AB 的上方,问PEA ∠,PFC ∠,EPF ∠之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知EPF α∠=,PEA ∠的平分线和PFC ∠的平分线交于点G ,用含有α的式子表示G ∠的度数.4.已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为:;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为:;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.5.点A,C,E在直线l上,点B不在直线l上,把线段AB沿直线l向右平移得到线段CD.(1)如图1,若点E在线段AC上,求证:∠B+∠D=∠BED;(2)若点E不在线段AC上,试猜想并证明∠B,∠D,∠BED之间的等量关系;(3)在(1)的条件下,如图2所示,过点B作PB//ED,在直线BP,ED之间有点M,使得∠ABE=∠EBM,∠CDE=∠EDM,同时点F使得∠ABE=n∠EBF,∠CDE=n∠EDF,其中n≥1,设∠BMD=m,利用(1)中的结论求∠BFD的度数(用含m,n的代数式表示).二、解答题6.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,点B 在两条平行线外,则A ∠与C ∠之间的数量关系为______; (2)点B 在两条平行线之间,过点B 作BD AM ⊥于点D . ①如图2,说明ABD C ∠=∠成立的理由;②如图3,BF 平分DBC ∠交DM 于点,F BE 平分ABD ∠交DM 于点E .若180,3FCB NCF BFC DBE ∠∠∠∠+=︒=,求EBC ∠的度数.7.将两块三角板按如图置,其中三角板边AB AE =,90BAC EAD ∠=∠=︒,45C ∠=︒,30D ∠=︒.(1)下列结论:正确的是_______. ①如果60BFD ∠=︒,则有//BC AD ; ②180BAE CAD ∠+∠=︒;③如果//BC AD ,则AB 平分EAD ∠.(2)如果150CAD ∠=︒,判断BFD ∠与C ∠是否相等,请说明理由.(3)将三角板ABC 绕点A 顺时针转动,直到边AC 与AD 重合即停止,转动的过程中当两块三角板恰有两边平行时,请直接写出EAB ∠所有可能的度数. 8.阅读下面材料:小颖遇到这样一个问题:已知:如图甲,//,AB CD E 为,AB CD 之间一点,连接,,35,37BE DE B D ∠=︒∠=︒,求BED ∠的度数.她是这样做的: 过点E 作//,EF AB 则有,BEF B ∠=∠因为//,AB CD 所以//.EF CD ① 所以,FED D ∠=∠所以,BEF FED B D ∠+∠=∠+∠ 即BED ∠=_ ; 1.小颖求得BED ∠的度数为__ ; 2.上述思路中的①的理由是__ ; 3.请你参考她的思考问题的方法,解决问题:已知:直线//,a b 点,A B 在直线a 上,点,C D 在直线b 上,连接,,AD BC BE 平分,ABC DE ∠平分,ADC ∠且,BE DE 所在的直线交于点E .(1)如图1,当点B 在点A 的左侧时,若,ABC ADC αβ∠=∠=,则BED ∠的度数为 ;(用含有,αβ的式子表示).(2)如图2,当点B 在点A 的右侧时,设,ABC ADC αβ∠=∠=,直接写出BED ∠的度数(用含有,αβ的式子表示).9.课题学习:平行线的“等角转化”功能. 阅读理解:如图1,已知点A 是BC 外一点,连接AB ,AC ,求∠BAC +∠B +∠C 的度数. (1)阅读并补充下面推理过程 解:过点A 作ED ∥BC , ∴∠B =∠EAB ,∠C = 又∵∠EAB +∠BAC +∠DAC =180° ∴∠B +∠BAC +∠C =180° 解题反思:从上面推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC ,∠B ,∠C “凑”在一起,得出角之间的关系,使问题得以解决. 方法运用:(2)如图2,已知AB ∥ED ,求∠B +∠BCD +∠D 的度数.(提示:过点C 作CF ∥AB ) 深化拓展:(3)如图3,已知AB ∥CD ,点C 在点D 的右侧,∠ADC =70°,点B 在点A 的左侧,∠ABC =60°,BE 平分∠ABC ,DE 平分∠ADC ,BE ,DE 所在的直线交于点E ,点E 在AB 与CD 两条平行线之间,求∠BED 的度数.10.已知:如图1,//AB CD ,点E ,F 分别为AB ,CD 上一点.(1)在AB ,CD 之间有一点M (点M 不在线段EF 上),连接ME ,MF ,探究AEM ∠,EMF ∠,∠MFC 之间有怎样的数量关系,请补全图形,并在图形下面写出相应的数量关系,选其中一个进行证明.(2)如图2,在AB ,CD 之两点M ,N ,连接ME ,MN ,NF ,请选择一个图形写出AEM ∠,EMN ∠,MNF ∠,NFC ∠存在的数量关系(不需证明).三、解答题11.己知:如图①,直线MN ⊥直线PQ ,垂足为O ,点A 在射线OP 上,点B 在射线OQ 上(A 、B 不与O 点重合),点C 在射线ON 上且2OC =,过点C 作直线//l PQ .点D 在点C 的左边且3CD =(1)直接写出的BCD ∆面积 ;(2)如图②,若AC BC ⊥,作CBA ∠的平分线交OC 于E ,交AC 于F ,试说明CEF CFE ∠=∠;(3)如图③,若ADC DAC ∠=∠,点B 在射线OQ 上运动,ACB ∠的平分线交DA 的延长线于点H ,在点B 运动过程中HABC∠∠的值是否变化?若不变,求出其值;若变化,求出变化范围. 12.Rt △ABC 中,∠C=90°,点D 、E 分别是△ABC 边AC 、BC 上的点,点P 是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P 在线段AB 上,如图(1)所示,且∠α=50°,则∠1+∠2= °;(2)若点P 在边AB 上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为: ;(3)若点P 运动到边AB 的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:. 13.如图,△ABC和△ADE有公共顶点A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.(1)若DE//AB,则∠EAC=;(2)如图1,过AC上一点O作OG⊥AC,分别交A B、A D、AE于点G、H、F.①若AO=2,S△AGH=4,S△AHF=1,求线段OF的长;②如图2,∠AFO的平分线和∠AOF的平分线交于点M,∠FHD的平分线和∠OGB的平分线交于点N,∠N+∠M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由.14.已知,如图1,直线l2⊥l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C 不与点A重合,点D在直线11上,点A的右侧,过D作l3⊥l1,点E在直线l3上,点D的下方.(1)l2与l3的位置关系是;(2)如图1,若CE平分∠BCD,且∠BCD=70°,则∠CED=°,∠ADC=°;(3)如图2,若CD⊥BD于D,作∠BCD的角平分线,交BD于F,交AD于G.试说明:∠DGF=∠DFG;(4)如图3,若∠DBE=∠DEB,点C在射线AM上运动,∠BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索∠N:∠BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.15.已知AB //CD ,点E 是平面内一点,∠CDE 的角平分线与∠ABE 的角平分线交于点F . (1)若点E 的位置如图1所示.①若∠ABE =60°,∠CDE =80°,则∠F = °; ②探究∠F 与∠BED 的数量关系并证明你的结论;(2)若点E 的位置如图2所示,∠F 与∠BED 满足的数量关系式是 .(3)若点E 的位置如图3所示,∠CDE 为锐角,且1452E F ∠≥∠+︒,设∠F =α,则α的取值范围为 .【参考答案】一、解答题1.(1)PB′⊥QC′;(2)当射线PB 旋转的时间为5秒或25秒或45秒时,PB′∥QC ′ 【分析】(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O ,过O 作OE ∥AB ,根解析:(1)PB ′⊥QC ′;(2)当射线PB 旋转的时间为5秒或25秒或45秒时,PB ′∥QC ′ 【分析】(1)求出旋转10秒时,∠BPB ′和∠CQC ′的度数,设PB ′与QC ′交于O ,过O 作OE ∥AB ,根据平行线的性质求得∠POE 和∠QOE 的度数,进而得结论;(2)分三种情况:①当0<t ≤15时,②当15<t ≤30时,③当30<t <45时,根据平行线的性质,得出角的关系,列出t 的方程便可求得旋转时间. 【详解】解:(1)如图1,当旋转时间30秒时,由已知得∠BPB ′=10°×12=120°,∠CQC ′=3°×10=30°, 过O 作OE ∥AB , ∵AB ∥CD ,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案为:PB′⊥QC′;(2)①当0<t≤15时,如图,则∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②当15<t≤30时,如图,则∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③当30<t≤45时,如图,则∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;综上,当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′.【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.2.(1)120°;(2)90°-x°;(3)不变,;(4)45°【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠解析:(1)120°;(2)90°-12x°;(3)不变,12;(4)45°【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-12x°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1;(4)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据角平分线的定义可得∠ABP=∠PBN=12∠ABN=2∠DBN,由平行线的性质可得12∠A+12∠ABN=90°,即可得出答案.【详解】解:(1)∵AM∥BN,∠A=60°,∴∠A+∠ABN=180°,∴∠ABN=120°;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°-x°,∴∠ABP+∠PBN=180°-x°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=180°-x°,∴∠CBD=∠CBP+∠DBP=12(180°-x°)=90°-12x°;(3)不变,∠ADB:∠APB=12.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1,∴∠ADB:∠APB=12;(4)∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠ABC,∠PBN=2∠DBN,∴∠ABP=∠PBN=2∠DBN=12∠ABN,∵AM∥BN,∴∠A+∠ABN=180°,∴12∠A+12∠ABN=90°,∴12∠A+2∠DBN=90°,∴14∠A+∠DBN=12(12∠A+2∠DBN)=45°.【点睛】本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.3.(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PF 解析:(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=12α【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PFC=∠PEA+∠FPE,即可求解;(3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得∠GEF+∠GFE=1 2∠PEA+12∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.【详解】解:(1)如图1,过点P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:过P点作PN∥AB,则PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令AB与PF交点为O,连接EF,如图3.在△GFE中,∠G=180°-(∠GFE+∠GEF),∵∠GEF=12∠PEA+∠OEF,∠GFE=12∠PFC+∠OFE,∴∠GEF+∠GFE=12∠PEA+12∠PFC+∠OEF+∠OFE,∵由(2)知∠PFC=∠PEA+∠P,∴∠PEA=∠PFC-α,∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC,∴∠GEF+∠GFE=12(∠PFC−α)+12∠PFC+180°−∠PFC=180°−12α,∴∠G=180°−(∠GEF+∠GFE)=180°−180°+12α=12α.【点睛】本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键.4.(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30°【分析】(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB解析:(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30°【分析】(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB,易得FH∥AB∥CD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,进而可求解;(3)根据平行线的性质及角平分线的定义可推知∠FEQ=12∠BME,进而可求解.【详解】解:(1)过E作EH∥AB,如图1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如图2,过F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=12∠MEN=12(∠BME+∠END),∠ENP=12∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=12(∠BME+∠END)﹣12∠END=12∠BME,∵∠BME=60°,∴∠FEQ=12×60°=30°.【点睛】本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键.5.(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E 在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)【分析】(1)如图1中,过点E作ET∥AB.利用平行解析:(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)()12m nn-【分析】(1)如图1中,过点E作ET∥A B.利用平行线的性质解决问题.(2)分两种情形:如图2-1中,当点E在CA的延长线上时,如图2-2中,当点E在AC的延长线上时,构造平行线,利用平行线的性质求解即可.(3)利用(1)中结论,可得∠BMD=∠ABM+∠CDM,∠BFD=∠ABF+∠CDF,由此解决问题即可.【详解】解:(1)证明:如图1中,过点E作ET∥A B.由平移可得AB∥CD,∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET+∠DET=∠B+∠D.(2)如图2-1中,当点E在CA的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠DET-∠BET=∠D-∠B.如图2-2中,当点E在AC的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET-∠DET=∠B-∠D.(3)如图,设∠ABE =∠EBM =x ,∠CDE =∠EDM =y ,∵AB ∥CD ,∴∠BMD =∠ABM +∠CDM ,∴m =2x +2y ,∴x +y =12m ,∵∠BFD =∠ABF +∠CDF ,∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,∴∠BFD =()111n n n x y x y n n n ---+=+=112n m n -⨯=()12m n n -. 【点睛】本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型. 二、解答题6.(1)∠A+∠C=90°;(2)①见解析;②105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)①过点B 作BG ∥DM ,根据平行线找角的联系即可求解;②先过点B 作BG ∥解析:(1)∠A +∠C =90°;(2)①见解析;②105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)①过点B 作BG ∥DM ,根据平行线找角的联系即可求解;②先过点B 作BG ∥DM ,根据角平分线的定义,得出∠ABF =∠GBF ,再设∠DBE =α,∠ABF =β,根据∠CBF +∠BFC +∠BCF =180°,可得2α+β+3α+3α+β=180°,根据AB ⊥BC ,可得β+β+2α=90°,最后解方程组即可得到∠ABE =15°,进而得出∠EBC =∠ABE +∠ABC =15°+90°=105°.【详解】解:(1)如图1,AM 与BC 的交点记作点O ,∵AM ∥CN ,∴∠C =∠AOB ,∵AB ⊥BC ,∴∠A +∠AOB =90°,∴∠A +∠C =90°;(2)①如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥DM,BG CN//,∴∠C=∠CBG,∠ABD=∠C;②如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.7.(1)②③;(2)相等,理由见解析;(3)30°或45°或75°或120°或135°【分析】(1)根据平行线的判定和性质分别判定即可;(2)利用角的和差,结合∠CAB=∠DAE=90°进行判断解析:(1)②③;(2)相等,理由见解析;(3)30°或45°或75°或120°或135°【分析】(1)根据平行线的判定和性质分别判定即可;(2)利用角的和差,结合∠CAB=∠DAE=90°进行判断;(3)依据这两块三角尺各有一条边互相平行,分五种情况讨论,即可得到∠EAB角度所有可能的值.【详解】解:(1)①∵∠BFD=60°,∠B=45°,∴∠BAD+∠D=∠BFD+∠B=105°,∴∠BAD=105°-30°=75°,∴∠BAD≠∠B,∴BC和AD不平行,故①错误;②∵∠BAC+∠DAE=180°,∴∠BAE+∠CAD=∠BAE+∠CAE+∠DAE=180°,故②正确;③若BC∥AD,则∠BAD=∠B=45°,∴∠BAE=45°,即AB平分∠EAD,故③正确;故答案为:②③;(2)相等,理由是:∵∠CAD=150°,∴∠BAE=180°-150°=30°,∴∠BAD=60°,∵∠BAD+∠D=∠BFD+∠B,∴∠BFD=60°+30°-45°=45°=∠C;(3)若AC∥DE,则∠CAE=∠E=60°,∴∠EAB=90°-60°=30°;若BC∥AD,则∠B=∠BAD=45°,∴∠EAB=45°;若BC∥DE,则∠E=∠AFB=60°,∴∠EAB=180°-60°-45°=75°;若AB∥DE,则∠D=∠DAB=30°,∴∠EAB=30°+90°=120°;若AE ∥BC ,则∠C =∠CAE =45°,∴∠EAB =45°+90°=135°;综上:∠EAB 的度数可能为30°或45°或75°或120°或135°.【点睛】本题考查了平行线的判定和性质,角平分线的定义,解题的关键是理解题意,分情况画出图形,学会用分类讨论的思想思考问题.8.;2.平行于同一条直线的两条直线平行;3.(1);(2).【分析】1、根据角度和计算得到答案;2、根据平行线的推论解答;3、(1)根据角平分线的性质及1的结论证明即可得到答案;(2)根据B解析:1.72;2.平行于同一条直线的两条直线平行;3.(1)1122αβ+;(2)1118022αβ-+. 【分析】1、根据角度和计算得到答案;2、根据平行线的推论解答;3、(1)根据角平分线的性质及1的结论证明即可得到答案;(2)根据BE 平分,ABC DE ∠平分,ADC ∠求出11,22ABE CDE αβ∠=∠=,过点E 作EF ∥AB ,根据平行线的性质求出∠BEF =12α,11801802DEF CDE β∠=︒-∠=︒-,再利用周角求出答案.【详解】1、过点E 作//,EF AB则有,BEF B ∠=∠因为//,AB CD所以//.EF CD ①所以,FED D ∠=∠所以,BEF FED B D ∠+∠=∠+∠即BED ∠=72;故答案为:72;2、过点E 作//,EF AB则有,BEF B ∠=∠因为//,AB CD所以EF ∥CD (平行于同一条直线的两条直线平行),故答案为:平行于同一条直线的两条直线平行;3、(1)∵BE 平分,ABC DE ∠平分,ADC ∠∴1111,2222ABE ABC CDE ADC αβ∠=∠=∠=∠=, 过点E 作EF ∥AB ,由1可得∠BED =BEF FED ABE CDE ∠+∠=∠+∠,∴∠BED =1122αβ+, 故答案为:1122αβ+;(2)∵BE 平分,ABC DE ∠平分,ADC ∠∴1111,2222ABE ABC CDE ADC αβ∠=∠=∠=∠=, 过点E 作EF ∥AB ,则∠ABE =∠BEF =12α, ∵//,AB CD∴EF ∥CD ,∴180CDE DEF ∠+∠=︒,∴11801802DEF CDE β∠=︒-∠=︒-, ∴11360360(180)22BED DEF BEF βα∠=︒-∠-∠=︒-︒--=1118022αβ-+.【点睛】此题考查平行线的性质:两直线平行内错角相等,两直线平行同旁内角互补,平行线的推论,正确引出辅助线是解题的关键.9.(1)∠DAC ;(2)360°;(3)65°【分析】(1)根据平行线的性质即可得到结论;(2)过C 作CF ∥AB 根据平行线的性质得到∠D=∠FCD ,∠B=∠BCF ,然后根据已知条件即可得到结论;解析:(1)∠DAC ;(2)360°;(3)65°【分析】(1)根据平行线的性质即可得到结论;(2)过C 作CF ∥AB 根据平行线的性质得到∠D =∠FCD ,∠B =∠BCF ,然后根据已知条件即可得到结论;(3)过点E 作EF ∥AB ,然后根据两直线平行内错角相等,即可求∠BED 的度数.【详解】解:(1)过点A 作ED ∥BC ,∴∠B =∠EAB ,∠C =∠DCA ,又∵∠EAB +∠BAC +∠DAC =180°,∴∠B +∠BAC +∠C =180°.故答案为:∠DAC ;(2)过C 作CF ∥AB ,∵AB ∥DE ,∴CF ∥DE ,∴∠D=∠FCD,∵CF∥AB,∴∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°;(3)如图3,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE=12∠ABC=30°,∠CDE=12∠ADC=35°,∴∠BED=∠BEF+∠DEF=30°+35°=65°.【点睛】此题考查了平行线的判定与性质,解题的关键是正确添加辅助线,利用平行线的性质进行推算.10.(1)见解析;(2)见解析【分析】(1)过点M作MP∥AB.根据平行线的性质即可得到结论;(2)根据平行线的性质即可得到结论.【详解】解:(1)∠EMF=∠AEM+∠MFC.∠AEM+∠E解析:(1)见解析;(2)见解析【分析】(1)过点M作MP∥AB.根据平行线的性质即可得到结论;(2)根据平行线的性质即可得到结论.【详解】解:(1)∠EMF=∠AEM+∠MFC.∠AEM+∠EMF+∠MFC=360°.证明:过点M作MP∥AB.∵AB∥CD,∴MP∥CD.∴∠4=∠3.∵MP∥AB,∴∠1=∠2.∵∠EMF=∠2+∠3,∴∠EMF=∠1+∠4.∴∠EMF=∠AEM+∠MFC;证明:过点M作MQ∥AB.∵AB∥CD,∴MQ∥CD.∴∠CFM+∠1=180°;∵MQ∥AB,∴∠AEM+∠2=180°.∴∠CFM+∠1+∠AEM+∠2=360°.∵∠EMF=∠1+∠2,∴∠AEM+∠EMF+∠MFC=360°;(2)如图2第一个图:∠EMN+∠MNF-∠AEM-∠NFC=180°;过点M作MP∥AB,过点N作NQ∥AB,∴∠AEM=∠1,∠CFN=∠4,MP∥NQ,∴∠2+∠3=180°,∵∠EMN=∠1+∠2,∠MNF=∠3+∠4,∴∠EMN+∠MNF=∠1+∠2+∠3+∠4,∠AEM+∠CFN=∠1+∠4,∴∠EMN+∠MNF-∠AEM-∠NFC=∠1+∠2+∠3+∠4-∠1-∠4=∠2+∠3=180°;如图2第二个图:∠EMN-∠MNF+∠AEM+∠NFC=180°.过点M作MP∥AB,过点N作NQ∥AB,∴∠AEM+∠1=180°,∠CFN=∠4,MP∥NQ,∴∠2=∠3,∵∠EMN=∠1+∠2,∠MNF=∠3+∠4,∴∠EMN-∠MNF=∠1+∠2-∠3-∠4,∠AEM+∠CFN=180°-∠1+∠4,∴∠EMN-∠MNF+∠AEM+∠NFC=∠1+∠2-∠3-∠4+180°-∠1+∠4=180°.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.三、解答题11.(1)3; (2)见解析; (3)见解析【详解】分析:(1)因为△BCD 的高为OC ,所以S △BCD=CD•OC ,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠解析:(1)3; (2)见解析; (3)见解析【详解】分析:(1)因为△BCD 的高为OC ,所以S △BCD =12CD •OC ,(2)利用∠CFE +∠CBF =90°,∠OBE +∠OEB =90°,求出∠CEF =∠CFE .(3)由∠ABC +∠ACB =2∠DAC ,∠H +∠HCA =∠DAC ,∠ACB =2∠HCA ,求出∠ABC =2∠H ,即可得答案.详解:(1)S △BCD =12CD •OC =12×3×2=3. (2)如图②,∵AC ⊥BC ,∴∠BCF =90°,∴∠CFE +∠CBF =90°.∵直线MN ⊥直线PQ ,∴∠BOC =∠OBE +∠OEB =90°.∵BF 是∠CBA 的平分线,∴∠CBF =∠OBE .∵∠CEF =∠OBE ,∴∠CFE +∠CBF =∠CEF +∠OBE ,∴∠CEF =∠CFE .(3)如图③,∵直线l ∥PQ ,∴∠ADC =∠PAD .∵∠ADC =∠DAC∴∠CAP =2∠DAC .∵∠ABC +∠ACB =∠CAP ,∴∠ABC +∠ACB =2∠DAC .∵∠H +∠HCA =∠DAC ,∴∠ABC +∠ACB =2∠H +2∠HCA ∵CH 是,∠ACB 的平分线,∴∠ACB =2∠HCA ,∴∠ABC =2∠H ,∴H ABC ∠∠=12.点睛:本题主要考查垂线,角平分线和三角形面积,解题的关键是找准相等的角求解.12.(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由见解析;(4)∠2=90°+∠1﹣α.【详解】试题分析:(1)根据四边形内角和定理以及邻补角的定义,得出∠1+∠2解析:(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由见解析;(4)∠2=90°+∠1﹣α.【详解】试题分析:(1)根据四边形内角和定理以及邻补角的定义,得出∠1+∠2=∠C+∠α,进而得出即可;(2)利用(1)中所求的结论得出∠α、∠1、∠2之间的关系即可;(3)利用三角外角的性质,得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形内角和定理以及邻补角的性质可得出∠α、∠1、∠2之间的关系.试题分析:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°,故答案为140;(2)由(1)得∠α+∠C=∠1+∠2,∴∠1+∠2=90°+∠α.故答案为∠1+∠2=90°+∠α.(3)∠1=90°+∠2+∠α.理由如下:如图③,设DP与BE的交点为M,∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)如图④,设PE与AC的交点为F,∵∠PFD=∠EFC,∴180°-∠PFD=180°-∠EFC,∴∠α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-∠α.故答案为∠2=90°+∠1-∠α点睛:本题考查了三角形内角和定理和外角的性质、对顶角相等的性质,熟练掌握三角形外角的性质是解决问题的关键.13.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定义求出∠M,∠N(用∠FAO表示),可得结论.【详解】解:(1)如图,∵AB∥ED∴∠E=∠EAB=90°(两直线平行,内错角相等),∵∠BAC=45°,∴∠CAE=90°-45°=45°.故答案为:45°.(2)①如图1中,∵OG⊥AC,∴∠AOG=90°,∵∠OAG=45°,∴∠OAG=∠OGA=45°,∴AO=OG=2,∵S△AHG=12•GH•AO=4,S△AHF=12•FH•AO=1,∴GH=4,FH=1,∴OF=GH-HF-OG=4-1-2=1.②结论:∠N+∠M=142.5°,度数不变.理由:如图2中,∵MF,MO分别平分∠AFO,∠AOF,∴∠M=180°-12(∠AFO+∠AOF)=180°-12(180°-∠FAO)=90°+12∠FAO,∵NH,NG分别平分∠DHG,∠BGH,∴∠N=180°-12(∠DHG+∠BGH)=180°-12(∠HAG+∠AGH+∠HAG+∠AHG)=180°-12(180°+∠HAG)=90°-12∠HAG=90°-12(30°+∠FAO+45°)=52.5°-12∠FAO,∴∠M+∠N=142.5°.【点睛】本题考查平行线的性质,角平分线的定义,三角形内角和定理,三角形外角的性质等知识,最后一个问题的解题关键是用∠FAO表示出∠M,∠N.14.(1)互相平行;(2)35,20;(3)见解析;(4)不变,【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变,12【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行线的性质即可得到结论;(4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论.【详解】解:(1)直线l2⊥l1,l3⊥l1,∴l2∥l3,即l2与l3的位置关系是互相平行,故答案为:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=1BCD,2∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案为:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF =∠DFG ;(4)∠N:∠BCD 的值不会变化,等于12;理由如下:∵l 2∥l 3,∴∠BED =∠EBH ,∵∠DBE =∠DEB ,∴∠DBE =∠EBH ,∴∠DBH =2∠DBE ,∵∠BCD+∠BDC =∠DBH ,∴∠BCD+∠BDC =2∠DBE ,∵∠N+∠BDN =∠DBE ,∴∠BCD+∠BDC =2∠N+2∠BDN ,∵DN 平分∠BDC ,∴∠BDC =2∠BDN ,∴∠BCD =2∠N ,∴∠N:∠BCD =12.【点睛】本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键. 15.(1)①70;②∠F=∠BED ,证明见解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①过F 作FG//AB ,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A解析:(1)①70;②∠F =12∠BED ,证明见解析;(2)2∠F+∠BED =360°;(3)3045α︒≤<︒ 【分析】(1)①过F 作FG//AB ,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF ,利用角平分线的定义得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF ),求得∠ABF+∠CDF=70︒,即可求解; ②分别过E 、F 作EN//AB ,FM//AB ,利用平行线的判定和性质得到∠BED=∠ABE+∠CDE ,利用角平分线的定义得到∠BED=2(∠ABF+∠CDF ),同理得到∠F=∠ABF+∠CDF ,即可求解;(2)根据∠ABE 的平分线与∠CDE 的平分线相交于点F ,过点E 作EG ∥AB ,则∠BEG+∠ABE=180°,因为AB ∥CD ,EG ∥AB ,所以CD ∥EG ,所以∠DEG+∠CDE=180°,再结合①的结论即可说明∠BED 与∠BFD 之间的数量关系;(3)通过对1452E F ∠≥∠+︒的计算求得30α≥︒,利用角平分线的定义以及三角形外角的性质求得45α<︒,即可求得3045α︒≤<︒.【详解】(1)①过F作FG//AB,如图:∵AB∥CD,FG∥AB,∴CD∥FG,∴∠ABF=∠BFG,∠CDF=∠DFG,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60︒+80︒=140︒,∴∠ABF+∠CDF=70︒,∴∠DFB=∠ABF+∠CDF=70︒,故答案为:70;∠BED,②∠F=12理由是:分别过E、F作EN//AB,FM//AB,∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,∴∠BED=∠ABE+∠CDE,∵DF、BF分别是∠CDE的角平分线与∠ABE的角平分线,∴∠ABE=2∠ABF,∠CDE=2∠CDF,即∠BED=2(∠ABF+∠CDF);同理,由FM//AB,可得∠F=∠ABF+∠CDF,∴∠F=1∠BED;2(3)2∠F+∠BED=360°.如图,过点E作EG∥AB,则∠BEG+∠ABE=180°,∵AB ∥CD ,EG ∥AB ,∴CD ∥EG ,∴∠DEG+∠CDE=180°,∴∠BEG+∠DEG=360°-(∠ABE+∠CDE ),即∠BED=360°-(∠ABE+∠CDE ),∵BF 平分∠ABE ,∴∠ABE=2∠ABF ,∵DF 平分∠CDE ,∴∠CDE=2∠CDF ,∠BED=360°-2(∠ABF+∠CDF ),由①得:∠BFD=∠ABF+∠CDF ,∴∠BED=360°-2∠BFD ,即2∠F+∠BED=360°;(3)∵1452E F ∠≥∠+︒,∠F =α,∴2452αα≥+︒, 解得:30α≥︒,如图,∵∠CDE 为锐角,DF 是∠CDE 的角平分线,∴∠CDH=∠DHB 190452<⨯︒=︒, ∴∠F <∠DHB 45<︒,即45α<︒,∴3045α︒≤<︒,故答案为:3045α︒≤<︒.【点睛】本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解.。

苏科版2015-2016学年第二学期七年级数学下册期末试卷及答案

苏科版2015-2016学年第二学期七年级数学下册期末试卷及答案

2015—2016学年第二学期期末考试试卷初一数学 2016. 6本试卷由填空题、选择题和解答题三大题组成.共28小题,满分130分.考试时间120分钟. 注意事项:1.答题前,考生务必将自己的考试号、学校、姓名、班级,用0. 5毫米黑色墨水签字笔填写在答题纸相对应的位置上,并认真核对;2.答题必须用0. 5毫米黑色墨水签字笔写在答题纸指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题纸上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题 本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在答题纸相应位置上.1. 下列式子计算正确的是A. 660a a ÷=B. 236(2)6a a -=-C. 222()2a b a ab b --=-+D. 22()()a b a b a b ---+=-2. 在人体血液中,红细胞的直径约为7.7-4⨯10cm, 7.7-4⨯10用小数表示为A. 0.000077B. 0. 00077C. -0.00077D. 0.00773. 如果一个三角形的两边长分别为3和7,则第三边长可能是A.3B.4C.7D.104. 如果a b <,下列各式中正确的是A. 22ac bc <B. 11a b >C. 33a b ->-D. 44a b > 5. 如图,直线12//l l ,一直角三角板(90)ABC ACB ∠=︒放在平行线上,两直角边分别与1l 、2l 交于点D 、E ,现测得175∠=︒,则2∠的度数为A. 15°B. 25°C. 30°D. 35°6. 如图4,已知ABC DCB ∠=∠,下列所给条件不能证明ABC DCB ∆≅∆的是A. A D ∠=∠B. AB DC =C. ACB DBC ∠=∠D. AC BD =7. 下列给出4个命题:①内错角相等;②对顶角相等;③对于任意实数x ,代数式2610x x -+总是正数;④若三条线段a 、b 、c 满足a b c +>,则三条线段a 、b 、c 一定能组成三角形.其中正确命题的个数是A.1个B. 2个C. 3个D.4个8. 已知关于x 的方程33x m x +=+的解为非负数,且m 为正整数,则m 的取值为A. 1B.1、2C. 1、2、3D. 0、1、2、39. 某商场为促销某种商品,将定价为5元/件的该商品按如下方式销售:若购买不超过5件商品,按原价销售;若一次性购买超过5件,按原价的八折进行销售.小明现有29元,则最多可购买该商品A. 5件B. 6件C. 7件D. 8件10. 如图,ABC ∆中,,AB AC D =、E 分别在边AB 、AC 上,且满足AD AE =.下列结论中:①ABE ACD ∆≅∆,②AO 平分BAC ∠,③OB OC =, ④AO BC ⊥,⑤若1AD BD =,则1OD OC =;其中正确的有A. 2个B. 3个C. 4个D.5个二、填空题 本大题共8小题,每小题3分,共24分,把答案直接填在答题纸相对应位置上.11. 计算: 423228x y x y ÷7= .12. 若 2x =-是方程36ax y +=的解,则a 的值为 .1y =13. 已知123,35y x y x =-+=-,则当x 满足条件 时,12y y <.14. 若一个多边形的每一个内角都是144°,则这个多边形的是边数为 .15. 已知4a b -=,则228a b a --的值为 .16. 如图,ABC ADE ∆≅∆,BC 的延长线交DE 于点G ,若24,54,16B CAB DAC ∠=︒∠=︒∠=︒,则DGB ∠= .17. 如图,四边形ABCD 中,A B C ∠=∠=∠,点E 在AB 边上,且13ADE EDC ∠=∠,110BED ∠=︒,则A ∠= .18. 4个数,,,a b c d 排列成∣ac bd ∣,我们称之为二阶行列式.规定它的运算法则为: ∣ac bd ∣= ad bc -.若∣21x x -+32x x +-∣=-13,则x = . 三、解答题 本大题共10小题,共76分.把解答过程写在答题纸相对应的位置上,解答时应写出必要的计19. (本题满分9分,每小题3分)将下列各式分解因式:(1) 21245x x --; (2) 32363x x x -+; (3) 29()4()a x y x y ---.20.(本题满分5分)先化简再求值: 224(1)7(1)(1)3(1)x x x x +--++-,其中12x =-. 21.(本题满分8分,每小题4分)解不等式(组):(1) 3136x x -≥-,并将解集在数轴上表示出来; (2) 2x x >4-2 211132x x -≥- 22.(本题满分8分,每小题4分)解方程组 (1) 13102x y += (2) 6a b c -+= 24x y -= 423a b c ++=9318a b c -+=23.(本题满分7分)某中学团委组织学生去儿童福利院慰问,准备购买15个甲种文具和20个乙种文具,共需885元;后翻阅商场海报发现,下周甲、乙两种文具进行促销活动,甲种文具打八折销售、乙种文具打九折,且打折后两种文具的销售单价相同.(1)求甲、乙两种文具的原销售单价各为多少元?(2)购买打折后的15个甲种文具和20个乙种文具,共可节省多少钱?24.(本题满分7分)如图,在四边形ABCD 中,//,AD BC BD BC =,90A ∠=︒;(1)画出CBD ∆的高CE ;(2)请写出图中的一对全等三角形(不添加任何字母),并说明理由;(3)若2,5AD CB ==,求DE 的长.25.(本题满分7分)已知关于x 、y 的方程组 35x y a -=+的解满足x y >>0; 24x y a +=(1)求a 的取值范围; (2)化简3a a +-.26.(本题满分8分)如图1,已知90,ABC D ∠=︒是直线AB 上的一点,AD BC =,连结DC .以DC 为边,在CDB ∠的同侧作CDE ∠,使得CDE ABC ∠=∠,并截取DE CD =,连结AE .(1)求证: BDC AED ∆≅∆;并判断AE 和BC 的位置关系,说明理由;(2)若将题目中的条件“90ABC ∠=︒”改成“ABC x ∠=︒(0x <<180)”,①结论“BDC AED ∆≅∆”还成立吗?请说明理由;②试探索:当x 的值为多少时,直线AE BC ⊥.27.(本题满分8分)探索:在图1至图2中,已知ABC ∆的面积为a ,(1)如图1,延长ABC ∆的边BC 到点D ,使CD BC =,连接DA ;延长边CA 到点E ,使CA AE =,连接DE ;若DCE ∆的面积为1S ,则1S = (用含a 的代数式表示);(2)在图1的基础上延长AB 到点F ,使BF AB =,连接,FD FE ,得到DEF ∆ (如图2).若阴影部分的面积为2S ,则2S = (用含a 的代数式表示);(3)发现:像上面那样,将ABC ∆各边均顺次延长一倍,连接所得端点,得到DEF ∆ (如图2),此时,我们称ABC ∆向外扩展了一次.可以发现,扩展n 次后得到的三角形的面积是ABC ∆面积的 倍(用含n 的代数式表示);(4)应用:某市准备在市民广场一块足够大的空地上栽种牡丹花卉,工程人员进行了如下的图案设计:首先在ABC ∆的空地上种紫色牡丹,然后将ABC ∆向外扩展二次(如图3).在第一次扩展区域内种黄色牡丹,第二次扩展区域内种紫色牡丹,紫色牡丹花的种植成本为100元/平方米,黄色牡丹花的种植成本为95元/平方米.要使得种植费用不超过48700元,工程人员在设计时,三角形ABC 的面积至多为多少平方米?28.(本题满分9分)如图,E 、F 分别是AD 和BC 上的两点,EF 将四边形ABCD 分成两个边长为5cm 的正方形,90DEF EFB B D ∠=∠=∠=∠=︒;点H 是CD 上一点且CH =lcm ,点P 从点H 出发,沿HD 以lcm/s 的速度运动,同时点Q 从点A 出发,沿A →B →C 以5cm/s 的速度运动.任意一点先到达终点即停止运动;连结EP 、EQ .(1)如图1,点Q 在AB 上运动,连结QF ,当t = 时,//QF EP ; (2)如图2,若QE EP ⊥,求出t 的值; (3)试探究:当t 为何值时,EPD ∆的面积等于EQF ∆面积的7.。

江苏省宜兴市2015-2016学年七年级数学下册第一次阶段测试

江苏省宜兴市2015-2016学年七年级数学下册第一次阶段测试

知识改变命运(本卷满分100分,测试时间90分钟)一.选择题(本大题共10小题,每题3分,共30分.) 1、下列运算不正确...的是 ( )A .()1025a a = B .2222b b b =+ C .65b b b =⋅ D .2555b b b =⋅2、下列长度的三根木棒首尾相接,不能做成三角形框架的是 ( )A .5、7、3B .7、13、10C .5、7、2D .5、10、63、在以下现象中,属于平移的是 ( )① 在挡秋千的小朋友; ②水平传送带上的物体 ③宇宙中行星的运动 ④打气筒打气时,活塞的运动; A .①② B.③④ C.②③ D.②④ 4、若2=n x ,则n x 3的值为 ( )A .6B .8C .9D .12 5.将一张长方形纸片如图所示折叠后,再展开,如果∠1=56︒,那么∠2等于 ( )A .56︒B .68︒C .62︒D .66︒6.如图所示,一块试验田的形状是三角形(设其为△ABC ),管理员从BC 边上的一点D 出发,沿DC →CA →A B →BD 的方向走了一圈回到D 处,则管理员从出发到回到原处在途中身体A .转过90︒B .转过180︒C .转过270︒D .转过360︒ ( )知识改变命运7.如图,在长方形网格中,每个小长方形的长为2、宽为1,A 、B两点在网格点上,若点C 也在网格格点上,以A 、B 、C 为顶点的三角形的面积为2,则满足条件的点C 的个数是 A .2个 B .3个 C .4个 D .5个 ( ) 8.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是 ( )9、如图,给出下列条件:①∠1 =∠2;②∠3 =∠4;③AD ∥BE ,且∠D =∠B ;④AD ∥BE .其中能推出AB ∥DC 的条件为( ) A .①② B .②④ C .②③ D .10、我们规定这样一种运算:如果a b =N (a >0,N >0),那么b 就叫做以a 为底的N 的对数,记作b=log a N .例如:因为23=8,所以log 28=3,那么log 381的值为____. ( )A .4B .9C .27D .81 二.填空题(本大题共10小题,每空2分,共20分) 11、x 3·x 6 = ____________12、已知△ABC 中,∠A ∶∠B ∶∠C =1∶3∶5,则△ABC 的最小内角为____ ___°.13、如果一个多边形的内角和等于它外角和的3倍 ,则这个多边形4321A B D E知识改变命运的边数是 __________ .14、等腰三角形的两边长分别是5cm 和10cm ,则三角形的周长是_______________ cm .15、如图,一艘轮船在A 处看见巡逻艇M 在其北偏东65O 的方向上,此时一艘客船在B 处看见巡逻艇M 在其北偏东15O 的方向上,则此时从巡逻艇上看这两艘船的视角∠AMB=_________。

【苏科版】2015—2016学年初一下数学期末考试试卷及答案

【苏科版】2015—2016学年初一下数学期末考试试卷及答案

第二学期期终教学质量调研测试初一 数学本试卷由填空题、选择题和解答题三大题组成 ,共29题,满分130分.考试时间120分钟. 注意事项:1.答题前,考生务必将由己的考试号、学校、姓名、班级用0.5毫米黑色墨水签字笔填写在答题卡的相应位置上,井认真核对;2.答选择题须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;4.考生答题,必须答在答题纸上,保持答题纸清洁,不要折叠,不要弄破,答在试卷和草稿纸上无效。

一. 选择题(本大题共10小题,每小题3分,共30分,请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上) 1.下列运算正确的是A. 326a a a ⋅=B. 224()a a ==C. 33(3)9a a -=-D. 459a a a +=2.不等式组24357x x >-⎧⎨-≤⎩的解集在数轴上可以表示为A B C D 3.下列算式能用平方差公式计算的是A .(2)(2b )a b a +- B. 11(1)(1)22x x +-- C. (3)(3)x y x y --+ D. ()()m n m n ---+4.下列各组线段能组成一个三角形的是A .4cm ,6cm ,11cm B.4cm ,5cm ,1cm C.3cm ,4cm ,5cm D.2cm ,3cm ,6cm5. 若实数a ,b ,c 在数轴上对应点的位置如图所示,则下列不等式成立的是( ) A. ac bc > B. ab cb >C. a c b c +>+D. a b c b +>+6.下列从左到右的变形,属于 分解因式的是A .2(3)(3)9a a a -+=- B. 25(1)5x x x x +-=+-C. 2(1)a a a a +=+D. 32x y x x y =⋅⋅7.一个多边形的内角和是1080°,这个多边形的边数是 A . 6 B. 7 C. 8 D. 9 8.如图,Rt △ABC 中,∠ACB=90°,DE 过点C 且平行于AB ,若∠BCE=35°,则∠A 的度数为A.35°B.45°C.55°D.65°9.下列命题:①同旁内角互补;②若21,10n n <-<则;③直角都相等; ④相等的角是对顶角.A .1个B .2个C .3个D .4个10.如图,宽为50cm 的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为 A.4002cm B.5002cm C.6002cm D.3002cm二.填空题(本大题共8小题,每小题3分,共24分) 11.53x x ÷=________.12.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000 000 076克,用科学记数法表示是__________克. 13.已知5,3,m n mn +==则22m n mn +=_________14.若三角形三条边长分别是1、a 、5(其中a 为整数),则a 的取值为________.15.如图,在△ABC 中,A ∠=60°,若剪去A ∠得到四边形BCDE ,则12______∠+∠=°16.已知2a b ab >=,且22+b =5a ,则______a b -=17.甲乙两队进行篮球对抗赛,比赛规定每队胜一场得3分,平一场得1分,负一场得0分.甲队与乙队一共比赛了10场,甲队保持了不败记录,得分不低于24分,甲队至少胜了_________场.18.现有若干张边长为a 的正方形A 型纸片,边长为b 的正方形B 型纸片,长宽为a 、b 的长方形C 型纸片,小明同学选取了2张A 型纸片,3张B 型纸片,7张C 型纸片拼成了一个长方形,则此长方形的周长为______.(用a 、b 代数式表示)三、解答题(本大题共10小题,满分76分,应写出必要的计算过程,推理步骤或文字说明) 19.(本题满分9分,每小题3分)将下列各式分解因式:(1)22363x xy y ++ (2)22()()a x y b x y ---(3)4234a a +-20.(本题满分5分)先化简,再求值:22(2)5()(3)a b a a b a b +++--,其中23,3a b ==-21.(本题满分8分,每小题4分)解下列方程组:(1)3423x y x y -=-⎧⎨-=-⎩ (2)26293418x y z x y z x y z +-=⎧⎪++=⎨⎪++=⎩22.(本题满分8分,(1)3分,(2)5分)解不等式(组):(1) 322;x x +≤- (2)2135342145x x x x --⎧>⎪⎪⎨+⎪->⎪⎩ 并把不等式组的解集在数轴上表示出来。

宜兴七年级数学期末试卷

宜兴七年级数学期末试卷

一、选择题(每题3分,共30分)1. 下列数中,属于有理数的是()A. √2B. πC. 0.333...D. √-12. 下列各数中,绝对值最小的是()A. -3B. 0C. 2D. -53. 若a=3,b=-2,则a-b的值为()A. 5B. -5C. 1D. -14. 下列等式中,正确的是()A. (a+b)² = a² + b²B. (a-b)² = a² - b²C. (a+b)² = a² + 2ab + b²D. (a-b)² = a² - 2ab + b²5. 下列代数式中,能化为同类项的是()A. 3a² + 2bB. 4x² - 5yC. 2xy + 3xD. 5a - 3b + 2a6. 已知一元二次方程x² - 5x + 6 = 0,则x的值为()A. 2,3B. 1,6C. 3,2D. 6,17. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = 3/xC. y = x²D. y = √x8. 在平面直角坐标系中,点P(-2, 3)关于原点的对称点坐标是()A. (2, -3)B. (-2, -3)C. (2, 3)D. (-2, 3)9. 下列图形中,是轴对称图形的是()A. 正方形B. 等边三角形C. 等腰梯形D. 平行四边形10. 下列事件中,一定发生的是()A. 抛掷一枚均匀的硬币,得到正面B. 随机抽取一个两位数,该数是偶数C. 掷骰子,得到一个小于5的点数D. 从一副扑克牌中随机抽取一张,抽到红桃二、填空题(每题3分,共30分)11. 已知 a = -3,b = 2,则 a + b 的值为 _______。

12. 若 |x| = 5,则 x 的值为 _______。

13. 下列数中,是有理数的是 _______。

江苏省无锡市七年级(下)期末数学试卷含答案

江苏省无锡市七年级(下)期末数学试卷含答案

绝密★启用前
江苏省无锡市七年级(下)期末数学试卷
考试范围:xxx;考试时间:120 分钟;命题人:xxx
题号





总分
得分

评卷人
得分
一、 选择题(共 10 题)
1.
(3 分)下列计算正确的是(

A. (a3)2=a5
B. (a-b)2=a2-b2
C. a•a3=a4
D. (-3a)3=-9a3
2.
一个解.同样地,适合二元一次不等式的一对未知数的值叫做这个二元一次不等式
的一个解.对于二元一次不等式 2x+3y≤10,它的正整数解有(
A. 4 个
B. 5 个
C. 6 个
D. 无数个
评卷人

得分
二、 填空题(共 8 题)
11. (2 分)数 0.0000011 用科学记数法可表示为______.
12. (2 分)已知10 = 3,10 = 5,则103− = ______ .
13. (2 分)如果一个边形的内角和等于900∘ ,那么的值为 ______ .
14. (2 分)直角三角形中两个锐角的差为 20°,则较大锐角的度数为______°.
15. (2 分)命题“互为相反数的两个数的和为 0”的逆命题为______.
试卷第 2 页,总 3 页
… … … … ○ … … … … 外 … … … … ○ … … … … 装 … … … … ○ … … … … 订 … … … … ○ … … … … 线 … … … … ○ … …
… … … … ○ … … … … 内 … … … … ○ … … … … 装 … … … … ○ … … … … 订 … … … … ○ … … … … 线 … … … … ○ … …

江苏省无锡市七年级下学期期末数学试卷

江苏省无锡市七年级下学期期末数学试卷

江苏省无锡市七年级下学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列生活中的现象,属于平移的是()A . 闹钟的钟摆的运动B . 升降电梯往上升C . DVD片在光驱中运行D . 秋天的树叶从树上随风飘落2. (2分)下列调查中,适宜采用全面调查(普查)方式的是()A . 对全国中学生每天学习数学的时间B . 调查重庆市民对全国两会的关注度C . 调查某班同学对中共十八大的知晓率D . 调查长江重庆-武汉段水域水质污染情况3. (2分) (2017七下·寮步期中) 将点A(-4,3)向右平移5个单位,再向下平移4个单位,所得到的点的坐标为()A . (1,1)B . (1,8) D.(1,-1)C . (-9,-1)4. (2分) (2017七下·个旧期中) 下列各式,计算正确的是()A . =﹣1B . ± =±4C . =25D . =35. (2分)下列各数中的无理数是()A .B .C . 3.1415927D .6. (2分)汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷x米,根据题意,列出方程为()A .2x+4×20=4×340B .2x-4×72=4×340C . 2x+4×72=4×340D . 2x-4×20=4×3407. (2分)若关于x的不等式(2﹣m)x<1的解为x>,则m的取值范围是()A . m>0B . m<0C . m>2D . m<28. (2分) (2016八上·延安期中) 用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC 的依据是()A . SSSB . ASAC . AASD . 角平分线上的点到角两边距离相等9. (2分)(2018·重庆) 若数a使关于x的不等式组,有且仅有三个整数解,且使关于y的分式方程 + =1有整数解,则满足条件的所有a的值之和是()A . ﹣10B . ﹣12C . ﹣16D . ﹣1810. (2分)如图,将△ABC沿BC方向平移得到△DCE,连结AD,下列条件中能够判定四边形ACED为菱形的是()A . ∠ACB=60°B . ∠B=60°C . AB=BCD . AC=BC二、填空题 (共6题;共8分)11. (2分) (2019七上·拱墅期末) 计算:(1) ________;(2)-7m+3m=________12. (1分)如图是某植物园的平面图,图中A馆所在地用坐标表示为(1,0),B馆所在地用坐标表示为(-3,-1),那么C馆所在地用坐标表示为________.13. (1分) (2017七下·简阳期中) 不等式﹣2x≤6的负整数解为________.14. (2分)如图是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段________ 的长度,这样测量的依据是________ .15. (1分) (2015七下·双峰期中) 在方程3x+y=2中,用y表示x,则x=________16. (1分)(2018·鼓楼模拟) 如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB的位置保持不动,将三角板DCE绕其直角顶点C顺时针旋转一周.若△DCE其中一边与AB平行,则∠ECB 的度数为________.三、解答题 (共8题;共53分)17. (5分)计算:|﹣2|﹣(π﹣2015)0+()﹣2﹣2sin60°+.18. (5分)解方程组(1)(2)19. (5分)(2013·深圳) 解不等式组:,并写出其整数解.20. (10分) (2015七下·广州期中) 如图,已知在△ABC中任意一点P(x0 , y0),经平移后对应点为P1(x0+3,y0﹣3),将△ABC作同样平移得到△DEF.(1)求△ABC的面积;(2)请写出D,E,F的坐标,并在图中画出△DEF.21. (1分) (2018七下·山西期中) 如图,已知GF⊥AB,∠1=∠2,∠B=∠AGH,则下列结论:①GH∥BC;②∠D=∠F;③HE平分∠AHG;④HE⊥AB,其中正确是________(只填序号)22. (5分) (2017八下·萧山期中) 如图,分别延长▱ABCD的边CD,AB到E,F,使DE=BF,连接EF,分别交AD,BC于G,H,连结CG,AH.求证:CG∥AH.23. (12分)(2018·莱芜模拟) 某调查机构将今年温州市民最关注的热点话题分为消费、教育、环保、反腐及其它共五类.根据最近一次随机调查的相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)本次共调查________人,请在答题卡上补全条形统计图并标出相应数据________;(2)若温州市约有900万人口,请你估计最关注教育问题的人数约为多少万人?(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,求抽取的两人恰好是甲和乙的概率(列数状图或列表说明).24. (10分) (2017九下·武冈期中) 因市场竞争激烈,国商进行促销活动,决定对学习用品进行打八折出售,打折前,买2本笔记本和1支圆珠笔需要18元,买1本笔记本和2支圆珠笔需要12元.(1)求打折前1本笔记本,1支圆珠笔各需要多少元.(2)在促销活动时间内,购买50本笔记本和40支圆珠笔共需要多少元?参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共53分)17-1、18-1、19-1、20-1、20-2、21-1、22-1、23-1、23-2、23-3、24-1、24-2、。

矿产

矿产

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档