第2讲 参数方程、极坐标表示的平面图形的面积

合集下载

求由极坐标表示的平面图形的面积 PPT课件

求由极坐标表示的平面图形的面积 PPT课件

•(4, 2)
A
x y2
O
4
x
•(1, 1)
若把 A 看作 x 型区域, 则
f1(
x)
x
x 2
,0 ,1
x x
1 4
,
f2x x ,0 x 4.
前页 后页 返回
由于 f1 分段定义, A 分为二图形 A1 和 A2 ,
1
S( A1) 0
x ( x ) dx 4 x3 2 1 4 . 3 03
a2 (1 cos )2d 0
a
3 a2.
O
2
2a x
前页 后页 返回
例5 求双纽线 r2 a2 cos 2 所围平面图形的面积.
解 因为 r2 0, 所以 的取值
范围是 [ , ] 与 [ 3 , 5 ].
44
44
由图形的对称性,
S( A) 4 1
4 a2 cos 2 d
前页 后页 返回
扇形,A1,A2, ,An . 设
mi inf{r( ) | [i1,i ]}
Mi sup{r( ) | [i1,i ]}, i 1, 2,L , n.

1 2
mi2
i
S( Ai )
1 2
Mi2i ,
从而 由于
1
2
n i 1
mi2 i
n i 1
S( Ai )1 2或S(A) x t yt dt
.
前页 后页 返回
例3
求由摆线
x y
a(t a(1
sin t) cos t)
,
t [0, 2 ]
与x轴
所围图形的面积.
y
2a
a
A

极坐标方程围成的图形面积公式

极坐标方程围成的图形面积公式

极坐标方程围成的图形面积公式
极坐标方程求面积公式是dS=rdrda。

极坐标属于二维坐标系统,创始人是牛顿,主要应用于数学领域。

极坐标是指在平面内取一个定点O,叫极点,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。

对于平面内任何一点M,用ρ表示线段OM的长度(有时也用r表示),θ表示从Ox到OM的角度,ρ叫做点M的极径,θ叫做点M的极角,有序数对(ρ,θ)就叫点M的极坐标,这样建立的坐标系叫做极坐标系。

通常情况下,M的极径坐标单位为1(长度单位),极角坐标单位为rad。

第十章定积分的应用§1平面图形的面积

第十章定积分的应用§1平面图形的面积
轴所围成的曲边梯形的面积为
y
y f (x)
0 a
bx
2 、 若 f ( x )在 [a , b ]上 不 都 是 非 负 的 ,
则所围成图形(如右图)
y
b
的 面 积 为 A f (x) dx.
a
c
d
f (x)dx f (x)dx
o
a
c
a c od
e
b
f (x)dx f (x)dx.
a
4、若平面区域是 y—区域:
由左曲线 x1 g1( y) 、 右曲线 x2 g2 ( y) 、下 直线 y a 、上直线 y b
所围成, 则其面积公式为:
y b
xg1(y) g1( y) dy. 如
o
a
图所示。
xg2(y) x
5、如果平面区域既不是x—型区域,也 不是y—型区域,则用一组平行于坐标 轴的直线,把平面区域分成尽可能少的 若干个x—型区域与y—型区域,然后计 算每一区域的面积,则平面区域总的面 积等于各区域面积之和。如右下图:
A
B
D
C
a
o
F E
b x
G
显然:由图可以知道上部分曲线由三
条不同的曲线:AB、BC与CD 构成;下 部分曲线由两条不同曲线:EF与FG所构 成。为计算其面积,可分别过点B、C与 F作平行于 y轴的直线,这样则把平面区 域分成4个x—型区域,然后利用前面的X ——型区域的公式就可以计算了。
下面看几个计算的例子我们就清楚利
计算公式得面积
A

3
2
1
y

3
y 2 d y
10

教学设计2:第2讲 参数方程

教学设计2:第2讲 参数方程

选修4-4 坐标系与参数方程 第2课时 参 数 方 程1. (选修44P 56习题第2题改编)若直线的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =2-3t (t 为参数),求直线的斜率.【解】k =y -2x -1=-3t 2t=-32.∴ 直线的斜率为-32.2. (选修44P 56习题第2题改编)将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =sin 2θ(θ为参数)化为普通方程.【解】转化为普通方程:y =x -2,x ∈[2,3],y ∈[0,1].3. 求直线⎩⎪⎨⎪⎧x =3+at ,y =-1+4t (t 为参数)过的定点.【解】y +1x -3=4a ,-(y +1)a +4x -12=0对于任何a 都成立,则x =3,且y =-1.∴ 定点为(3,-1).4. 已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =4t 2,y =t (t 为参数),若点P(m ,2)在曲线C 上,求m 的值.【解】点P(m ,2)在曲线C 上,则⎩⎪⎨⎪⎧m =4t22=t ,所以m =16.5. (选修44P57习题第6题改编)已知直线l 1:⎩⎪⎨⎪⎧x =1+3t ,y =2-4t (t 为参数)与直线l 2:2x -4y =5相交于点B ,又点A(1,2),求|AB|.【解】将⎩⎪⎨⎪⎧x =1+3t ,y =2-4t 代入2x -4y =5得t =12,则B ⎝⎛⎭⎫52,0,而A(1,2),得|AB|=52.1. 参数方程是用第三个变量(即参数)分别表示曲线上任一点M 的坐标x 、y 的另一种曲线方程的形式,它体现了x 、y 的一种间接关系.2. 参数方程是根据其固有的意义(物理、几何)得到的,要注意参数的取值范围.3. 一些常见曲线的参数方程(1) 过点P 0(x 0,y 0),且倾斜角是α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+lcosα,y =y 0+lsinα(l 为参数). l 是有向线段P 0P 的数量.(2) 圆方程(x -a)2+(y -b)2=r 2的参数方程是⎩⎪⎨⎪⎧x =a +rcosθ,y =b +rsinθ(θ为参数).(3) 椭圆方程x 2a 2+y 2b 2=1(a>b>0)的参数方程是⎩⎪⎨⎪⎧x =acosθ,y =bsinθ(θ为参数).(4) 双曲线方程x 2a 2-y 2b 2=1(a>0,b>0)的参数方程是⎩⎨⎧x =a 2⎝⎛⎭⎫t +1t ,y =b 2⎝⎛⎭⎫t -1t (t 为参数).(5) 抛物线方程y 2=2px(p>0)的参数方程是⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数).4. 在参数方程与普通方程的互化中注意变量的取值范围. [备课札记]题型1 参数方程与普通方程的互化例1 将参数方程⎩⎨⎧x =2⎝⎛⎭⎫t +1t ,y =4⎝⎛⎭⎫t -1t (t 为参数)化为普通方程.【解】(解法1)因为⎝⎛⎭⎫t +1t 2-⎝⎛⎭⎫t -1t 2=4,所以⎝⎛⎭⎫x 22-⎝⎛⎭⎫y 42=4.化简得普通方程为x 216-y 264=1.(解法2)因为⎩⎨⎧x =2⎝⎛⎭⎫t +1t ,y =4⎝⎛⎭⎫t -1t ,所以t =2x +y 8,1t =2x -y 8,相乘得(2x +y )(2x -y )64=1.化简得普通方程为x 216-y 264=1.备选变式(教师专享)将参数方程⎩⎪⎨⎪⎧y =cos2θ,x =sinθ 化为普通方程,并说明它表示的图形.【解】由⎩⎪⎨⎪⎧y =cos2θ,x =sinθ,可得⎩⎪⎨⎪⎧y +12=cos 2θ,x 2=sin 2θ,即y +12+x 2=1,化简得y =1-2x 2.又-1≤x 2=sin 2θ≤1,则-1≤x≤1,则普通方程为y =1-2x 2,在[]-1,1时此函数图象为抛物线的一部分.题型2 求参数方程例2 已知直线l 经过点P(1,1),倾斜角α=π6.(1) 写出直线l 的参数方程;(2) 设l 与圆x 2+y 2=4相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 【解】(1) 直线的参数方程为⎩⎨⎧x =1+tcos π6,y =1+tsin π6,即⎩⎨⎧x =1+32t ,y =1+12t(t 为参数). (2) 把直线⎩⎨⎧x =1+32t ,y =1+12t代入x 2+y 2=4,得⎝⎛⎭⎫1+32t 2+⎝⎛⎭⎫1+12t 2=4,t 2+(3+1)t -2=0,t 1t 2=-2,则点P 到A 、B 两点的距离之积为2. 变式训练 过点P ⎝⎛⎭⎫102,0作倾斜角为α的直线与曲线x 2+2y 2=1交于点M 、N ,求|PM|·|PN|的最小值及相应的α的值.【解】设直线为⎩⎪⎨⎪⎧x =102+tcosα,y =tsinα(t 为参数),代入曲线并整理得(1+sin 2α)t 2+(10cosα)t +32=0, 则|PM|·|PN|=|t 1t 2|=321+sin 2α.所以当sin 2α=1时,|PM|·|PN|的最小值为34,此时α=π2.题型3 参数方程的应用例3 已知点P(x ,y)是圆x 2+y 2=2y 上的动点. (1) 求2x +y 的取值范围;(2) 若x +y +a≥0恒成立,求实数a 的取值范围.【解】(1) 设圆的参数方程为⎩⎪⎨⎪⎧x =cosθ,y =1+sinθ,2x +y =2cosθ+sinθ+1=5sin(θ+φ)+1, ∴ -5+1≤2x +y≤5+1. (2) x +y +a =cosθ+sinθ+1+a≥0,∴ a≥-(cosθ+sinθ)-1=-2sin ⎝⎛⎭⎫θ+π4-1, ∴ a≥2-1.备选变式(教师专享)在椭圆x 216+y 212=1上找一点,使这一点到直线x -2y -12=0的距离最小.【解】设椭圆的参数方程为⎩⎨⎧x =4cosθy =23sinθ,d =|4cosθ-43sinθ-12|5=455||cosθ-3sinθ-3=455⎪⎪⎪⎪2cos ⎝⎛⎭⎫θ+π3-3, 当cos ⎝⎛⎭⎫θ+π3=1时,d min =455,此时所求点为(2,-3).1. 在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =5cosθ,y =5sinθ⎝⎛⎭⎫θ为参数,0≤θ≤π2和⎩⎨⎧x =1-22t ,y =-22t(t 为参数),求曲线C 1和C 2的交点坐标. 【解】曲线C 1的方程为x 2+y 2=5(0≤x≤5), 曲线C 2的方程为y =x -1,由⎩⎪⎨⎪⎧x 2+y 2=5,y =x -1x =2或x =-1(舍去),则曲线C 1和C 2的交点坐标为(2,1).2. (2013·湖南)在平面直角坐标系xOy 中,若l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cosφ,y =2sinφ(φ为参数)的右顶点,求常数a 的值.【解】直线的普通方程为y =x -a.椭圆的标准方程为x 29+y 24=1,右顶点为(3,0),所以点(3,0)在直线y =x -a 上,代入解得a =3.3. (2013·重庆)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcosθ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A 、B 两点,求|AB|.【解】极坐标方程为ρcosθ=4的直线的普通方程为x =4.曲线的参数方程化为普通方程为y 2=x 3,当x =4时,解得y =±8,即A(4,8),B(4,-8), 所以|AB|=8-(-8)=16.4. (2013·江苏)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =2tan 2θ,y =2tanθ(θ为参数),试求直线l 与曲线C 的普通方程,并求出它们的公共点的坐标.【解】∵ 直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t ,∴ 消去参数t 后得直线的普通方程为2x -y-2=0,①同理得曲线C 的普通方程为y 2=2x ,②①②联立方程组解得它们公共点的坐标为(2,2),⎝⎛⎭⎫12,-1.1. 在极坐标系中,圆C 的方程为ρ=22sin ⎝⎛⎭⎫θ+π4,以极点为坐标原点、极轴为x 轴正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =t ,y =1+2t (t 为参数),判断直线l 和圆C 的位置关系.【解】ρ=22sin ⎝⎛⎭⎫θ+π4,即ρ=2(sinθ+cosθ),两边同乘以ρ得ρ2=2(ρsinθ+ρcosθ),得圆C 的直角坐标方程为(x -1)2+(y -1)2=2.消去参数t ,得直线l 的直角坐标方程为y =2x +1.圆心C 到直线l 的距离d =|2-1+1|22+12=255.因为d =255<2,所以直线l 和圆C 相交.2. 已知极坐标方程为ρcosθ+ρsinθ-1=0的直线与x 轴的交点为P ,与椭圆⎩⎪⎨⎪⎧x =2cosθ,y =sinθ(θ为参数)交于点A 、B ,求PA·PB 的值.【解】直线过点P(1,0),参数方程为⎩⎨⎧x =1-22t ,y =22t(t 为参数).代入椭圆方程x 24+y 2=1,整理得52t 2+2t -3=0,则PA·PB =|t 1t 2|=65.3. 已知曲线C 的极坐标方程为ρ=6sinθ,以极点为原点、极轴为x 轴非负半轴建立平面直角坐标系,直线l 的参数方程为⎩⎨⎧x =12t ,y =32t +1(t 为参数),求直线l 被曲线C 截得的线段的长度.【解】将曲线C 的极坐标方程化为直角坐标方程x 2+y 2-6y =0,即x 2+(y -3)2=9,它表示以(0,3)为圆心、以3为半径的圆,直线l 的普通方程为y =3x +1,圆C 的圆心到直线l 的距离d =1,故直线l 被曲线C 截得的线段长度为232-12=4 2.4. 已知直线C 1:⎩⎪⎨⎪⎧x =1+tcosα,y =tsinα(t 为参数),C 2:⎩⎪⎨⎪⎧x =cosθ,y =sinθ(θ为参数).(1) 当α=π3时,求C 1与C 2的交点坐标;(2) 过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.【解】 (1) 当α=π3时,C 1的普通方程为y =3(x -1),C 2的普通方程为x 2+y 2=1.联立方程组⎩⎨⎧y =3(x -1),x 2+y 2=1,解得C 1与C 2的交点为(1,0),⎝⎛⎭⎫12,-32.(2) C 1的普通方程为xsinα-ycosα-sinα=0.A 点坐标为(sin 2α,-cosαsinα),故当α变化时,P 点轨迹的参数方程为⎩⎨⎧x =12sin 2α,y =-12sinαcosα(α为参数).P 点轨迹的普通方程为⎝⎛⎭⎫x -142+y 2=116. 故P 点轨迹是圆心为⎝⎛⎭⎫14,0,半径为14的圆.直线的参数方程:经过点M 0(x 0,y 0),倾斜角为α⎝⎛⎭⎫α≠π2的直线l 的普通方程是y -y 0=tanα(x -x 0),而过M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+tcosα,y =y 0+tsinα(t 为参数).特别说明:直线参数方程中参数的几何意义:过定点M 0(x 0,y 0),倾斜角为α的直线l的参数方程为⎩⎪⎨⎪⎧x =x 0+tcosα,y =y 0+tsinα(t 为参数),其中t 表示直线l 上以定点M 0为起点,任一点M(x ,y)为终点的有向线段M 0M →的数量,当点M 在M 0上方时,t >0;当点M 在M 0下方时,t <0;当点M 与M 0重合时,t =0.我们也可以把参数t 理解为以M 0为原点,直线l 向上的方向为正方向的数轴上的点M 的坐标,其单位长度与原直角坐标系中的单位长度相同.请使用课时训练(B )第2课时(见活页).选修4-5 不等式选讲第1课时 绝对值不等式(对应学生用书(理)198~199页)1. 解不等式:|x +1|>3.【解】由|x +1|>3得x +1<-3或x +1>3,解得x <-4或x >2.所以解集为(-∞,-4)∪(2,+∞).2. 解不等式:3≤|5-2x|<9.【解】⎩⎪⎨⎪⎧|2x -5|<9|2x -5|≥3⎩⎪⎨⎪⎧-9<2x -5<92x -5≥3或2x -5≤-3⎩⎪⎨⎪⎧-2<x<7,x≥4或x≤1,得解集为(-2,1]∪[4,7).3. 已知|x -a|<b(a 、b ∈R )的解集为{x|2<x<4}, 求a -b 的值.【解】由|x -a|<b ,得a -b<x<a +b.又|x -a|<b(a 、b ∈R )的解集为{x|2<x<4},所以a -b =2.4. 解不等式:|2x -1|-|x -2|<0. 【解】原不等式等价于不等式组①⎩⎪⎨⎪⎧x≥2,2x -1-(x -2)<0,无解; ②⎩⎪⎨⎪⎧12<x <2,2x -1+(x -2)<0,解得12<x<1;③⎩⎪⎨⎪⎧x≤12,-(2x -1)+(x -2)<0,解得-1<x≤12.综上得-1<x <1,所以原不等式的解集为{x|-1<x <1}. 5. 求函数y =|x -4|+|x -6|的最小值.【解】y =|x -4|+|x -6|≥|x -4+6-x|=2.所以函数的最小值为2.1. 不等式的基本性质 ①a>b b<a ;②a>b ,b>c a>c ;③a>ba +c>b +c ;④a>b ,c>0ac>bc ;a>b ,c<0ac<bc ; ⑤a>b>0a n >b n (n ∈N ,且n>1); ⑥a>b>0na>nb(n ∈N ,且n>1).2. 含有绝对值的不等式的解法 ①|f(x)|>a(a>0) f(x)>a 或f(x)<-a ;②|f(x)|<a(a>0)-a<f(x)<a.3. 含有绝对值的不等式的性质 ①|a|+|b|≥|a +b|;②|a|-|b|≤|a +b|; ③|a|-|b|≤|a±b|≤|a|+|b|. [备课札记]题型1 含绝对值不等式的解法 例1 解不等式:|x +3|-|2x -1|<x2+1.【解】 ① 当x<-3时,原不等式化为-(x +3)-(1-2x)<x2+1,解得x<10,∴ x<-3.② 当-3≤x<12时,原不等式化为(x +3)-(1-2x)<x 2+1,解得x<-25,∴ -3≤x<-25.③ 当x≥12时,原不等式化为(x +3)-(2x -1)<x2+1,解得x>2,∴ x>2.综上可知,原不等式的解集为{x|x<-25或x>2}.备选变式(教师专享)(2011·南京一模)解不等式|2x -4|<4-|x|.【解】原不等式等价于①⎩⎪⎨⎪⎧x<0,4-2x<4+x或②⎩⎪⎨⎪⎧0≤x≤2,4-2x<4-x 或③⎩⎪⎨⎪⎧x>2,2x -4<4-x , 不等式组①无解.由②0<x≤2,③2<x<83, 得不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪0<x<83. 题型2 含绝对值不等式性质的运用例2 已知函数f(x)=|x -1|+|x -2|. 若不等式|a +b|+|a -b|≥|a|f(x)(a≠0,a 、b ∈R )恒成立,求实数x 的取值范围.【解】由题知,|x -1|+|x -2|≤|a -b|+|a +b||a|恒成立,故|x -1|+|x -2|不大于|a -b|+|a +b||a|的最小值.∵ |a +b|+|a -b|≥|a +b +a -b|=2|a|,当且仅当(a +b)·(a -b)≥0时取等号,∴ |a -b|+|a +b||a|的最小值等于2. ∴ x 的范围即为不等式|x -1|+|x -2|≤2的解,解不等式得12≤x≤52. 变式训练已知函数f(x)=|x -a|.(1) 若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a 的值;(2) 在(1)的条件下,若f(x)+f(x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.【解】(1) 由f(x)≤3得|x -a|≤3,解得a -3≤x≤a +3.又已知不等式f(x)≤3的解集为{x|-1≤x≤5},所以⎩⎪⎨⎪⎧a -3=-1,a +3=5,解得a =2. (2) 当a =2时,f(x)=|x -2|,设g(x)=f(x)+f(x +5),于是g(x)=|x -2|+|x +3|≥|(2-x)+(x +3)|=5,当且仅当(2-x)(x +3)≥0即当-3≤x≤2时等号成立.所以实数m 的取值范围是{m|m≤5}.题型3 含绝对值不等式综合运用例3 设函数f(x)=|x -a|+3x ,其中a >0.(1) 当a =1时,求不等式f(x)≥3x +2的解集;(2) 若不等式f(x)≤0的解集为{x|x≤-1},求a 的值.【解】(1) 当a =1时,f(x)≥3x +2可化为|x -1|≥2.由此可得x≥3或x≤-1,故不等式f(x)≥3x +2的解集为{x|x≥3或x≤-1}.(2) 由f(x)≤0得|x -a|+3x≤0,此不等式化为不等式组⎩⎪⎨⎪⎧x≥a ,x -a +3x≤0或⎩⎪⎨⎪⎧x≤a a -x +3x≤0,即⎩⎪⎨⎪⎧x≥a ,x≤a 4或⎩⎪⎨⎪⎧x≤a ,x≤-a 2. 因为a >0,所以不等式组的解集为⎩⎨⎧⎭⎬⎫x|x≤-a 2. 由题设可得-a 2=-1,故a =2. 变式训练已知关于x 的不等式|ax -1|+|ax -a|≥2(a>0).(1) 当a =1时,求此不等式的解集;(2) 若此不等式的解集为R ,求实数a 的取值范围.【解】(1) 当a =1时,不等式为|x -1|≥1,∴ x≥2或x≤0,∴ 不等式解集为{x|x≤0或x≥2}.(2) 不等式的解集为R ,即|ax -1|+|ax -a|≥2(a>0)恒成立.∵ |ax -1|+|ax -a|=a ⎝⎛⎭⎫⎪⎪⎪⎪x -1a +|x -1|≥a ⎪⎪⎪⎪1-1a , ∴ a ⎪⎪⎪⎪1-1a =|a -1|≥2.∵ a>0,∴ a≥3, ∴ 实数a 的取值范围为[3,+∞).1. (2013·重庆)若关于实数x 的不等式|x -5|+|x +3|<a 无解,求实数a 的取值范围.【解】因为不等式|x -5|+|x +3|的最小值为8,所以要使不等式|x -5|+|x +3|<a 无解,则a≤8,即实数a 的取值范围是(-∞,8].2. (2013·江西)在实数范围内,求不等式||x -2|-1|≤1的解集.【解】由||x -2|-1|≤1得-1≤|x -2|-1≤1,即0≤|x -2|≤2,即-2≤x -2≤2,解得0≤x≤4,所以原不等式的解集为[0,4].3. 已知实数x 、y 满足:|x +y|<13,|2x -y|<16.求证:|y|<518. 证明:∵ 3|y|=|3y|=|2(x +y)-(2x -y)|≤2|x +y|+|2x -y|,由题设|x +y|<13,|2x -y|<16,∴ 3|y|<23+16=56.∴ |y|<518. 4. (2013·福建理)设不等式|x -2|<a(a ∈N *)的解集为A ,且32∈A ,12A. (1) 求a 的值;(2) 求函数f(x)=|x +a|+|x -2|的最小值.【解】(1) 因为32∈A ,且12A ,所以⎪⎪⎪⎪32-2<a ,且⎪⎪⎪⎪12-2≥a , 解得12<a≤32.因为a ∈N *,所以a =1. (2) 因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3,当且仅当(x +1)(x -2)≤0,即-1≤x≤2时取等号,所以f(x)的最小值为3.1. 解不等式:|x -1|>2x. 【解】当x<0时,原不等式成立;当x≥1时,原不等式等价于x(x -1)>2,解得x>2或x<-1,所以x>2;当0<x<1时,原不等式等价于x(1-x)>2,这个不等式无解.综上,原不等式的解集是{x|x<0或x>2}.2. 若不等式|3x -b|<4的解集中整数有且只有1,2,3,求实数b 的取值范围.【解】由|3x -b|<4,得-4<3x -b <4,即b -43<x <b +43. 因为解集中整数有且只有1,2,3,所以⎩⎨⎧0≤b -43<1,3<b +43≤4,解得⎩⎪⎨⎪⎧4≤b <7,5<b≤8,所以5<b <7. 3. 已知函数f(x)=|x +a|+|x -2|.(1) 当a =-3时,求不等式f(x)≥3的解集;(2) 若f(x)≤|x -4|的解集包含[1,2],求a 的取值范围.【解】(1) 当a =-3时,f(x)≥3|x -3|+|x -2|≥3⎩⎪⎨⎪⎧x≤23-x +2-x≥3或⎩⎪⎨⎪⎧2<x<33-x +x -2≥3或⎩⎪⎨⎪⎧x≥3x -3+x -2≥3 x≤1或x≥4.(2) 原命题f(x)≤|x -4|在[1,2]上恒成立|x +a|+2-x≤4-x 在[1,2]上恒成立-2-x≤a≤2-x 在[1,2]上恒成立-3≤a≤0.4. 已知f(x)=|ax +1|(a ∈R ),不等式f(x)≤3的解集为{x|-2≤x≤1}.(1) 求a 的值,(2) 若⎪⎪⎪⎪f (x )-2f ⎝⎛⎭⎫x 2≤k 恒成立,求k 的取值范围. 【解】(1) 由|ax +1|≤3得-4≤ax≤2,又f(x)≤3的解集为{x|-2≤x≤1},所以,当a≤0时,不合题意当a>0时,-4a ≤x≤2a,得a =2. (2) 记h(x)=f(x)-2f ⎝⎛⎭⎫x 2,则h(x)=⎩⎪⎨⎪⎧1,x≤-1-4x -3,-1<x<-12-1,x≥-12, 所以|h(x)|≤1,因此k≥1.1. |ax +b|≤c(c >0)和|ax +b|≥c(c >0)型不等式的解法(1) |ax +b|≤c -c≤ax +b≤c ;(2) |ax +b|≥c ax +b≥c 或ax +b≤-c.2. |x -a|+|x -b|≥c(c >0)和|x -a|+|x -b|≤c(c >0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.。

极坐标系下求平面图形面积的技巧

极坐标系下求平面图形面积的技巧

函数在某 区间上 的整体性 质与该 区间内部某 一点的导 定理 ;还有些作者将微分 中值定理表述成矢量形 式再
数之 间的关系 。微分 中值 定理既是利用微 分学知识解 予 以证 明并加 以推广 。这些 证明微分 中值定 理的方法
决应用 问题 的数学模 型 ,又是解决微分学 自身发展 的 思路清 晰、论证严密 ,因而得到普遍使用 。虽 然辅 助 函 一 种理论性数学模型 。在经济数学教材 中,微 分中值定 数 的作法构思别致但 不易想到 。本文结合经 济管理类
定理 、柯 西(Cauchy)中值定 理 、泰勒 (Taylor)定理 (含马 最值 的方法及 达布定理先证 明柯 西 中值定理 ,再推 出
克劳林 (Maclaurin)公式 )、洛必 达(1JIHospita1)法则 以及 拉格朗 日中值 定理进而推 出罗尔定理 ;又有些作者 在
达布(Darboux)定理 ,它们构成微分学的理论 核心 ,在数 证明了罗尔定理后立 即得 到两个推论 ,从而容易构 造 学分析 中处于 十分重要 的地 位 。微分 中值定 理揭示 了 出辅助 函数证 明柯西 中值定理进 而推 出拉格 朗 日中值
围一定 在其定 义域范 围内。在极坐标方程 中 ,除非特别
说 明 ,一 般是 要求 r≥0。根 据 r=a(1+cosO)可知对 0∈
[0,27r],都有 r≥0。
3)综 合 1)、2)可知 :心 形线 r-a(1+cosO)(0>0)所
围成 图形 的面积为

r 2丌 ^
, ,2丌
1)因为 r=a(1+cosO)是 以 2Ir为 周期 的周 期 函数 ,
也 即 (r(O), )与 (r(O+2zr), 27r)在极坐 标系 中表示 同

极坐标的面积计算公式

极坐标的面积计算公式

极坐标的面积计算公式极坐标是数学中一个挺有意思的概念,特别是极坐标下的面积计算公式,那更是充满了神奇和奥秘。

先来说说啥是极坐标。

想象一下,你站在一个点上,然后用距离和角度来描述另一个点的位置,这就是极坐标。

不像咱们平时常用的直角坐标,极坐标多了几分独特的魅力。

那极坐标下的面积计算公式到底是啥呢?它是:$S =\frac{1}{2}\int_{\alpha}^{\beta} r^2 d\theta$ 。

这里的$r$ 就是极径,$\theta$ 是极角,$\alpha$ 和 $\beta$ 是积分的上下限。

就拿个简单的例子来说吧,比如有一个曲线,它的极坐标方程是$r = 2 + 2\cos\theta$ 。

咱们来算算它围成的图形的面积。

把公式搬出来,$S = \frac{1}{2}\int_{0}^{2\pi} (2 + 2\cos\theta)^2 d\theta$ 。

这积分算起来可有点头疼,但别慌,一步步来。

展开式子,$S = \frac{1}{2}\int_{0}^{2\pi} (4 + 8\cos\theta +4\cos^2\theta) d\theta$ 。

这里面的 $\cos^2\theta$ ,咱们可以用二倍角公式 $\cos^2\theta = \frac{1 + \cos2\theta}{2}$ 来处理。

于是,$S = \frac{1}{2}\int_{0}^{2\pi} (4 + 8\cos\theta + 2 +2\cos2\theta) d\theta$ 。

再分别积分,$S = \frac{1}{2} [ 6\theta + 8\sin\theta +\sin2\theta ]_{0}^{2\pi}$ 。

算出来,$S = 6\pi$ 。

这就是用极坐标面积计算公式算出的结果。

我还记得有一次给学生们讲这个知识点的时候,有个学生一脸迷茫地看着我,说:“老师,这也太复杂了,感觉脑袋都要炸了。

选修4-4 第2讲 参数方程

选修4-4 第2讲 参数方程

例1
(1)求直线xy= =2-+1t-,t
(t
为参数)与曲线xy= =33csions
α, α
(α 为
参数)的交点个数.
[解] 将xy= =- 2+1-t,t 消去参数 t 得直线 x+y-1=0;
将xy= =33csions
α, α
消去参数 α,得圆 x2+y2=9.
又圆心(0,0)到直线 x+y-1=0 的距离 d= 22<3. 因此直线与圆相交,故直线与曲线有 2 个交点.
[解] (1)消去参数 t 得 l1 的普通方程 l1:y=k(x-2);消去参数 m 得 l2 的普通方程 l2:y=1k(x+2).
y=kx-2 设 P(x,y),由题设得y=1kx+2 ,
消去 k 得 x2-y2=4(y≠0). 所以 C 的普通方程为 x2-y2=4(y≠0).
(2)C 的极坐标方程为 ρ2(cos2θ-sin2θ) =4(0<θ<2π,θ≠π). 联立ρρ2ccoossθ2θ+-sisninθ2θ-=42,=0 得 cos θ-sin θ=2(cos θ+sin θ). 故 tan θ=-13,从而 cos2θ=190,sin2θ=110. 代入 ρ2(cos2θ-sin2θ)=4 得 ρ2=5,所以交点 M 的极径为 5.
(t 为参数)

x2+y2=r2
x=rcos θ, y=rsin θ
(θ 为参数)
椭圆
ax22+by22=1(a>b>0)
x=acos φ, y=bsin φ
(φ 为参数)
抛物线 y2=2px(p>0)
x=2pt2, y=2pt
(t 为参数)
[知识感悟] 1.在参数方程与普通方程的互化中,必须使 x,y 的取值范围保 持一致.否则不等价. 2.直线的参数方程中,参数 t 的系数的平方和为 1 时,t 才有几 何意义且其几何意义为:|t|是直线上任一点 M(x,y)到 M0(x0,y0)的距 离,即|M0M|=|t|.

极坐标曲线围成的面积公式

极坐标曲线围成的面积公式

极坐标曲线围成的面积公式极坐标表示了平面上的点与原点之间的距离和角度的关系。

极坐标曲线是由一对极坐标点确定的曲线,它们共同定义了一个区域,我们可以计算这个区域的面积。

本文将介绍如何计算由极坐标曲线围成的面积,并给出相应的公式。

一、极坐标曲线的参数方程极坐标曲线可以用参数方程表示。

对于一个极坐标点(r,θ),其中r表示与原点的距离,θ表示与正半轴的夹角。

二、计算极坐标曲线围成的面积要计算由极坐标曲线围成的面积,我们可以将该区域分成无限小的扇形,然后将这些扇形的面积累加起来。

具体来说,考虑一个极坐标点(r,θ)和其相邻的两个点(r+Δr,θ)和(r,θ+Δθ),其中Δr和Δθ分别表示r和θ的增量。

这三个点可以确定一个扇形区域。

扇形的面积可以通过扇形的弧长和半径计算得到。

扇形的弧长等于θ所对应的弧度乘以半径,即Δθ*r。

半径等于极坐标点的距离,即r。

因此,扇形的面积为1/2*Δθ*r^2。

将整个区域划分为许多这样的扇形,我们可以得到一个近似的面积。

通过令Δr和Δθ趋近于零,我们可以得到一个无穷小的扇形,从而得到一个准确的面积。

最后,我们将所有扇形的面积累加起来,即可得到由极坐标曲线围成的面积。

三、极坐标曲线围成的面积公式根据上述讨论,可以得到极坐标曲线围成的面积公式:A = ∫[θ1,θ2]1/2*r^2 dθ其中A表示所求的面积,[θ1,θ2]表示曲线所覆盖的角度范围,r表示极坐标点与原点的距离。

要计算这个积分,需要根据具体的极坐标曲线确定角度范围和距离函数。

根据实际问题,可以选择合适的角度范围和距离函数,并进行积分计算。

四、实例:计算圆的面积以圆为例,我们可以通过极坐标曲线围成的面积公式计算其面积。

圆的极坐标方程为r = a,其中a表示半径。

我们可以选择角度范围为[0,2π],距离函数为r = a。

代入面积公式进行计算:A = ∫[0,2π]1/2*(a^2) dθA = 1/2*a^2*∫[0,2π]dθA = 1/2*a^2*(2π-0)A = π*a^2结果表明,圆的面积等于半径的平方乘以π,这与我们熟知的圆面积公式相符。

极坐标方程下的面积是什么

极坐标方程下的面积是什么

极坐标方程下的面积是什么在数学中,极坐标方程是描述平面上点的坐标的一种方式,它使用极径和极角来确定点的位置。

给定一个极坐标方程,我们可以探讨其代表的图形的面积是多少。

1. 极坐标方程的基本形式极坐标通常以$(r, \\theta)$的形式表示,其中r为极径,$\\theta$为极角。

极坐标方程的一般形式为:$$r = f(\\theta)$$这里r是极坐标平面上任意一点到原点的距离,$f(\\theta)$是极角$\\theta$的函数。

2. 计算极坐标方程代表图形的面积要计算极坐标方程代表的图形的面积,可以利用积分。

对于给定的极坐标方程$r = f(\\theta)$,其表示的极坐标曲线上的一小段弧长可以用$r \\, d\\theta$表示。

那么,该小段曲线和极径连线所夹的扇形面积可以表示为$\\frac{1}{2}r^2 \\,d\\theta$。

要计算整个图形的面积,只需对整个区域进行积分。

如果要计算从$\\theta_1$到$\\theta_2$之间的面积,可以进行如下积分:$$A = \\int_{\\theta_1}^{\\theta_2} \\frac{1}{2}r^2 \\, d\\theta$$其中,$r = f(\\theta)$为极坐标方程。

3. 举例说明假设有一个极坐标方程$r = 2\\cos(\\theta)$,我们希望计算其代表的图形在$0 \\leq \\theta \\leq \\frac{\\pi}{2}$范围内的面积。

根据前面的计算公式,该曲线代表的面积可以计算如下:$$A = \\int_{0}^{\\frac{\\pi}{2}} \\frac{1}{2}(2\\cos(\\theta))^2 \\,d\\theta$$简化积分式并进行计算,最终可以得到该曲线在给定范围内的面积。

4. 结论通过计算极坐标方程下图形的面积,我们可以更深入地理解极坐标系中图形的性质和特点。

求由极坐标表示的平面图形的面积

求由极坐标表示的平面图形的面积
前页 后页 返回
把 A 看作为 y 型区域, 则 g1 ( y ) y , g2 ( y ) 8 y ,
2
于是
3 3 2 2 2 y 2 S ( A) 8 y y dy 8 y 0 3 3 0 2 8 8 8 8 . 3 3 3 2
其中 g1 ( y ), g2 ( y ) 是定义在[c, d ] 上的连续函数.
前页 后页 返回
x 型区域 A
y
y f2 ( x )
通过上移
y
y f2 ( x ) M
A
O
A
y f1 ( x ) M 0
a
y f1 ( x )
b x
O
a
b x
前页 后页 返回
由定积分的几何意义,可知 A 的面积为
y2 x x1 0 的解为 , 2 y1 0 x 8 y
c 2
d


x2 4 . y2 2
前页 后页 返回
y
2
y x
2
(4, 2)
A
O
x2 8 y
4
x
图形 A既是 x 型区域又是 y 型区域 2 x 把 A 看作 x 型区域,则 f1 ( x ) , f2 ( x) x , 8 于是 4 2 3 x2 1 34 2 S A x dx x x 0 0 8 3 24 16 64 8 . 3 24 3

1
S ( A2 )
1

x ( x 2) dx
2 4

2 32 x 14 3 x 2x . 2 3 1 3 2

2 第2讲 参数方程

2 第2讲 参数方程

第2讲 参数方程1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地,可以通过消去参数,从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是曲线的参数方程,在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.2.直线、圆和圆锥曲线的参数方程导师提醒1.关注直线参数方程的三个应用及一个易错点 (1)三个应用:已知直线l 经过点M 0(x 0,y 0),倾斜角为α,点M (x ,y )为l 上任意一点,则直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).①若M 1,M 2是直线l 上的两个点,对应的参数分别为t 1,t 2,则|M 0M 1→| |M 0M 2→|=|t 1t 2|,|M 1M 2→|=|t 2-t 1|=(t 2+t 1)2-4t 1t 2;②若线段M 1M 2的中点为M 3,点M 1,M 2,M 3对应的参数分别为t 1,t 2,t 3,则t 3=t 1+t 22;③若直线l 上的线段M 1M 2的中点为M 0(x 0,y 0),则t 1+t 2=0,t 1t 2<0.(2)一个易错点:在使用直线参数方程的几何意义时,要注意参数前面的系数应该是该直线倾斜角的正余弦值.否则参数不具备该几何含义.2.掌握圆的参数方程的两种应用(1)解决与圆上的动点有关的距离取值范围以及最大值和最小值问题,通常可以转化为点与圆、直线与圆的位置关系.(2)求距离的问题,通过设圆的参数方程,就转化为求三角函数的值域问题.判断正误(正确的打“√”,错误的打“×”)(1)参数方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )中的x ,y 都是参数t 的函数.( )(2)过M 0(x 0,y 0),倾斜角为α⎝⎛⎭⎫α≠π2的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).参数t 的几何意义表示:直线l 上以定点M 0为起点,任一点M (x ,y )为终点的有向线段M 0M 的数量.( )(3)方程⎩⎪⎨⎪⎧x =2cos θ,y =1+2sin θ(θ为参数)表示以点(0,1)为圆心,以2为半径的圆.( )(4)已知椭圆的参数方程⎩⎪⎨⎪⎧x =2cos t ,y =4sin t(t 为参数),点M 在椭圆上,对应参数t =π3,点O为原点,则直线OM 的斜率为 3.( )答案:(1)√ (2)√ (3)√ (4)×曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( )A .在直线y =2x 上B .在直线y =-2x 上C .在直线y =x -1上D .在直线y =x +1上解析:选B.由⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ,得⎩⎪⎨⎪⎧cos θ=x +1,sin θ=y -2.所以(x +1)2+(y -2)2=1.曲线是以(-1,2)为圆心,1为半径的圆,所以对称中心为(-1,2),在直线y =-2x 上.在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为________.解析:直线l 的普通方程为x -y -a =0, 椭圆C 的普通方程为x 29+y 24=1,所以椭圆C 的右顶点坐标为(3,0),若直线l 过点(3,0), 则3-a =0, 所以a =3. 答案:3椭圆C 的参数方程为⎩⎪⎨⎪⎧x =5cos φ,y =3sin φ(φ为参数),过左焦点F 1的直线l 与C 相交于A ,B 两点,则|AB |min =________.解析:由⎩⎪⎨⎪⎧x =5cos φ,y =3sin φ(φ为参数)得,x 225+y 29=1,当AB ⊥x 轴时,|AB |有最小值. 所以|AB |min =2×95=185.答案:185如图,以过原点的直线的倾斜角θ为参数,则圆x 2+y 2-x =0的参数方程为________.解析:圆的半径为12,记圆心为C ⎝⎛⎭⎫12,0,连接CP ,则∠PCx =2θ,故x P =12+12cos 2θ=cos 2θ,y P =12sin 2θ=sin θcos θ(θ为参数).所以圆的参数方程为⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数).答案:⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数)参数方程与普通方程的互化(自主练透) 1.将下列参数方程化为普通方程.(1)⎩⎨⎧x =1t ,y =1t t 2-1(t 为参数);(2)⎩⎪⎨⎪⎧x =2+sin 2θ,y =-1+cos 2θ(θ为参数). 解:(1)由t 2-1≥0⇒t ≥1或t ≤-1⇒0<x ≤1或-1≤x <0.由⎩⎨⎧x =1t①,y =1tt 2-1②,①式代入②式得x 2+y 2=1.其中⎩⎨⎧0<x ≤1,0≤y <1或⎩⎪⎨⎪⎧-1≤x <0,-1<y ≤0.(2)由x =2+sin 2θ,0≤sin 2θ≤1 ⇒2≤2+sin 2θ≤3⇒2≤x ≤3,⎩⎪⎨⎪⎧x =2+sin 2θ,y =-1+cos 2θ⇒⎩⎪⎨⎪⎧x -2=sin 2θ,y =-1+1-2sin 2θ⇒⎩⎪⎨⎪⎧x -2=sin 2θy =-2sin 2θ⇒2x +y -4=0(2≤x ≤3).2.已知曲线C 1:⎩⎪⎨⎪⎧x =-4+cos t ,y =3+sin t (t 为参数),曲线C 2:⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ(θ为参数).化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线.解:曲线C 1:(x +4)2+(y -3)2=1,曲线C 2:x 264+y 29=1,曲线C 1是以(-4,3)为圆心,1为半径的圆;曲线C 2是中心为坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆.3.在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =-5+22t ,y =5+22t (t 为参数),以O为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,曲线C 的极坐标方程为ρ=4cos θ.(1)求曲线C 的直角坐标方程及直线l 的普通方程;(2)将曲线C 上的所有点的横坐标缩短为原来的12,再将所得到的曲线向左平移1个单位长度,得到曲线C 1,求曲线C 1上的点到直线l 的距离的最小值.解:(1)曲线C 的直角坐标方程为x 2+y 2=4x ,即(x -2)2+y 2=4. 直线l 的普通方程为x -y +25=0.(2)将曲线C 上的所有点的横坐标缩短为原来的12,得(2x -2)2+y 2=4,即(x -1)2+y 24=1, 再将所得曲线向左平移1个单位长度, 得曲线C 1:x 2+y 24=1,则曲线C 1的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设曲线C 1上任一点P (cos θ,2sin θ), 则点P 到直线l 的距离 d =|cos θ-2sin θ+25|2=|25-5sin (θ+φ)|2≥102⎝⎛⎭⎫其中tan φ=-12, 所以点P 到直线l 的距离的最小值为102.将参数方程化为普通方程的方法(1)将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有:代入消参法、加减消参法、平方消参法等.对于含三角函数的参数方程,常利用同角三角函数关系式消参,如sin 2θ+cos 2θ=1等.(2)将参数方程化为普通方程时,要注意两种方程的等价性,不要增解.参数方程的应用(师生共研)(2018·高考全国卷Ⅱ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θy =4sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos αy =2+t sin α(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率. 【解】 (1)曲线C 的直角坐标方程为x 24+y 216=1.当cos α≠0时,l 的直角坐标方程为y =tan α·x +2-tan α, 当cos α=0时,l 的直角坐标方程为x =1.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+3cos 2α)t 2+4(2cos α+sin α)t -8=0. ①因为曲线C 截直线l 所得线段的中点(1,2)在C 内, 所以①有两个解,设为t 1,t 2, 则t 1+t 2=0.又由①得t 1+t 2=-4(2cos α+sin α)1+3cos 2α,故2cos α+sin α=0,于是直线l 的斜率k =tan α=-2.(1)解决与圆、圆锥曲线的参数方程有关的综合问题时,要注意普通方程与参数方程的互化公式,主要是通过互化解决与圆、圆锥曲线上与动点有关的问题,如最值、范围等.(2)根据直线的参数方程的标准式中t 的几何意义,有如下常用结论:过定点M 0的直线与圆锥曲线相交,交点为M 1,M 2,所对应的参数分别为t 1,t 2. ①弦长l =|t 1-t 2|;②弦M 1M 2的中点⇒t 1+t 2=0;③|M 0M 1||M 0M 2|=|t 1t 2|.1.已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|. 则|P A |=dsin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255.当sin(θ+α)=1时,|P A |取得最小值,最小值为255.2.在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t (t 为参数).(1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a . 解:(1)曲线C 的普通方程为x 29+y 2=1.当a =-1时,直线l 的普通方程为x +4y -3=0.由⎩⎪⎨⎪⎧x +4y -3=0,x 29+y 2=1解得⎩⎪⎨⎪⎧x =3,y =0或⎩⎨⎧x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),⎝⎛⎭⎫-2125,2425. (2)直线l 的普通方程为x +4y -a -4=0,故C 上的点(3cos θ,sin θ)到l 的距离为d =|3cos θ+4sin θ-a -4|17.当a ≥-4时,d 的最大值为a +917.由题设得a +917=17,所以a =8;当a <-4时,d 的最大值为-a +117, 由题设得-a +117=17,所以a =-16.综上,a =8或a =-16.参数方程与极坐标方程的综合应用(师生共研)(2019·高考全国卷Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1-t 21+t 2,y =4t1+t2(t为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρcos θ+3ρsin θ+11=0.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值. 【解】 (1)因为-1<1-t 21+t 2≤1,且x 2+⎝⎛⎭⎫y 22=⎝ ⎛⎭⎪⎫1-t 21+t 22+4t 2(1+t 2)2=1, 所以C 的直角坐标方程为x 2+y 24=1(x ≠-1).l 的直角坐标方程为2x +3y +11=0.(2)由(1)可设C 的参数方程为⎩⎪⎨⎪⎧x =cos α,y =2sin α(α为参数,-π<α<π).C 上的点到l 的距离为|2cos α+23sin α+11|7=4cos ⎝ ⎛⎭⎪⎫α-π3+117.当α=-2π3时,4cos ⎝ ⎛⎭⎪⎫α-π3+11取得最小值7,故C 上的点到l距离的最小值为7.(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.1.(2019·长沙模拟)平面直角坐标系xOy 中,直线l 的参数方程是⎩⎨⎧x =3+t cosπ4,y =t sin π4(t为参数),以x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程是ρ2cos 2θ4+ρ2sin 2θ=1.(1)求曲线C 的直角坐标方程;(2)求直线l 与曲线C 相交所得的弦AB 的长.解:(1)因为x =ρcos θ,y =ρsin θ,所以曲线C 的直角坐标方程是x 24+y 2=1.(2)将⎩⎪⎨⎪⎧x =3+t cos π4,y =t sin π4代入x 24+y 2=1得,52t 2+6t -1=0,Δ=(6)2-4×52×(-1)=16>0.设方程的两根是t 1,t 2,则t 1+t 2=-265,t 1t 2=-25,所以|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=⎝⎛⎭⎫-2652-4×⎝⎛⎭⎫-25=6425=85.2.(2019·西安模拟)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2t -1,y =-4t -2(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=21-cos θ.(1)求曲线C 2的直角坐标方程;(2)设M 1是曲线C 1上的点,M 2是曲线C 2上的点,求|M 1M 2|的最小值. 解:(1)因为ρ=21-cos θ,所以ρ-ρcos θ=2, 即ρ=ρcos θ+2.因为x =ρcos θ,ρ2=x 2+y 2,所以x 2+y 2=(x +2)2,化简得y 2-4x -4=0. 所以曲线C 2的直角坐标方程为y 2-4x -4=0.(2)因为⎩⎪⎨⎪⎧x =2t -1,y =-4t -2,所以2x +y +4=0.所以曲线C 1的普通方程为2x +y +4=0.因为M 1是曲线C 1上的点,M 2是曲线C 2上的点,所以|M 1M 2|的最小值等于点M 2到直线2x +y +4=0的距离的最小值. 不妨设M 2(r 2-1,2r ),点M 2到直线2x +y +4=0的距离为d ,则d =2|r 2+r +1|5=2[(r +12)2+34]5≥325=3510,当且仅当r =-12时取等号.所以|M 1M 2|的最小值为3510.[基础题组练]1.在直角坐标系xOy 中,直线l 1的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =kt (t 为参数),直线l 2的参数方程为⎩⎪⎨⎪⎧x =-2+m ,y =m k (m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.解:(1)消去参数t 得l 1的普通方程l 1:y =k (x -2);消去参数m 得l 2的普通方程l 2:y =1k(x +2). 设P (x ,y ),由题设得⎩⎪⎨⎪⎧y =k (x -2),y =1k (x +2).消去k 得x 2-y 2=4(y ≠0).所以C 的普通方程为x 2-y 2=4(y ≠0).(2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ)=4(0<θ<2π,θ≠π).联立⎩⎪⎨⎪⎧ρ2(cos 2θ-sin 2θ)=4,ρ(cos θ+sin θ)-2=0得cos θ-sin θ=2(cos θ+sin θ). 故tan θ=-13,从而cos 2θ=910,sin 2θ=110,代入ρ2(cos 2θ-sin 2θ)=4得ρ2=5,所以交点M 的极径为 5.2.(2018·高考全国卷Ⅲ)在平面直角坐标系xOy 中,⊙O 的参数方程为⎩⎪⎨⎪⎧x =cos θy =sin θ(θ为参数),过点(0,-2)且倾斜角为α的直线l 与⊙O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程. 解:(1)⊙O 的直角坐标方程为x 2+y 2=1. 当α=π2时,l 与⊙O 交于两点.当α≠π2时,记tan α=k ,则l 的方程为y =kx - 2.l 与⊙O 交于两点当且仅当⎪⎪⎪⎪⎪⎪21+k 2<1,解得k <-1或k >1,即α∈⎝ ⎛⎭⎪⎫π4,π2或α∈⎝ ⎛⎭⎪⎫π2,3π4.综上,α的取值范围是⎝ ⎛⎭⎪⎫π4,3π4.(2)l 的参数方程为⎩⎪⎨⎪⎧x =t cos α,y =-2+t sin α(t 为参数,π4<α<3π4).设A ,B ,P 对应的参数分别为t A ,t B ,t P ,则t P =t A +t B2,且t A ,t B 满足t 2-22t sin α+1=0.于是t A +t B =22sin α,t P =2sin α.又点P 的坐标(x ,y )满足⎩⎪⎨⎪⎧x =t P cos α,y =-2+t P sin α,所以点P 的轨迹的参数方程是⎩⎨⎧x =22sin 2α,y =-22-22cos 2α(α为参数,π4<α<3π4). 3.在平面直角坐标系xOy 中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρ=22cos ⎝⎛⎭⎫π4-θ.(1)求曲线C 的直角坐标方程;(2)已知直线l 过点P (1,0)且与曲线C 交于A ,B 两点,若|P A |+|PB |=5,求直线l 的倾斜角α.解:(1)由ρ=22cos ⎝ ⎛⎭⎪⎫π4-θ=2(cos θ+sin θ)⇒ρ2=2(ρcos θ+ρsin θ)⇒x 2+y 2=2x +2y ⇒(x -1)2+(y -1)2=2.故曲线C 的直角坐标方程为(x -1)2+(y -1)2=2.(2)由条件可设直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数),代入圆的方程,有t 2-2t sin α-1=0,设点A ,B 对应的参数分别为t 1,t 2,则t 1+t 2=2sin α,t 1t 2=-1,|P A |+|PB |=|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4sin 2α+4=5,解得sin α=12或sin α=-12(舍去),故α=π6或5π6.4.(2019·合肥质检)在直角坐标系中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos α,y =2sin α(α为参数),以原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线D 的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ-π6.(1)写出曲线C 的极坐标方程以及曲线D 的直角坐标方程;(2)若过点A ⎝⎛⎭⎫22,π4(极坐标)且倾斜角为π3的直线l 与曲线C 交于M ,N 两点,弦MN的中点为P ,求|AP ||AM |·|AN |的值.解:(1)由题意可得曲线C 的普通方程为x 29+y 24=1,将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入曲线C 的普通方程可得,曲线C 的极坐标方程为ρ2cos 2θ9+ρ2sin 2θ4=1.因为曲线D 的极坐标方程为ρ=4sin ⎝ ⎛⎭⎪⎫θ-π6,所以ρ2=4ρsin ⎝ ⎛⎭⎪⎫θ-π6=4ρ⎝⎛⎭⎫32sin θ-12cos θ,又ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ, 所以x 2+y 2=23y -2x , 所以曲线C 的极坐标方程为ρ2cos 2θ9+ρ2sin 2θ4=1;曲线D 的直角坐标方程为x 2+y 2+2x-23y =0.(2)点A ⎝⎛⎭⎪⎫22,π4,则⎩⎪⎨⎪⎧x =22cos π4=2,y =22sin π4=2,所以A (2,2).因为直线l 过点A (2,2)且倾斜角为π3,所以直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t cos π3,y =2+t sin π3(t 为参数),代入x 29+y 24=1可得,314t 2+(8+183)t +16=0,设M ,N 对应的参数分别为t 1,t 2,由一元二次方程根与系数的关系得,t 1+t 2=-32+72331,t 1t 2=6431,所以|AP ||AM |·|AN |=⎪⎪⎪⎪⎪⎪t 1+t 22|t 1t 2|=4+9316.[综合题组练]1.(2019·沈阳模拟)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =2+12t ,y =2+32t(t 为参数).在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρsin 2θ+4sin θ=ρ.(1)写出直线l 的普通方程和曲线C 的直角坐标方程;(2)已知点M 在直角坐标系中的坐标为(2,2),若直线l 与曲线C 相交于不同的两点A ,B ,求|MA |·|MB |的值.解:(1)由⎩⎨⎧x =2+12t ,y =2+32t消去参数t 可得y =3(x -2)+2,所以直线l 的普通方程为3x -y +2-23=0. 因为ρsin 2θ+4sin θ=ρ,所以ρ2sin 2θ+4ρsin θ=ρ2. 因为ρsin θ=y ,ρ2=x 2+y 2, 所以曲线C 的直角坐标方程为x 2=4y .(2)将⎩⎨⎧x =2+12t ,y =2+32t代入抛物线方程x 2=4y 中,可得(2+12t )2=4(2+32t ),即t 2+(8-83)t-16=0.因为Δ>0,且点M 在直线l 上,所以此方程的两个实数根为直线l 与曲线C 的交点A ,B 对应的参数t 1,t 2,所以t 1t 2=-16,所以|MA |·|MB |=|t 1t 2|=16.2.在直角坐标系xOy 中,以O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C :ρsin 2θ=2a cos θ(a >0),直线l :⎩⎨⎧x =-2+22t ,y =22t(t 为参数).(1)求曲线C 的直角坐标方程,直线l 的普通方程;(2)设直线l 与曲线C 交于M ,N 两点,点P (-2,0),若|PM |,|MN |,|PN |成等比数列,求实数a 的值.解:(1)由ρsin 2θ=2a cos θ(a >0)两边同乘以ρ得,曲线C :y 2=2ax ,由直线l :⎩⎨⎧x =-2+22t ,y =22t(t 为参数),消去t ,得直线l :x -y +2=0. (2)将⎩⎨⎧x =-2+22t ,y =22t代入y 2=2ax 得,t 2-22at +8a =0,由Δ>0得a >4,设M ⎝⎛⎭⎫-2+22t 1,22t 1,N (-2+22t 2,22t 2),则t 1+t 2=22a ,t 1t 2=8a ,因为|PM |,|MN |,|PN |成等比数列,所以|t 1-t 2|2=|t 1t 2|,所以(22a )2-4×8a =8a ,所以a =5.3.(综合型)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =-5+2cos ty =3+2sin t(t 为参数),在以原点O 为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为ρcos(θ+π4)=- 2. (1)求圆C 的普通方程和直线l 的直角坐标方程;(2)设直线l 与x 轴,y 轴分别交于A ,B 两点,点P 是圆C 上任意一点,求A ,B 两点的极坐标和△P AB 面积的最小值.解:(1)由⎩⎪⎨⎪⎧x =-5+2cos ty =3+2sin t ,消去参数t ,得(x +5)2+(y -3)2=2,所以圆C 的普通方程为(x +5)2+(y -3)2=2. 由ρcos (θ+π4)=-2,得ρcos θ-ρsin θ=-2,所以直线l 的直角坐标方程为x -y +2=0.(2)直线l 与x 轴,y 轴的交点分别为A (-2,0),B (0,2),化为极坐标为A (2,π),B ⎝ ⎛⎭⎪⎫2,π2,设点P 的坐标为(-5+2cos t ,3+2sin t ),则点P 到直线l 的距离为d =|-5+2cos t -3-2sin t +2|2=|-6+2cos (t +π4)|2.所以d min =42=22,又|AB |=2 2. 所以△P AB 面积的最小值是S =12×22×22=4.。

极坐标系中的图形方程与求面积问题

极坐标系中的图形方程与求面积问题

极坐标系中的图形方程与求面积问题极坐标系是一种用极径和极角来表示平面上点的坐标系。

在极坐标系中,图形的方程可以用极径和极角的函数来表示。

这种表示方法在解决一些几何问题时非常有用,特别是在求解面积问题方面。

首先,我们来看一下极坐标系中的图形方程。

对于一条曲线或图形,我们可以通过给定的函数来表示它在极坐标系中的形状。

例如,对于圆形,其极坐标方程可以表示为$r = a$,其中$r$是极径,$a$是圆的半径。

而对于螺旋线,其极坐标方程可以表示为$r = a\theta$,其中$a$是螺旋线的参数,$\theta$是极角。

通过这种方式,我们可以用简洁的数学表达式来描述各种各样的图形。

这对于解决一些几何问题非常有帮助。

例如,我们可以通过求解图形方程来确定图形的交点、切线、对称性等特征。

这些特征可以帮助我们更好地理解和分析图形。

其次,让我们来探讨在极坐标系中求解面积问题。

对于一些简单的图形,如圆形和扇形,我们可以直接使用数学公式来计算其面积。

例如,圆形的面积可以通过公式$A = \pi r^2$来计算,其中$r$是圆的半径。

而扇形的面积可以通过公式$A =\frac{1}{2}r^2\theta$来计算,其中$r$是扇形的半径,$\theta$是扇形的圆心角。

然而,对于一些复杂的图形,我们需要使用积分来求解其面积。

在极坐标系中,我们可以利用极坐标的微元面积来进行积分。

具体来说,我们可以将图形划分为许多微小的扇形区域,然后计算每个扇形的面积,并对其进行累加,从而得到整个图形的面积。

通过这种方法,我们可以解决一些复杂的图形面积问题,如心形曲线、螺旋线等。

这些问题需要我们灵活运用积分和极坐标的知识,将图形分解为简单的扇形区域,并计算每个扇形的面积。

最后,将这些面积累加起来,即可得到整个图形的面积。

总之,极坐标系中的图形方程与求解面积问题是数学中的重要内容。

通过极坐标的表示方法,我们可以用简洁的数学表达式来描述各种各样的图形。

高考复习配套讲义:选修4-4 第2讲 参数方程

高考复习配套讲义:选修4-4 第2讲 参数方程

第2讲 参数方程[最新考纲]1.了解参数方程,了解参数的意义.2.能选择适当的参数写出直线、圆和椭圆的参数方程.3.掌握直线的参数方程及参数的几何意义,能用直线的参数方程解决简单的相关问题.知 识 梳 理1.曲线的参数方程在平面直角坐标系xOy 中,如果曲线上任意一点的坐标x ,y 都是某个变量t 的函数⎩⎨⎧x =f (t ),y =g (t ).并且对于t 的每一个允许值上式所确定的点M (x ,y )都在这条曲线上,则称上式为该曲线的参数方程,其中变量t 称为参数. 2.一些常见曲线的参数方程(1)过点P 0(x 0,y 0),且倾斜角为α的直线的参数方程为⎩⎨⎧x =x 0+t cos αy =y 0+t sin α(t 为参数).(2)圆的方程(x -a )2+(y -b )2=r 2的参数方程为⎩⎨⎧x =a +r cos θy =b +r sin θ(θ为参数).(3)椭圆方程x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎨⎧x =a cos θy =b sin θ(θ为参数).(4)抛物线方程y 2=2px (p >0)的参数方程为⎩⎨⎧x =2pt 2y =2pt (t 为参数).诊 断 自 测1.极坐标方程ρ=cos θ和参数方程⎩⎨⎧x =-1-t ,y =2+t (t 为参数)所表示的图形分别是________.①直线、直线;②直线、圆;③圆、圆;④圆、直线.解析 ∵ρcos θ=x ,∴cos θ=x ρ代入到ρ=cos θ,得ρ=xρ,∴ρ2=x ,∴x 2+y 2=x 表示圆.又∵⎩⎪⎨⎪⎧x =-1-t ,y =2+t ,相加得x +y =1,表示直线.答案 ④2.若直线⎩⎨⎧x =1-2t ,y =2+3t (t 为实数)与直线4x +ky =1垂直,则常数k =________.解析 参数方程⎩⎪⎨⎪⎧x =1-2t ,y =2+3t ,所表示的直线方程为3x +2y =7,由此直线与直线4x +ky =1垂直可得-32×⎝ ⎛⎭⎪⎫-4k =-1,解得k =-6.答案 -63.(2012·北京卷)直线⎩⎨⎧ x =2+t ,y =-1-t (t 为参数)与曲线⎩⎨⎧x =3cos α,y =3sin α(α为参数)的交点个数为________.解析 直线方程可化为x +y -1=0,曲线方程可化为x 2+y 2=9,圆心(0,0)到直线x +y -1=0的距离d =12=22<3.∴直线与圆相交有两个交点. 答案 24.已知直线l :⎩⎨⎧x =1-2t ,y =2+2t (t 为参数)上到点A (1,2)的距离为42的点的坐标为________.解析 设点Q (x ,y )为直线上的点, 则|QA |=(1-1+2t )2+(2-2-2t )2=(2t )2+(-2t )2=42,解之得,t =±22,所以Q (-3,6)或Q (5,-2). 答案 (-3,6)和(5,-2)5.(2013·广东卷)已知曲线C 的极坐标方程为ρ=2cos θ,以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为________.解析 由ρ=2cos θ知,ρ2=2ρcos θ 所以x 2+y 2=2x ,即(x -1)2+y 2=1, 故其参数方程为⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数).答案 ⎩⎨⎧x =1+cos θ,y =sin θ(θ为参数)考点一 参数方程与普通方程的互化【例1】 把下列参数方程化为普通方程,并说明它们各表示什么曲线;(1)⎩⎪⎨⎪⎧x =1+12t ,y =2+32t(t 为参数);(2)⎩⎨⎧x =1+t 2,y =2+t(t 为参数); (3)⎩⎪⎨⎪⎧x =t +1t ,y =1t -t(t 为参数).解 (1)由x =1+12t 得t =2x -2. ∴y =2+32(2x -2).∴3x -y +2-3=0,此方程表示直线. (2)由y =2+t 得t =y -2,∴x =1+(y -2)2. 即(y -2)2=x -1,此方程表示抛物线. (3)⎩⎪⎨⎪⎧x =t +1t y =1t -t①②∴①2-②2得x 2-y 2=4,此方程表示双曲线.规律方法 参数方程化为普通方程:化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法,不要忘了参数的范围.【训练1】 将下列参数方程化为普通方程. (1)⎩⎨⎧x =1-sin 2θ,y =sin θ+cos θ(θ为参数); (2)⎩⎪⎨⎪⎧x =12(e t +e -t),y =12(e t-e-t)(t 为参数).解 (1)由(sin θ+cos θ)2=1+sin 2θ=2-(1-sin 2θ), 得y 2=2-x .又x =1-sin 2θ∈[0,2], 得所求的普通方程为y 2=2-x ,x ∈[0,2]. (2)由参数方程得e t =x +y ,e -t =x -y , ∴(x +y )(x -y )=1,即x 2-y 2=1.考点二 直线与圆参数方程的应用【例2】 在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t(t 为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B ,若点P 的坐标为(3,5),求|P A |+|PB |. 解 (1)由ρ=25sin θ,得ρ2=25ρsin θ. ∴x 2+y 2=25y ,即x 2+(y -5)2=5. (2)将l 的参数方程代入圆C 的直角坐标方程. 得⎝⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0.由于Δ=(32)2-4×4=2>0,故可设t 1,t 2是上述方程的两实根,所以⎩⎨⎧t 1+t 2=32,t 1·t 2=4.又直线l 过点P (3,5),故由上式及t 的几何意义得|P A |+|PB |=|t 1|+|t 2|=t 1+t 2=3 2.规律方法 (1)过定点P 0(x 0,y 0),倾斜角为α的直线参数方程的标准形式为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数),t 的几何意义是直线上的点P 到点P 0(x 0,y 0)的数量,即t =|PP 0|时为距离.使用该式时直线上任意两点P 1、P 2对应的参数分别为t 1、t 2,则|P 1P 2|=|t 1-t 2|,P 1P 2的中点对应的参数为12(t 1+t 2).(2)对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数),当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.【训练2】 已知直线l 的参数方程为⎩⎨⎧x =1+t ,y =4-2t (参数t ∈R ),圆C 的参数方程为⎩⎨⎧x =2cos θ+2,y =2sin θ(参数θ∈[0,2π]),求直线l 被圆C 所截得的弦长.解 由⎩⎨⎧ x =1+t ,y =4-2t消参数后得普通方程为2x +y -6=0,由⎩⎨⎧x =2cos θ+2,y =2sin θ消参数后得普通方程为(x -2)2+y 2=4,显然圆心坐标为(2,0),半径为2.由于圆心到直线2x +y -6=0的距离为d =|2×2+0-6|22+1=255,所以所求弦长为222-⎝⎛⎭⎪⎫2552=855. 考点三 极坐标、参数方程的综合应用【例3】 已知P 为半圆C :⎩⎨⎧x =cos θ,y =sin θ(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧AP 的长度均为π3.(1)以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点M 的极坐标; (2)求直线AM 的参数方程.解 (1)由已知,点M 的极角为π3,且点M 的极径等于π3,故点M 的极坐标为⎝ ⎛⎭⎪⎫π3,π3.(2)点M 的直角坐标为⎝ ⎛⎭⎪⎫π6,3π6,A (1,0). 故直线AM 的参数方程为⎩⎪⎨⎪⎧x =1+⎝ ⎛⎭⎪⎫π6-1t ,y =3π6t(t 为参数).规律方法 涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.【训练3】 (2013·福建卷)在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知点A 的极坐标为(2,π4),直线l 的极坐标方程为ρcos(θ-π4)=a ,且点A 在直线l 上. (1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎨⎧x =1+cos α,y =sin α(α为参数),试判断直线l 与圆C 的位置关系.解 (1)由点A (2,π4)在直线ρcos(θ-π4)=a 上,可得a = 2. 所以直线l 的方程可化为ρcos θ+ρsin θ=2, 从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1,所以圆C 的圆心为(1,0),半径r =1, 因为圆心C 到直线l 的距离d =12=22<1, 所以直线l 与圆C 相交.转化思想在解题中的应用【典例】 已知圆锥曲线⎩⎨⎧x =2cos θy =3sin θ(θ是参数)和定点A (0, 3),F 1、F 2是圆锥曲线的左、右焦点.(1)求经过点F 1且垂直于直线AF 2的直线l 的参数方程;(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求直线AF 2的极坐标方程.[审题视点] (1)先将圆锥曲线参数方程化为普通方程,求出F 1的坐标,然后求出直线的倾斜角度数,再利用公式就能写出直线l 的参数方程.(2)直线AF 2是已知确定的直线,利用求极坐标方程的一般方法求解.解 (1)圆锥曲线⎩⎪⎨⎪⎧x =2cos θy =3sin θ化为普通方程x 24+y 23=1,所以F 1(-1,0),F 2(1,0),则直线AF 2的斜率k =-3,于是经过点F 1且垂直于直线AF 2的直线l 的斜率k ′=33,直线l 的倾斜角是30°,所以直线l 的参数方程是⎩⎪⎨⎪⎧x =-1+t cos 30°y =t sin 30°(t 为参数),即⎩⎪⎨⎪⎧x =32t -1,y =12t(t 为参数).(2)直线AF 2的斜率k =-3,倾斜角是120°,设P (ρ,θ)是直线AF 2上任一点,则ρsin 60°=1sin (120°-θ),ρsin(120°-θ)=sin 60°,则ρsin θ+3ρcos θ= 3.[反思感悟] (1)本题考查了极坐标方程和参数方程的求法及应用.重点考查了转化与化归能力.(2)当用极坐标或参数方程研究问题不很熟练时,可以转化成我们比较熟悉的普通方程求解.(3)本题易错点是计算不准确,极坐标方程求解错误.【自主体验】已知直线l 的参数方程为⎩⎨⎧ x =4-2t y =t -2(t 为参数),P 是椭圆x 24+y 2=1上任意一点,求点P 到直线l 的距离的最大值.解 将直线l 的参数方程⎩⎨⎧x =4-2ty =t -2(t 为参数)转化为普通方程为x +2y =0,因为P 为椭圆x 24+y 2=1上任意一点, 故可设P (2cos θ,sin θ),其中θ∈R . 因此点P 到直线l 的距离d =|2cos θ+2sin θ|12+22=22⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫θ+π45. 所以当θ=k π+π4,k ∈Z 时, d 取得最大值2105.一、填空题1.(2014·芜湖模拟)直线⎩⎨⎧x =-2-2t ,y =3+2t(t 为参数)上与点A (-2,3)的距离等于2的点的坐标是________.解析 由题意知(-2t )2+(2t )2=(2)2,所以t 2=12,t =±22,代入⎩⎪⎨⎪⎧x =-2-2t ,y =3+2t(t 为参数),得所求点的坐标为(-3,4)或(-1,2). 答案 (-3,4)或(-1,2)2.(2014·海淀模拟)若直线l :y =kx 与曲线C :⎩⎨⎧x =2+cos θ,y =sin θ(参数θ∈R )有唯一的公共点,则实数k =________.解析 曲线C 化为普通方程为(x -2)2+y 2=1,圆心坐标为(2,0),半径r =1.由已知l 与圆相切,则r =|2k |1+k 2=1⇒k =±33.答案 ±333.已知椭圆的参数方程⎩⎨⎧x =2cos t y =4sin t (t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为________.解析 当t =π3时,x =1,y =23,则M (1,23),∴直线OM 的斜率k =2 3. 答案 2 34.(2013·湖南卷)在平面直角坐标系xOy 中,若l :⎩⎨⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎨⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为________. 解析 ∵x =t ,且y =t -a , 消去t ,得直线l 的方程y =x -a , 又x =3cos φ且y =2sin φ,消去φ, 得椭圆方程x 29+y 24=1,右顶点为(3,0),依题意0=3-a , ∴a =3. 答案 35.直线3x +4y -7=0截曲线⎩⎨⎧x =cos α,y =1+sin α(α为参数)的弦长为________.解析 曲线可化为x 2+(y -1)2=1,圆心(0,1)到直线的距离d =|0+4-7|9+16=35,则弦长l =2r 2-d 2=85.答案 856.已知直线l 1:⎩⎨⎧ x =1-2t ,y =2+kt (t 为参数),l 2:⎩⎨⎧x =s ,y =1-2s (s 为参数),若l 1∥l 2,则k =________;若l 1⊥l 2,则k =________.解析 将l 1、l 2的方程化为直角坐标方程得l 1:kx +2y -4-k =0,l 2:2x +y -1=0,由l 1∥l 2,得k 2=21≠4+k1⇒k =4,由l 1⊥l 2,得2k +2=0⇒k =-1. 答案 4 -17.(2012·广东卷)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧ x =t ,y =t (t 为参数)和⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),则曲线C 1与C 2的交点坐标为________.解析 曲线C 1的普通方程为y 2=x (y ≥0), 曲线C 2的普通方程为x 2+y 2=2.由⎩⎪⎨⎪⎧y 2=x (y ≥0),x 2+y 2=2,解得⎩⎪⎨⎪⎧ x =1,y =1,即交点坐标为(1,1). 答案 (1,1)8.直角坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,设点A ,B 分别在曲线C 1:⎩⎨⎧ x =3+cos θ,y =sin θ(θ为参数)和曲线C 2:ρ=1上,则|AB |的最小值为________.解析 消掉参数θ,得到关于x 、y 的一般方程C 1:(x -3)2+y 2=1,表示以(3,0)为圆心,以1为半径的圆;C 2:x 2+y 2=1,表示的是以原点为圆心的单位圆,|AB |的最小值为3-1-1=1.答案 19.(2012·湖南卷)在极坐标系中,曲线C 1:ρ(2cos θ+sin θ)=1与曲线C 2:ρ=a (a >0)的一个交点在极轴上,则a =______.解析 ρ(2cos θ+sin θ)=1,即2ρcos θ+ρsin θ=1对应的普通方程为2x +y -1=0,ρ=a (a >0)对应的普通方程为x 2+y 2=a 2.在2x +y -1=0中,令y =0,得x =22.将⎝ ⎛⎭⎪⎫22,0代入x 2+y 2=a 2得a =22. 答案 22二、解答题10.(2013·新课标全国Ⅰ卷)已知曲线C 1的参数方程为⎩⎨⎧ x =4+5cos t ,y =5+5sin t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).解 (1)将⎩⎨⎧x =4+5cos t ,y =5+5sin t 消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将⎩⎨⎧ x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0得ρ2-8ρcos θ-10ρsin θ+16=0. 所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(2)C 2的普通方程为x 2+y 2-2y =0.由⎩⎨⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0, 解得⎩⎨⎧ x =1,y =1或⎩⎨⎧ x =0,y =2.所以C 1与C 2交点的极坐标分别为⎝ ⎛⎭⎪⎫2,π4,⎝ ⎛⎭⎪⎫2,π2. 11.(2013·新课标全国Ⅱ卷)已知动点P 、Q 都在曲线C :⎩⎨⎧ x =2cos t ,y =2sin t(t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点.(1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 解 (1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α),因此M (cos α+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为⎩⎨⎧ x =cos α+cos 2α,y =sin α+sin 2α,(α为参数,0<α<2π). (2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π).当α=π时,d =0,故M 的轨迹通过坐标原点.12.(2012·新课标全国卷)已知曲线C 1的参数方程是⎩⎨⎧x =2cos φ,y =3sin φ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2,正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为⎝ ⎛⎭⎪⎫2,π3. (1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C 1上任意一点,求|P A |2+|PB |2+|PC |2+|PD |2的取值范围.解 (1)由已知可得A ⎝ ⎛⎭⎪⎫2cos π3,2sin π3, B ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+π2,2sin ⎝ ⎛⎭⎪⎫π3+π2, C ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+π,2sin ⎝ ⎛⎭⎪⎫π3+π, D ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+3π2,2sin ⎝ ⎛⎭⎪⎫π3+3π2, 即A (1,3),B (-3,1),C (-1,-3),D (3,-1).(2)设P (2cos φ,3sin φ),令S =|P A |2+|PB |2+|PC |2+|PD |2,则S =16cos 2φ+36sin 2φ+16=32+20sin 2φ.因为0≤sin 2φ≤1,所以S 的取值范围是[32,52].。

定积分的应用: 平面图形面积讲解

定积分的应用: 平面图形面积讲解
一、直角坐标系情形
y y f (x)
y
y f2(x)
o a x x xb x 曲边梯形的面积
A

b
a
f
(
x)dx
y f1( x)
oa
xx b x
曲边梯形的面积
A
b
a[
f2(x)
f1( x)]dx
例 1 计算由两条抛物线y2 x 和y x2 所围成的
图形的面积.
解: 设抛物线上切点为
则该点处的切线方程为
B
M
它与 x , y 轴的交点分别为
A
所指面积
得[ 0 , 1] 上的唯一驻点 且为最小点 . 故所求切线为
B M
A
如果曲边梯形的曲边为参数方程
x y


(t) (t)
曲边梯形的面积 A t2 (t)(t)dt. t1
(其中t1和t2 对应曲线起点与终点的参数值)
3 2


2 sin

1 sin 2
4
0
ห้องสมุดไป่ตู้
3 2
a2 .
三、小结
求在直角坐标系下、参数方程形式 下、极坐标系下平面图形的面积.
(注意恰当的选择积分变量有助于简化 积分运算)
直角坐标方 边界方程 参 程数方程
极坐标方程
b
A a f1(x) f2 (x) dx
思考题
设曲线 y f ( x)过原点及点(2,3) ,且 f ( x)
2

4ab 2 sin2 tdt ab. 0
二、极坐标系情形
设由曲线r ( )及射线 、 围成一曲边扇 形,求其面积.这里, ( )

极坐标方程的面积公式

极坐标方程的面积公式

极坐标方程的面积公式1. 极坐标方程下求曲线围成图形的面积公式。

- 设曲线的极坐标方程为r = r(θ),α≤slantθ≤slantβ,则由曲线r = r(θ)与射线θ=α,θ = β所围成的图形的面积S=(1)/(2)∫_α^βr^2(θ)dθ。

- 推导过程:- 在极坐标系中,我们把由曲线r = r(θ)与射线θ=α,θ=β所围成的图形分割成许多小扇形。

- 对于极坐标中的扇形,其面积公式为S=(1)/(2)r^2Δθ(这里r是扇形半径,Δθ是扇形圆心角)。

- 当我们求曲线r = r(θ)与射线θ=α,θ=β所围成的图形面积时,就把这个图形看作是由无数个小扇形组成的。

- 对S=(1)/(2)r^2Δθ取极限并求和,就得到S=(1)/(2)∫_α^βr^2(θ)dθ。

- 例如:求心形线r = a(1+cosθ)(a>0)所围成的图形的面积。

- 这里α = 0,β = 2π。

- 根据面积公式S=(1)/(2)∫_0^2π[a(1 + cosθ)]^2dθ。

- 先展开[a(1+cosθ)]^2=a^2(1 + 2cosθ+cos^2θ)。

- 又因为cos^2θ=(1+cos2θ)/(2),所以a^2(1 + 2cosθ+cos^2θ)=a^2(1 +2cosθ+(1+cos2θ)/(2))。

- 则S=(1)/(2)∫_0^2πa^2(1 + 2cosθ+(1+cos2θ)/(2))dθ。

- 分别积分可得:- (1)/(2)a^2∫_0^2π(1 +2cosθ+(1+cos2θ)/(2))dθ=(1)/(2)a^2∫_0^2π( (3)/(2)+2cosθ+(cos2θ)/(2))dθ。

- (1)/(2)a^2[(3)/(2)θ + 2sinθ+(sin2θ)/(4)]_0^2π。

- 计算得S=(3)/(2)π a^2。

人教版高数选修4-4第2讲:参数方程(教师版)-最新教育文档

人教版高数选修4-4第2讲:参数方程(教师版)-最新教育文档

参数方程__________________________________________________________________________________ __________________________________________________________________________________1.了解直线参数方程,曲线参数方程的条件及参数的意义2.会选择适当的参数写出曲线的参数方程3.掌握参数方程化为普通方程几种基本方法4.了解圆锥曲线的参数方程及参数的意义5.利用圆锥曲线的参数方程来确定最值,解决有关点的轨迹问题一.参数方程的定义1.一般地,在平面直角坐标系中,如果曲线C 上任一点P 的坐标x 和y 都可以表示为某个变量t 的函数:()()x f t y g t =⎧⎨=⎩;反过来,对于t 的每个允许值,由函数式()()x f t y g t =⎧⎨=⎩所确定的点P (x ,y )都在曲线C 上,那么方程()()x f t y g t =⎧⎨=⎩叫作曲线C 的参数方程,变量t 是参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程,参数方程可以转化为普通方程.2.关于参数的说明.参数方程中参数可以有物理意义、几何意义,也可以没有明显意义.3.曲线的参数方程可通过消去参数而得到普通方程;若知道变数x 、y 中的一个与参数t 的关系,可把它代入普通方程,求另一变数与参数t 的关系,则所得的()()x f t y g t =⎧⎨=⎩,就是参数方程.二.圆的参数方程点P 的横坐标x 、纵坐标y 都是t 的函数:cos sin x r ty r t =⎧⎨=⎩(t 为参数).我们把这个方程叫作以圆心为原点,半径为r 的圆的参数方程. 圆的圆心为O 1(a ,b),半径为r 的圆的参数方程为:cos sin x a r ty b r t =+⎧⎨=+⎩(t 为参数). 三.椭圆x 2a 2+y2b 2=1(a >b >0)的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数).规定θ的范围为θ∈[0,2π).这是中心在原点O 、焦点在x 轴上的椭圆参数方程.四.双曲线x 2a 2-y2b 2=1的参数方程为tan x asec y b ϕϕ=⎧⎨=⎩(φ为参数).规定φ的范围为φ∈[0,2π),且φ≠π2,φ≠3π2.这是中心在原点,焦点在x 轴上的双曲线参数方程.五.曲线C 的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数,t ∈R)其中p 为正的常数.这是焦点在x 轴正半轴上的抛物线参数方程.六.直线的参数方程1.过定点M 0(x 0,y 0)、倾斜角为α的直线l 的参数方程为00cos sin x x t y y t αα=+⎧⎨=+⎩(t 为参数),这一形式称为直线参数方程的标准形式,直线上的动点M 到定点M 0的距离等于参数t 的绝对值.当t >0时,M 0M →的方向向上;当t <0时,M 0M →的方向向下;当点M 与点M 0重合时,t =0.2.若直线的参数方程为一般形式为:⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数), 可把它化为标准形式:00cos sin t x t x y y αα=+⎧⎨='+'⎩(t′为参数).其中α是直线的倾斜角,tan α=ba ,此时参数t′才有如前所说的几何意义.类型一.参数方程与普通方程的互化例1:指出参数方程3cos 3sin x y θθ=⎧⎨=⎩⎝⎛⎭⎪⎫θ为参数,0<θ<π2表示什么曲线 解析:由3cos 3sin x y θθ=⎧⎨=⎩(θ为参数)得x 2+y 2=9.又由0<θ<π2,得0<x <3,0<y <3,所以所求方程为x 2+y 2=9(0<x <3且0<y <3). 这是一段圆弧(圆x 2+y 2=9位于第一象限的部分). 答案:这是一段圆弧(圆x 2+y 2=9位于第一象限的部分).练习1:指出参数方程315cos 215sin x y θθ=+⎧⎨=+⎩(θ为参数,0≤θ<2π).表示什么曲线解析:由参数方程315cos 215sin x y θθ=+⎧⎨=+⎩(θ为参数)得(x -3)2+(y -2)2=152,由0≤θ<2π知这是一个整圆弧.答案:一个整圆弧例2:设直线l 1的参数方程为1,13x t y t =+⎧⎨=+⎩(t 为参数),直线l 2的方程为y =3x +4,则l 1与l 2间的距离为______.解析:由条件知,l 1∥l 2,在l 1中令t=0,则得坐标为(1,1). 由点到直线距离公式得l 1与l 2距离为:答案:5练习2:若直线112,:2x t y l kt =-⎧⎨=+⎩(t 为参数)与直线l 2:,12x s y s=⎧⎨=-⎩(s 为参数)垂直,则k =______.解析:由l 1消去参数t 得,2,22k k y x =-++斜率为-.2k由l 2消去参数s 得,12y x =-,斜率为-2.∵两直线垂直,(2)()12k ∴-⋅-=-,得k =-1. 答案:-1 类型二.曲线参数方程例3:已知点P (x , y )在曲线2cos ,sin x y θθ=-+⎧⎨=⎩(θ为参数)上,则y x 的取值范围为______.解析:曲线2cos ,sin x y θθ=-+⎧⎨=⎩(θ为参数)是以(-2,0)为圆心,以1为半径的圆,设y k x =,求y x 的取值范围,即求当直线y =kx 与圆有公共点时k 的取值范围,如图22-60结合圆的几何性质可得33k -≤≤故填[33-答案:[ 练习1:已知点A (1,0),P 是曲线2cos ,1cos 2x y θθ=⎧⎨=+⎩(θ∈R )上任一点,设P 到直线l :y =12-的距离为d ,则|PA|+d 的最小值是______.解析:y 21cos 22cos ,θθ=+=消去22(02)x y y θ=≤≤得 其图像是一段抛物线弧,如图22-61,1(0,)2F 是它的焦点,l 是准线,d =|PF|,当A ,P ,F 三点共线时,||PA d +最小,其值是||2AF =例4:已知θ为参数,则点(3,2)到方程cos sin x y θθ=⎧⎨=⎩,的距离的最小值是______.解析:把cos sin x y θθ=⎧⎨=⎩,化为普通方程为221,x y +=所以点(3,2)到方程cos sin x y θθ=⎧⎨=⎩,的距离的最小值1.1.练习1:已知圆C 的参数方程为cos 1,sin x y θθ=+⎧⎨=⎩(θ为参数),则点P (4,4)与圆C 上的点的最远距离是______.解析:由cos 1,sin x y θθ=+⎧⎨=⎩得22(1)1x y -+=,则点P (4,4)与圆C 上的点的最远距离是16=答案:6例5:已知双曲线方程为x 2-y 2=1,M 为双曲线上任意一点,点M 到两条渐近线的距离分别为d 1和d 2,求证:d 1与d 2的乘积是常数.答案:设d 1为点M 到渐近线y =x 的距离,d 2为点M 到渐近线y =-x 的距离, 因为点M 在双曲线x 2-y 2=1,则可设点M 坐标为(sec α,tan α). d 1=|sec α-tan α|2, d 2=|sec α+tan α|2,d 1·d 2=|sec 2α-tan 2α|2=12,故d 1与d 2的乘积是常数.练习1:将参数方程⎩⎪⎨⎪⎧x =a 2⎝ ⎛⎭⎪⎫t +1t ,y =b 2⎝ ⎛⎭⎪⎫t -1t (t 为参数,a >0,b >0)化为普通方程.解析:∵t+1t =2x a ,t -1t =2yb ,又⎝ ⎛⎭⎪⎫t +1t 2=t 2+1t 2+2=4x 2a 2,⎝ ⎛⎭⎪⎫t -1t 2=t 2+1t 2-2=4y 2b 2,∴⎝ ⎛⎭⎪⎫t +1t 2-⎝ ⎛⎭⎪⎫t -1t 2=4=4x 2a 2-4y 2b 2,即x 2a 2-y2b2=1. 答案:x 2a 2-y2b 2=1类型三.直线参数方程例6:曲线C 1:1cos ,sin ,x y θθ=+⎧⎨=⎩(θ为参数)上的点到曲线C 2:1,2112x t y t⎧=-⎪⎪⎨⎪=-⎪⎩(t 为参数)上的点的最短距离为______.解析:C 1:221cos ,(1)1;sin x x y y θθ=+⎧⇒-+=⎨=⎩则圆心坐标为(1,0).由点到直线的距离公式得圆心到直线的距离为d=2=,所以要求的最短距离为d -1=1.答案:1练习1:直线⎩⎪⎨⎪⎧x =2+3t ,y =-1+t (t 为参数)上对应t =0,t =1两点间的距离是( )A .1 B.10 C .10 D .2 2解析:根据点到直线的距离公式可以得出结果. 答案:B类型四.曲线参数方程的应用例7:在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数).(1)已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为⎝⎛⎭⎪⎫4,π2,判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.解析:(1)把极坐标系下的点P ⎝⎛⎭⎪⎫4,π2化为直角坐标,得P(0,4).因为点P 的直角坐标(0,4)满足直线l 的方程x -y +4=0,所以点P 在直线l 上. (2)因为点Q 在曲线C 上,故可设点Q 的坐标为(3cos α,sin α), 从而点Q 到直线l 的距离d =|3cos α-sin α+4|2=2cos ⎝⎛⎭⎪⎫α+π6+42=2cos ⎝⎛⎭⎪⎫α+π6+2 2.由此得,当cos⎝⎛⎭⎪⎫α+π6=-1时,d 取得最小值,且最小值为 2.答案:(1)点P 在直线l 上. (2)最小值为 2.练习1:已知曲线C 的方程为⎩⎪⎨⎪⎧x =12(e t +e -t)cos θ,y =12(e t-e-t)sin θ.当t 是非零常数,θ为参数时,C 是什么曲线?当θ为不等于k π2(k ∈Z)的常数,t 为参数时,C 是什么曲线?两曲线有何共同特征?答案:当θ为参数时,将原参数方程记为①, 将参数方程①化为 ⎩⎪⎨⎪⎧2xe t +e -t=cos θ,2y e t-e-t =sin θ,平方相加消去θ,得x2⎝ ⎛⎭⎪⎫e t+e -t22+y2⎝ ⎛⎭⎪⎫e t-e -t22=1.②∵(e t+e -t )2>(e t-e -t )2>0, ∴方程②表示的曲线为椭圆. 当t 为参数时,将方程①化为⎩⎪⎨⎪⎧2x cos θ=e t +e-t,2ysin θ=e t -e-t.平方相减,消去t ,得x 2cos 2θ-y2sin 2θ=1.③ ∴方程③表示的曲线为双曲线,即C 为双曲线.又在方程②中⎝ ⎛⎭⎪⎫e t +e -t22-⎝ ⎛⎭⎪⎫e t -e -t22=1,则c =1,椭圆②的焦点为(-1,0),(1,0).因此椭圆和双曲线有共同的焦点.类型五.极坐标与参数方程的综合应用例8: 在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 1的极坐标方程为ρ(cos θ+sin θ)=-2,曲线C 2的参数方程为⎩⎨⎧x =t2y =22t(t 为参数),则C 1与C 2交点的直角坐标为________.解析:曲线C 1的直角坐标方程为x +y =-2,曲线C 2的普通方程为y 2=8x ,由⎩⎪⎨⎪⎧x +y =-2y 2=8x 得:⎩⎪⎨⎪⎧x =2y =-4,所以C 1与C 2交点的直角坐标为(2,-4). 答案:(2,-4)练习1:求圆3cos ρθ=被直线22,14x t y t=+⎧⎨=+⎩(t 是参数)截得的弦长.解析:将极坐标方程转化成直角坐标方程:即2239()24x y -+=,22,14,x t y t =+⎧⎨=+⎩可得23,x y -=所以圆心到直线的距离0,d ==即直线经过圆心,所以直线截得的弦长为3. 答案:31.将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =sin 2θ(θ为参数)化为普通方程是( ) A .y =x -2 B .y =x +2C .y =x -2(2≤x≤3)D .y =x +2(0≤y≤1)答案:C2.椭圆42cos 15sin x y θθ=+⎧⎨=+⎩(θ为参数)的焦距为( )A.21 B .221 C.29 D .229答案:B3.参数方程⎩⎪⎨⎪⎧x =e t-e -t,y =e t +e -t(t 为参数)表示的曲线是( ) A .双曲线 B .双曲线的下支 C .双曲线的上支D .圆答案:C 4.双曲线23tan sec x y θθ=+⎧⎨=⎩,(θφ为参数)的渐近线方程为答案:y =±13(x -2)5. 在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t ,y =4+t (t 为参数).以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=42sin ⎝ ⎛⎭⎪⎫θ+π4,则直线l 和曲线C 的公共点有________个.答案:16.若直线3x +4y +m =0与圆1cos ,2sin x y θθ=+⎧⎨=-+⎩(θ为参数),没有公共点,则实数m 的取值范围是______.答案:(,0)(10,)-∞+∞7.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB|=________. 答案:168.已知直线l :34120x y +-=与圆C :12cos ,22sin x y θθ=-+⎧⎨=+⎩(θ为参数),试判断它们的公共点的个数.答案:圆的方程可化为22(1)(2)4,x y ++-=其圆心为C (-1,2),半径为2. 由于圆心到直线l 的距离故直线l 与圆C 的公共点个数为2.9.求直线2,,x t y =+⎧⎪⎨=⎪⎩(t 为参数)被双曲线x 2-y 2=1截得的弦长答案:把直线2,x t y =+⎧⎪⎨=⎪⎩(t 为参数)化为普通方程为y =+把它代入双曲线方程并整理得,设直线交双曲线于1122(,),(,)A x y B x y 两点, 则1212136,,2x x x x +=⋅=则直线被双曲线截得的弦长_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.当参数θ变化时,动点P (2cos θ,3sin θ)所确定的曲线必过( ) A .点(2,3) B .点(2,0)C .点(1,3)D .点⎝⎛⎭⎪⎫0,π2答案:B 2.双曲线6sec x y αα⎧=⎪⎨=⎪⎩(α为参数)的两焦点坐标是( )A .(0,-43),(0,43)B .(-43,0),(43,0)C .(0,-3),(0,3)D .(-3,0),(3,0)答案:A3.参数方程⎩⎪⎨⎪⎧x =sin α2+cos α2,y =2+sin α(α为参数)的普通方程为( )A .y 2-x 2=1B .x 2-y 2=1C .y 2-x 2=1(|x |≤2) D .x 2-y 2=1(|x |≤2)答案:C4.参数方程⎩⎪⎨⎪⎧x =cos 2θ,y =sin 2θ(θ为参数)表示的曲线是( ) A .直线 B .圆 C .线段 D .射线答案:C5.设O 是椭圆3cos 2sin x y αα=⎧⎨=⎩(α为参数)的中心,P 是椭圆上对应于α=π6的点,那么直线OP 的斜率为( )A.33B. 3C.332D.239答案:D6.将参数方程12cos 2sin x y θθ=+⎧⎨=⎩(θ为参数)化为普通方程是____________.答案:(x -1)2+y 2=47.点P(x ,y)在椭圆4x 2+y 2=4上,则x +y 的最大值为______,最小值为________. 答案: 5- 58.在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :⎩⎪⎨⎪⎧x =1+s ,y =1-s (s 为参数)和C :⎩⎪⎨⎪⎧x =t +2,y =t 2(t 为参数),若l 与C 相交于A 、B 两点,则|AB|=________. 答案:2能力提升9.点(2,33)对应曲线4cos 6sin x y θθ=⎧⎨=⎩(θ为参数)中参数θ的值为( )A .k π+π6(k∈Z)B .k π+π3(k∈Z)C .2k π+π6(k∈Z)D .2k π+π3(k∈Z)答案:D10.椭圆x 29+y24=1的点到直线x +2y -4=0的距离的最小值为( )A.55B. 5C.655D .0答案:A11. 直线⎩⎪⎨⎪⎧x =2-12t ,y =-1+12t(t 为参数)被圆x 2+y 2=4截得的弦长为________.答案:1412.在平面直角坐标系xOy中,若l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :3cos 2sin x y θθ=⎧⎨=⎩(θ为参数)的右顶点,则常数a 的值为________.答案:3第 11 页 13. 已知在平面直角坐标系xOy 中圆C的参数方程为:3cos 13sin x y θθ⎧=⎪⎨=+⎪⎩(θ为参数),以Ox 为极轴建立极坐标系,直线极坐标方程为:ρcos ⎝⎛⎭⎪⎫θ+π6=0,则圆C 截直线所得弦长为________. 解析:圆C 3cos 13sin x y θθ⎧=⎪⎨=+⎪⎩(θ为参数)表示的曲线是以点(3,1)为圆心,以3为半径的圆,将直线ρcos ⎝⎛⎭⎪⎫θ+π6=0的方程化为3x -y =0,圆心(3,1)到直线3x -y =0的距离: d =|3×3-1|(3)+12=1,故圆C 截直线所得弦长为232-12=4 2. 答案:4 214. 将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.答案:(1)设(x 1,y 1)为圆上的点,经变换为C 上点(x ,y),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1,由x 21+y 21=1 得x 2+⎝ ⎛⎭⎪⎫y 22=1,即曲线C 的方程为x 2+y 24=1. 故C 的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =2sin t (t 为参数). (2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0解得⎩⎪⎨⎪⎧x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2. 不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝ ⎛⎭⎪⎫x -12, 化为极坐标方程并整理得2ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ.。

极坐标函数求面积

极坐标函数求面积

用极坐标函数求面积在数学中,极坐标函数是一种将平面直角坐标系下的点与极坐标系下的点一一对应的函数,由极径和极角两个变量确定。

在实际应用中,极坐标函数可以被用来计算二维图形的面积,下面就来了解一下如何使用极坐标函数求面积。

首先,让我们回顾一下平面直角坐标系下计算图形面积的公式:输入图形的坐标值,应用公式S=1/2bh,其中b是底边长,h是高,计算出该图形的面积S。

在使用极坐标函数求面积时,我们需要将二维图形转换为极坐标形式,也就是将平面直角坐标系下的点的坐标值(x,y)转化为极坐标系下的点的坐标值(r,θ)。

对于极坐标函数f(θ),其中a ≤ θ≤ b,f(θ)表示在极坐标系下,θ∈ [a,b]区间内对应的r值。

在这个区间的楔形图形,其面积为S = 1/2∫(r²) dθ (a,b)。

其中∫(r²) dθ表示在极角范围[a,b]内,对r²进行积分。

这个公式的推导可以查看数学教科书。

下面让我们通过一个例子来理解如何使用极坐标函数求面积。

假设我们要求围绕原点的圆形的面积,该圆形的半径为R。

那么我们可以将圆形坐标值转换为极坐标系下的坐标值。

在极坐标下,圆形的方程为r = R,其所对应的f(θ)函数为f(θ) = R²。

圆形的极角范围为0到2π,那么该圆形的面积S为S = 1/2∫(R²) dθ (0, 2π) =1/2(R² × 2π) = πR²。

通过这个例子,我们可以看出,在二维图形中,使用极坐标函数求面积就比直角坐标系下更加简单和容易。

只需要将二维图形转换为极坐标形式,然后应用上述公式即可求得该图形的面积。

总之,应用极坐标函数求面积是一种非常实用和方便的方法,可以在数学和实际应用中得到广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

参数方程表示的 平面图形的面积
极坐标表示的平 面图形的面积
例7 = 求由 r s= inθ , r cosθ 所围图形 A 的面积.
∫ ∫ = 解 S( A)
1 2
π
4 sin2 θ dθ
+
1
0
2
π
2 π
cos2
θ

4
y
A
O
x
∫ ∫ 1
2
π 4
1−
cos 2θ

+
1
0
2
2
π
2 π
4
1
+
cos 2θ
a(1 − cos t)
t ∈[0, 2π] 与 x 轴
所围图形的面积.
y
2a
a
A
O
2πa x
∫ 解
S
(
A)
=

|
a(1

cos
t
)[a(t

sin
t
)]′
|
dt
0
∫ =
a2

(1

cos
t
2
) dt
=
3
π
a
2
.
0
数学分析 第十章 定积分的应用
高等教育出版社
§1 平面图形的面积
直角坐标方程表示的平面图形 的面积
O
2a x
= 3 πa2. 2
数学分析 第十章 定积分的应用
高等教育出版社
§1 平面图形的面积
直角坐标方程表示的平面图形 的面积
参数方程表示的 平面图形的面积
极坐标表示的平 面图形的面积
例6 求双纽线 r 2 = a2 cos 2θ 所围平面图形的面积.
解 因为 r 2 ≥ 0, 所以 θ 的取值
2

.
π
π
=
1 4
θ

sin 2θ
2
4 0
+
1 4
θ
+
sin 2θ
2
2 π
4
=1 4
π 4

1 2
+
1 4
π 4

1 2
=π 8

1 4
.
注 也可利用对称性.ຫໍສະໝຸດ 数学分析 第十章 定积分的应用
高等教育出版社
极坐标表示的平 面图形的面积
参数方程表示的平面图形的面积
设曲线C 由参数方程
x =
y
=
x(t) ,
y(t )
t ∈[α , β ]
表示,
其中 y(t) 连续, x(t) 连续可微.
若= x(α ) a= , x(β ) b, x(t) 在 [α , β ] 上严格增,则
由曲线 C 及直线=x a= , x b 和 x 轴所围图形的面
§1 平面图形的面积
直角坐标方程表示的平面图形 的面积
参数方程表示的 平面图形的面积
极坐标表示的平 面图形的面积
第二讲
参数方程表示的平面图形的面积 极坐标表示的平面图形的面积
数学分析 第十章 定积分的应用
高等教育出版社
§1 平面图形的面积
直角坐标方程表示的平面图形 的面积
参数方程表示的 平面图形的面积
∫ ∫ ∫ S( A) =
b y dx = − β y(t ) x′(t )dt =
β
y(t ) x′(t ) dt .
a
α
α
因此,不论 x(t)递增或递减,
∫ S( A) = β y(t)x′(t) dt. α
若上述曲线C 是封闭的,即
= x(α ) x= (β ), y(α ) y(β ),
且自身不再相交,则由C 所围的平面图形 A 的面积是
θ
= θ1
θ0 = α
于是
O•
∑∑ ∑∫ 由于= = lTiSm→(0A12)i=n1 rin21(= Sξi()AΔiθ) i≈=1212in1αβr
2(ξi )Δθi r 2(θ )dθ
. ,
x
因此定义
∫ S( A) = 1 β r 2 (θ )dθ .

数学分析 第十章 定积分的应用
高等教育出版社
范围是 [− π , π] 与 [ 3π , 5π]. 44 4 4
由图形的对称性,
∫ S( A)=
4⋅ 1
π
4 a2 cos 2θ dθ
20
π
= a= 2 sin 2θ 4 a2 . 0
y
O
a/2 a x
数学分析 第十章 定积分的应用
高等教育出版社
§1 平面图形的面积
直角坐标方程表示的平面图形 的面积
数学分析 第十章 定积分的应用
高等教育出版社
§1 平面图形的面积
直角坐标方程表示的平面图形 的面积
参数方程表示的 平面图形的面积
极坐标表示的平 面图形的面积
极坐标表示的平面图形的面积
设曲线C的极坐标方程= 为r r(θ ), θ ∈[α , β ].
其中r(θ )在[α , β ]上连续. 图形A由曲线C
§1 平面图形的面积
直角坐标方程表示的平面图形 的面积
参数方程表示的 平面图形的面积
极坐标表示的平 面图形的面积
例5 求心脏线=r a(1 + cosθ ) 所围平面图形的面积.

∫ = S( A) 1 2π[a(1 + cosθ )]2dθ
20
y
=r a(1 + cosθ ) a
∫ = a2 π (1 + cosθ )2 dθ 0
积为
∫ ∫ ∫ = S( A)
b
= y dx
β y(t) x= ′(t)dt
β y(t)x′(t) dt.
a
α
α
数学分析 第十章 定积分的应用
高等教育出版社
§1 平面图形的面积
直角坐标方程表示的平面图形 的面积
参数方程表示的 平面图形的面积
极坐标表示的平 面图形的面积
若= x(β ) a= , x(α ) b, x(t)在 [α , β ] 上严格减时,
β
S( A) = ∫α y(t)x′(t)dt .
∫ 或 S( A) =
β
x(t) y′(t)dt
α
.
数学分析 第十章 定积分的应用
高等教育出版社
§1 平面图形的面积
直角坐标方程表示的平面图形 的面积
参数方程表示的 平面图形的面积
极坐标表示的平 面图形的面积
例3
求由摆线
=x =y
a(t − sin t) ,
参数方程表示的 平面图形的面积
极坐标表示的平 面图形的面积
例4 求椭圆
所围图形的面积.

利用对称性, 有
y
b
π
∫4 2 |b sin t ⋅ (a cos t)′ | dt 0
O
ax
π
∫ = 4ab 2 sin2 t dt 0
= 4ab ⋅ 1 ⋅ π = πab. 22
当 a = b 时得圆面积公式
和两条射线θ =α 与θ = β 围成.
作分割T:α = θ0 < θ1 < < θn = β ,
A
射线=θ θ= i (i 1, 2, , n ) .
β α
O•
把扇形 A分割成 n 个小扇形
A1, A2 , , An .
r = r (θ )
x
数学分析 第十章 定积分的应用
高等教育出版社
§1 平面图形的面积
直角坐标方程表示的平面图形 的面积
参数方程表示的 平面图形的面积
极坐标表示的平 面图形的面积
任取ξi
∈ (θi-1,θi
),i
= 1, ,n,则
S( Ai
)

1 2
r 2 (ξi
)∆θi
,
i = 1, ,n,
∆θi
其= 中∆θi θ= i -θi-1,i 1,, n.
θn = β
θ
= θi
θ = ξi θ = θi−1
相关文档
最新文档