单容下水箱液位调节阀PID控制

合集下载

单容水箱液位定值控制系统

单容水箱液位定值控制系统

单容水箱液位定值控制系统一、实验目的1.理解单容水箱液位定值控制的基本方法及原理;2.了解压力传感器的使用方法;3.学习PID控制参数的配置。

二、实验设备1.控制理论实验平台2.数据采集卡一块3.PC机1台4.THBDY-1单容水箱液位控制系统三、实验原理单容水箱液位定值控制系统的控制对象为一阶单容水箱,主要的实验项目为单容水箱液位定值控制。

其执行机构为微型直流水泵,正常工作电压为24V。

直流微型水泵控制方式主要有调压控制以及PWM控制,在本实验中采用PWM控制直流微型水泵的转速来实现对单容水箱液位的定值控制。

PWM调制与晶体管功率放大器的工作原理参考实验十三的相关部分。

控制器采用了工业过程控制中所采用的最广泛的控制器——PID控制器。

通过计算机模拟PID控制规律直接变换得到的数字PID控制器,它是按偏差的比例(P)、积分(I)、微分(D)组合而成的控制规律。

水箱液位定值控制系统一般有由电流传感器构成大电流反馈环。

在高精度液位控制系统中,电流反馈是必不可少的重要环节。

这里为了方便测量与观察反馈信号,通常把电流反馈信号转化为电压信号:反馈端输出端串接一个250Ω的高精度电阻。

本实验电压与液位的关系为:H液位=(V反馈-1)×12.5 单位:mm 水箱液位控制系统方框图为:四、实验步骤1.实验接线1.1 将水箱面板上的“LT –”与实验台的“GND”相连接;水箱面板上的“LT +”与实验台的“AD1”相连接。

1.2将水箱面板上的“输入–”与实验台的“GND”相连接;水箱面板上的“输入+”与实验台的“DA1”相连接。

1.3将水箱面板上的“输出–”与“水泵电源–”连接;水箱面板上的“输出+”与“水泵电源+”连接。

1.4打开实验平台的电源总开关。

2.压力变送器调零本实验在开始实验前必须对压力变送器调零操作。

具体方法为:2.1 将水箱中打满水,然后再全部放到储水箱中;2.2 旋开压力变送器的后盖,用小一字螺丝刀调节压力变送器中电路板上有“Z”标识的调零电位器,让压力变送器的输出电压为1V;2.3 再次向水箱中打水,并观察水箱液位与压力变送器输出电压的对应情况,其对应关系为:H液位=(V反馈-1)×12.5(当液位为10cm时,输出电压应为1.8V左右),如不对应,再重复步骤2.1、2.2直到对应为至;2.4 如果步骤1)、2)、3)还不能调好水箱液位与压力变送器输出电压的对应情况,那么可适度调节压力变送器中电路板上有“S”标识的增益电位器,再重复步骤2.1、2.2、2.3直到对应为至。

实验五、单容水箱液位PID控制实验(DCS)

实验五、单容水箱液位PID控制实验(DCS)

实验五、单容水箱液位PID控制实验(DCS)一、实验目的1)、熟悉单容水箱液位反馈PID控制系统硬件配置和工作原理。

2)、熟悉用P、PI和PID控制规律时的过渡过程曲线。

3)、定性分析不同PID控制器参数对单容系统控制性能的影响。

二、实验设备CS4000型过程控制实验装置,DCS系统、 PC机,监控软件。

三、实验原理一阶单容水箱PID控制方框图图为单回路上水箱液位控制系统。

单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。

本系统所要保持的参数是液位的给定高度,即控制的任务是控制上水箱液位等于给定值所要求的高度。

根据控制框图,这是一个闭环反馈单回路液位控制,采用EPA系统控制。

当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。

合适的控制参数,可以带来满意的控制效果。

反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。

一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。

一般言之,用比例(P)调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。

比例积分(PI)调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti调节合理,也能使系统具有良好的动态性能。

比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。

但是,并不是所有单回路控制系统在加入微分作用后都能改善系统品质,对于容量滞后不大,微分作用的效果并不明显,而对噪声敏感的流量系统,加入微分作用后,反而使流量品质变坏。

对于我们的实验系统,在单位阶跃作用下,P、PI、PID调节系统的阶跃响应分别如下图中的曲线①、②、③所示。

P、PI和PID 调节的阶跃响应曲线四、实验步骤(1)关闭出水阀,将CS4000 实验对象的储水箱灌满水(至最高高度)。

水箱液位PID调节控制系统及实物仿真调试

水箱液位PID调节控制系统及实物仿真调试

水箱液位PID调节控制系统及实物仿真调试【摘要】在人们生活以及工业生产等诸多领域经常涉及到液位和流量的控制问题,例如居民生活用水的供应,饮料、食品加工,溶液过滤,化工生产等多种行业的生产加工过程,通常需要使用蓄液池,蓄液池中的液位需要维持合适的高度,既不能太满溢出造成浪费,也不能过少而无法满足需求。

因此液面高度是工业控制过程中一个重要的参数,特别是在动态的状态下,采用适合的方法对液位进行检测、控制,能收到很好的效果。

PID控制(比例、积分和微分控制)是目前采用最多的控制方法。

【关键词】水箱液位;PID控制;液位控制;Matlab仿真一.引言在人们生活以及工业生产等诸多领域经常涉及到液位和流量的控制问题,例如居民生活用水的供应,饮料、食品加工,溶液过滤,化工生产等多种行业的生产加工过程,通常需要使用蓄液池,蓄液池中的液位需要维持合适的高度,既不能太满溢出造成浪费,也不能过少而无法满足需求。

因此液面高度是工业控制过程中一个重要的参数,特别是在动态的状态下,采用适合的方法对液位进行检测、控制,能收到很好的效果。

本论文利用PID算法在matlab中进行仿真并讲解实物搭接效果,具体如下:1、利用指导书中推导的模型和实际的参数,建立水箱液位控制系统的数学模型,并进行线性化;2、构成水箱液位闭环无静差系统,并测其动态性能指标和提出改善系统动态性能的方法,使得系统动态性能指标满足σ%≤10%0.5秒,静态误差小于2%;3、通过在matlab编程中求取合适的反馈变量K,然后与仿真模型结合构成最优控制的水箱液位系统,通过图形分析是否满足系统的性能参数;4、加入P、PI、PD、PID环节分别进行调试;5、选取合适的极点并通过图形分析是否满足系统的性能参数;6、比较加入各种不同PID 环节下的优缺点;7、实物搭接;8、比较在不加扰动和加扰动情况下以及在各种不同环节作用下系统性能。

二.水箱液位控制系统的设计及实物调试该题目包括MATLAB 软件仿真和硬件实物调试部分,软件仿真的目的是对 系统先进行建模,然后设计控制器使其满足任务书上的性能指标要求,并调整控制器参数,分析控制器各参数对系统稳定性的影响。

单容水箱液位控制系统的设计

单容水箱液位控制系统的设计

单容水箱液位控制系统的设计摘要:本文根据液位系统过程机理,建立了单容水箱的数学模型。

介绍了PID控制的基本原理及数字PID算法,并根据算法的比较选择了增量式PID算法。

建立了基于Visual Basic语言的PID液位控制模拟界面和算法程序,进行了系统仿真,并通过整定PID参数,同时得出了整定后的仿真曲线和实际曲线。

关键字:单容水箱,水箱建模,液位控制,PID算法,增量式PID一、前言过程控制是自动技术的重要应用领域,它是指对液位、温度、流量等过程变量进行控制,在冶金、机械、化工、电力等方面得到了广泛应用。

尤其是液位控制技术在现实生活、生产中发挥了重要作用,比如,民用水塔的供水,如果水位太低,则会影响居民的生活用水;工矿企业的排水与进水,如果排水或进水控制得当与否,关系到车间的生产状况;锅炉汽包液位的控制,如果锅炉内液位过低,会使锅炉过热,可能发生事故;精流塔液位控制,控制精度与工艺的高低会影响产品的质量与成本等。

在这些生产领域里,基本上都是劳动强度大或者操作有一定危险性的工作性质,极容易出现操作失误,引起事故,造成厂家的的损失。

可见,在实际生产中,液位控制的准确程度和控制效果直接影响到工厂的生产成本、经济效益甚至设备的安全系数。

所以,为了保证安全条件、方便操作,就必须研究开发先进的液位控制方法和策略。

在本设计中以液位控制系统的水箱作为研究对象,水箱的液位为被控制量,选择了出水阀门作为控制系统的执行机构。

针对过程控制试验台中液位控制系统装置的特点,建立了基于Visual Basic语言的PID液位控制模拟界面和算法程序。

虽然PID控制是控制系统中应用最为广泛的一种控制算法。

但是,要想取得良好的控制效果,必须合理的整定PID的控制参数,使之具有合理的数值。

二、单容水箱液位控制系统建模2.1液位控制的实现除模拟PID调节器外,可以采用计算机PID算法控制。

首先由差压传感器检测出水箱水位;水位实际值通过单片机进行A/D转换,变成数字信号后,被输入计算机中;最后,在计算机中,根据水位给定值与实际输出值之差,利用PID 程序算法得到输出值,再将输出值传送到单片机中,由单片机将数字信号转换成模拟信号。

单容量水箱液位pid控制实验报告

单容量水箱液位pid控制实验报告

单容量水箱液位pid控制实验报告实验目的:通过单容量水箱液位PID控制实验,学习PID控制器的原理和调节方法,掌握PID控制器在液位控制中的应用。

实验器材:1. 单容量水箱2. 水泵3. 液位传感器4. 控制器5. 电脑实验原理:PID控制器是由比例(P)、积分(I)和微分(D)三个部分组成的控制器。

根据物体的反馈信号与设定值之间的差异,PID控制器会计算出相应的控制量,以使系统的输出信号趋近于设定值,从而实现对物体的控制。

实验步骤:1. 搭建实验装置:将单容量水箱与水泵和液位传感器连接,将控制器与电脑连接。

2. 设置实验参数:根据实验需求,设置控制器的比例增益、积分时间常数和微分时间常数,并将设定值设定为所需的液位。

3. 开始实验:启动水泵,观察水箱液位的变化,并记录在实验报告中。

4. 数据分析:根据液位传感器的反馈信号,计算实际液位与设定值之间的差异,并根据PID控制器的算法计算出相应的控制量。

5. 调整控制参数:根据实验数据分析的结果,调整PID控制器的参数,如增大比例增益、调整积分时间常数和微分时间常数,再次进行实验。

6. 重复步骤3-5,直到达到所需的控制效果。

实验结果与分析:根据实验数据,绘制出液位随时间变化的曲线图。

通过分析曲线形状和数据变化趋势,判断控制系统的稳定性和响应时间。

如果液位在设定值附近波动较小,并且响应时间较短,则说明PID控制系统的参数调节较为合适。

结论:通过单容量水箱液位PID控制实验,我们学习了PID控制器的原理和调节方法,并掌握了PID控制器在液位控制中的应用。

同时,我们还了解到PID控制器的参数调节对控制系统的稳定性和响应时间有很大影响,需要通过实验数据的分析来进行参数调整。

这些知识和技能对于后续的控制系统设计和实施有着重要的指导意义。

单容水箱液位组态控制实验报告

单容水箱液位组态控制实验报告

4 单容水箱液位组态控制实验报告学院:自动化学院班级:学号:姓名:单容水箱液位组态一.实验目的:1.熟悉单容水箱液位调节阀PID 控制系统工作原理2.熟悉单用户项目组态过程3.掌握WINCC 画面组态设计方法4.掌握WINCC 过程值归档的组态过程5.掌握WINCC 消息系统的组态过程6.掌握WINCC 报表系统的组态过程二:单容水箱实验原理1、实验结构介绍水流入量Qi 由调节阀u 控制,流出量Qo 则由用户通过闸板开度来改变。

被调量为水位H 。

分析水位在调节阀开度扰动下的动态特性。

直接在调节阀上加定值电流,从而使得调节阀具有固定的开度。

(可以通过智能调节仪手动给定,或者AO 模块直接输出电流。

)调整水箱出口到一定的开度。

突然加大调节阀上所加的定值电流观察液位随时间的变化,从而可以获得液位数学模型。

通过物料平衡推导出的公式:μμk Q H k Q i O ==,那么 )(1H k k Fdt dH -=μμ, 其中,F 是水槽横截面积。

在一定液位下,考虑稳态起算点,公式可以转换成μμR k H dtdH RC =+。

公式等价于一个RC 电路的响应函数,C=F 就是水容,k H R 02=就是水阻。

给定值 图4-1单容水箱液位数学模型的测定实验如果通过对纯延迟惯性系统进行分析,则单容水箱液位数学模型可以使用以下S 函数表示: )1()(0+=TS S KR S G 。

相关理论计算可以参考清华大学出版社1993年出版的《过程控制》,金以慧编著。

2、控制系统接线表测量或控制量 测量或控制量标号使用PLC 端口 使用ADAM 端口下水箱液位 LT103 AI0 AI0调节阀FV101 AO0 AO03参考结果单容水箱水位阶跃响应曲线,如图4-2所示:图4-2 单容水箱液位飞升特性此时液位测量高度184.5 mm ,实际高度184.5 mm -3.5 mm =181 mm 。

实际开口面积5.5x49.5=272.25 mm²。

a3000实验水箱液位调节阀之PID篇

a3000实验水箱液位调节阀之PID篇

单容水箱液位控制系统的实验一、实验设备AE2000A型过程控制实验装置、JX-300X DCS控制系统、万用表、上位机软件、计算机、RS232-485转换器1只、串口线1根、网线1根、24芯通讯电缆1根。

二、实验目的1、通过实验熟悉单回路反馈控制系统的组成和工作原理。

2、分析分别用P、PI和PID调节时的过程图形曲线。

3、定性地研究P、PI和PID调节器的参数对系统性能的影响。

三、实验原理图2-15为单回路水箱液位控制系统单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。

本系统所要保持的参数是液位的给定高度,即控制的任务是控制水箱液位等于给定值所要求的高度。

根据控制框图,这是一个闭环反馈单回路液位控制,采用SUPCON JX-300X DCS控制。

当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。

合适的控制参数,可以带来满意的控制效果。

反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。

一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。

一般言之,用比例(P)调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。

比例积分(PI)调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti调节合理,也能使系统具有良好的动态性能。

比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。

但是,并不是所有单回路控制系统在加入微分作用后都能改善系统品质,对于容量滞后不大,微分作用的效果并不明显,而对噪声敏感的流量系统,加入微分作用后,反而使流量品质变坏。

对于我们的实验系统,在单位阶跃作用下,P、PI、PID调节系统的阶跃响应分别如图2-16中的曲线①、②、③所示。

单容水箱液位过程控制实验报告范文

单容水箱液位过程控制实验报告范文

单容水箱液位过程控制实验报告范文一、实验目的1、了解单容水箱液位控制系统的结构与组成。

2、掌握单容水箱液位控制系统调节器参数的整定方法。

3、研究调节器相关参数的变化对系统静、动态性能的影响。

4、了解PID调节器对液位、水压控制的作用。

本实验采用计算机PID算法控制。

首先由差压传感器检测出水箱水位,水位实际值通过A/D转换,变成数字信号后,被输入计算机中,最后,在计算机中,根据水位给定值与实际输出值之差,利用PID程序算法得到输出值,再将输出值经过D/A模块转换成模拟信号,进而控制电机转速,从而形成一个闭环系统,实现水位的计算机自动控制。

2.2被控对象本实验是单容水箱的液位控制。

被控对象为图1中的上水箱,控制量为流入水箱的流量,执行机构为调节阀。

由图1所示可以知道,单容水箱的流量特性:水箱的出水量与水压有关,而水压又与水位高度近乎成正比。

这样,当水箱水位升高时,其出水量也在不断增大。

所以,若阀V6开度适当,在不溢出的情况下,当水箱的进水量恒定不变时,水位的上升速度将逐渐变慢,最终达到平衡。

由此可见,单容水箱系统是一个自衡系统。

三、电动调节阀流量特性物理模型电动调节阀包括执行机构和阀两个部分,它是过程控制系统中的一个重要环节。

电动调节阀接受调节器输出4~20mADC的信号,并将其转换为相应输出轴的角位移,以改变阀节流面积S的大小。

图2为电动调节阀与管道的连接图。

图2图中:u----来自调节器的控制信号(4~20mADC)θ----阀的相对开度----阀的截流面积q----液体的流量由过程控制仪表的原理可知,阀的开度θ与控制信号的静态关系是线性的,而开度θ与流量Q的关系是非线性的。

四、单容水箱系统PID控制规律及整定方法数字PID控制是在实验研究和生产过程中采用最普遍的一种控制方法,在液位控制系统中也有着极其重要的控制作用。

本章主要介绍PID控制的基本原理,液位控制系统中用到的数字PID控制算法及其具体应用。

单容水箱液位控制系统的PID算法

单容水箱液位控制系统的PID算法

自动控制原理课程设计报告单容水箱液位控制系统的PID算法摘要随着科技的进步,人们对生产的控制精度要求越来越高,水箱液位系统是过程控制中一种典型的控制对象,提高液位控制系统的性能十分重要。

本文针对理想的单容水箱液位系统,将包括单容水箱、电动机等在内的部分分别建立数学模型,并加入常规PID对系统性能进行调节。

但由于实际单容水箱液位系统具有时滞性和非线性,实际生产中若要对其建立精确的数学模型比较困难。

因此,将模糊控制的方法引用到对单容水箱液位系统的PID控制中,通过Simulink仿真验证了算法的有效性。

结果表明,和常规PID控制相比,模糊PID控制具有良好的动静态品质。

关键词单容水箱液位; PID控制; MA TLAB; Simulink; 模糊控制.PID control method in water level system of single-tankABSTRACT With the development of technology, the control precision is more and more important. And the water level system of single-tank is a typical control target in process control. The article mainly deals with the water level system of single-tank. It establishes mathematics model for every part of the system, and uses the traditional PID to improve the function . But in actual industry,it’s hard to establishes precise mathematics model. So, it introduces fuzzy PID control in this system. The result suggests that fuzzy PID control is more suitable than the traditional one.KEY WORDS the water level of single-tank; PID control; MA TLAB ; Simulink; fuzzy control.在工业过程控制中,被控量通常有:液位、压力、流量和温度。

水箱液位控制系统建模与其PID控制器设计

水箱液位控制系统建模与其PID控制器设计

制工具由模拟仪表到DCS,再到计算机网络控制;控制要求与控制水平也由原来的简单、安全、平稳到先进、优质、低耗、高产甚至市场预测、柔性生产。

而其中应用最广泛的就是PID控制器。

一 单容水箱液位控制系统建模本文研究的被控对象为一单容水箱(如图1单容水箱液位开环控制结构图)。

要对该对象进行较好的计算机控制,有必要建立被控对象的数学模型。

单容水箱是一个自衡系统。

根据它的这一特性,我们可以用阶跃响应测试法进行建模。

因为开环时,单容水箱液位达到稳定所需时间很长,大约需要40分钟,而数据采样速率为每一秒钟作一次数据记录,所得数据量很庞大。

在此,我们以每分钟取一个的方式从中选取数据如图2所示。

由图2所得到的数据,我们可以通过阶跃响应法求出单容水箱模型为通过在simulink下的系统仿真,当交水箱液位控制系统建模与其PID控制器设计魏巍1 陈虎1 赵贵2 赵辉1 司海波1 刘彬11、中国矿业大学信电学院 2210082、中国矿业大学理学院 221008传统的液位控制多采用包含手动控制方式的单回路控制,同时采用传统的指针式机械仪表来显示液位的当前值,如浮子式、磁电式、接近开关式、电容式、声波式等。

传统的液位控制在生产中一直占有主导地位,但随着科学技术的发展、生产线的更新,不仅要求更直观、准确、稳定的液位控制系统,同时还要求在降低生产设备的成本、提高设备安全条件等方面有所突破,这就要求我们开发新型既实用又廉价的液位控制系统。

液位控制的发展从七十年代到九十年代经历了几个阶段,控制理论由经典控制理论到现代控制理论,再到多学科交叉;控流电机与水泵的数学模型为时,仿真曲线曲线基本符合实验情况。

综上可得该系统的传递函数为二 液位控制系统的PID算法控制(1)模拟PID控制模拟PID 控制是最早发展起来的控制策略之一,由于其算法简单、参数物理意义明确、理论分析体系完整、鲁棒性好和可靠性高等优点,因此在工业过程控制,尤其在可建立精确数学模型的确定性控制系统中,图5 专家PID控制的单位阶跃响应曲线图4 模拟PID控制的单位阶跃响应曲线图3 simulink结构图图2 开环系统实际响应曲线图1 单容水箱液位开环控制结构图所需初始条件和边界条件如下(依据模型确定)L为玻璃材料内所要模拟部分的长度其中,最后一项可以通过E(0,0)从高斯方程得出。

PID水箱液位控制

PID水箱液位控制

摘要在人们生活以及工业生产等诸多领域经常涉及到液位和流量的控制问题, 例如居民生活用水的供应, 饮料、食品加工,溶液过滤,化工生产等多种行业的生产加工过程, 通常需要使用蓄液池, 蓄液池中的液位需要维持合适的高度,既不能太满溢出造成浪费,也不能过少而无法满足需求。

因此液面高度是工业控制过程中一个重要的参数,特别是在动态的状态下,采用适合的方法对液位进行检测、控制,能收到很好的效果. PID控制(比例、积分和微分控制)是目前采用最多的控制方法.本文主要是对一水箱液位控制系统的设计过程,涉及到液位的动态控制、控制系统的建模、PID算法、传感器和调节阀等一系列的知识。

作为单容水箱液位的控制系统,其模型为一阶惯性函数,控制方式采用了PID算法,调节阀为电动调节阀。

选用合适的器件设备、控制方案和算法,是为了能最大限度地满足系统对诸如控制精度、调节时间和超调量等控制品质的要求。

利用Matlab仿真,整定PID参数,得出仿真曲线,得到整定参数,控制效果很好,实现了水箱液位的控制.关键词: PID控制过程控制液位控制 Matlab目录摘要 (I)第一章绪论 (1)1.1过程控制的定义 (1)1.2过程控制的目的 (1)1.3过程控制的特点 (2)1.4过程控制的发展与趋势 (2)第二章水箱液位控制系统的原理 (3)2.1 人工控制与自动控制 (3)2.2 水箱液位控制系统的原理框图 (4)2.3 水箱液位控制系统的数学模型 (5)第三章水箱液位控制系统的组成 (8)3.1 被控制变量的选择 (8)3.2 执行器的选择 (8)3.3 PID控制器的选择 (11)3.4 液位变送器的选择 (12)第四章 PID控制规律 (14)4.1 比例控制 (14)4.2积分控制(I) (16)4.3微分控制(D) (16)4.4比例积分控制(PI) (17)4.5比例积分微分控制(PID) (17)第五章利用MATLAB进行仿真设计 (18)5.1 MATLAB设计 (18)5.2 MATLAB设计任务 (18)5.3 MATLAB设计要求 (18)5.4 MATLAB设计任务分析 (19)5.4 MATLAB设计任务分析 (20)5.5 MATLAB设计内容 (24)5.5.1主回路的设计 (24)5.5.2副回路的设计 (24)5.5.3主、副回路的匹配 (24)5.5.4 单回路PID控制的设计 (25)5.5.5串级控制系统的设计 (30)心得体会 (33)参考文献 (34)第一章绪论1.1过程控制的定义生产过程自动化,一般是指石油、化工、冶金、炼焦、造纸、建材、陶瓷及电力发电等工业生产中连续的或按一定程序进行的生产过程的自动控制。

单容下水箱液位PID变频器控制

单容下水箱液位PID变频器控制

5、流量变频器 PID 单回路控制
6、压力调节阀 PID 单回路控制
7、压力变频器 PID 单回路控制
8、锅炉动态水温度 PID 单回路控制
9、换热器冷水出口温度调节阀 PID 单回路控制
二、课程设计内容
1、通过查阅资料掌握所选课题的原理、结构、并根据任务书用 CAD 设计 1 套过程控制系统
图纸,包括:自控设备清单、控制流程图、控制原理图、PLC 系统硬件配置图、I/O 地址分
(2) 摘要,关键词(中英文)目录
(3) 根据要求确定方案选择,并进行方案论证
(4) 论述系统功能及原理。(系统组成框图、电路原理图)
(5) 各模块的功能,原理,器件选择。
(6) 编写梯形图并进行程序设计和调试。
(7) 结果分析
(8) 对设计进行全面总结,写出课程设计报告。
(9) 附录---参考文献
(10)
五、课程设计考核办法与成绩评定
根据过程、报告、答辩等确定设计成绩,成绩分优、良、中、及格、不及格五等。评定项目基本内涵
分值
设计过程 考勤、自行设计、按进度完成任务等情况
20 分
设计报告 完成设计任务、报告规范性等情况
50 分
答 辩 回答问题情况
30 分
90~100 分:优;80~89 分:良;70~79 分:中;60~69 分,及格;60 分以下:不及格
电气与电子信息工程学院
过程控制课程设计报告
专业名称: 班 级: 学 号: 姓 名: 指导教师: 设计时间: 设计地点:
1
过程控制课程设计任务书 ................................................................................................................. 1 一、单容下水箱液位变频器 PID 控制 ............................................................................................3

单容下水箱液位调节阀PID单回路控制、液位和进口流量串级控制、流量-液位前馈反馈控制

单容下水箱液位调节阀PID单回路控制、液位和进口流量串级控制、流量-液位前馈反馈控制

过程控制系统课设学院:班级:学号:姓名:指导老师:日期:目录第一章系统产品的介绍1.1 物理系统逻辑结构1.2 现场系统1.2.1 现场系统示意图1.2.2 现场系统工艺流程图1.2.3 控制箱面板1.2.4 部分I/O面板1.2.5 控制系统I/O接口图第二章系统的基本部分2.1 过程控制系统的组成2.2 过程检测2.2.1 液位测量2.2.2 流量检测2.3 过程执行器2.4 被控过程2.4.1 过程建模2.4.2 P、I、D对控制品质的影响2.5 控制策略2.5.1 单回路PID控制2.5.2 串级控制2.5.3 前馈—反馈复合控制2.6 PID控制参数2.6.1 衰减振荡法2.6.2 经验法2.6.3 响应曲线法第三章单容下水箱液位调节阀PID 单回路控制 3.1 工艺过程3.2 上位组态3.3 操作过程和调试3.4 测试结果及分析第四章液位和进口流量串级控制4.1 工艺过程4.2 上位组态4.3 操作过程和调试4.4 测试结果及分析第五章流量-液位前馈反馈控制 5.1 工艺过程5.2 上位组态5.3 操作过程和调试5.4 测试结果及分析第六章总结第一章系统产品的介绍1.1 物理系统逻辑结构,如图1.1所示图1.11.2 现场系统物理受控系统包括了测试对象单元、供电系统、传感器、执行器(包括变频器及移相调压器),从而组成了一个只需接受外部标准控制信号的完整、独立的现场环境。

1.2.1 现场系统示意图,如图1.2所示图1.21.2.2 现场系统工艺流程图,如图1.3所示图1.31.2.3 控制箱面板,如图1.4所示。

1、三相剩余电流保护器。

合上该空气开关,才能加热。

2、单相剩余电流保护器。

合上该空气开关,所有设备才能上电。

3、三相电供电时亮起。

4、单相电供电时亮起。

5、对象顶部照明电灯旋钮开关。

6、水泵1#的变频器供电旋钮开关,打开变频器电源。

7、水泵2#供电旋钮开关,打开水泵电源。

8、变频器正转启动旋钮开关。

单容水箱液位控制系统

单容水箱液位控制系统

单容水箱液位控制系统摘要:本文以单容水箱为被控对象,控制系统主要由以下基本环节组成:被控对象、液位测量变送器、控制器、执行器、水泵、储水箱。

控制的主要目标是维持水箱的特定设定值,即便干扰出现控制器也能做出决策,使水箱的液位回复设定值。

根据算法控制的比较选择了标准PID控制,双位控制,积分分离PID控制。

基于MCGS组态软件制作液位模拟界面和算法控制。

关键词:单容水箱;液位控制;PID算法1.引言过程控制是自动技术的重要应用领域,它是指对液位、温度、流量等过程变量进行控制,在治金、机械、化工、电力等方面得到了广泛应用。

尤其是液位控制技术在现实生活、生产中发挥了重要作用,比如,民用水塔的供水,如果水位太低,则会影响居民的生活用水;工矿企业的排水与进水,如果排水或进水控制得当与否,关系到车间的生产状况:锅炉汽包液位的控制,如果锅炉内液位过低,会使锅炉过热,可能发生事故:精流塔液位控制,控制精度与工艺的高低会影响产品的质量与成本等。

在这些生产领域里,基本上都是劳动强度大或者操作有一定危险性的工作性质,极容易出现操作失误,引起事故,造成厂家的的损失,可见,在实际生产中,液位控制的准确程度和控制效果直接影响到工厂的生产成本、经济效益甚至设备的安全系数。

所以,为了保证安全条件、方便操作,就必须研究开发先进的液位控制方法和策略2.系统的目的要求2.1主要目的通过对单容水箱液位控制系统这样一个工业控制实际应用系统的软、硬件设计,使学生进一步加深对基于组态软件技术的控制系统的基本设计方法的认识及较快掌握组态软件编程技术,培养学生独立分析问题和解决问题的能力,提高学生的实际工程应用能力。

2.2主要任务①选择一个题目,熟悉设计要求、实验室提供的设备及实际控制系统的硬件组成,进行接口设备的安装与连接;熟悉所用组态软件的操作。

②查看有关参考书籍、查阅相关文献资料,独立设计基于组态软件的控制系统方案。

③根据实际系统的要求,进行画面设计与编辑、控制程序的编写、设定报警和历史趋势等。

实验六 单容下水箱液位调节阀PID 单回路控制

实验六 单容下水箱液位调节阀PID 单回路控制

实验六 单容下水箱液位调节阀PID 单回路控制1、实验目的(1)学会操作A3000过程控制实验系统;(2)了解PID控制规律,学习初步整定参数。

2、实验内容及步骤1、单容下水箱液位 PID 控制流程图如下图所示。

单容下水箱液位调节阀PID单回路控制测点清单如下表所示。

水介质由泵P102 从水箱V104 中加压获得压头,经由调节阀FV-101 进入水箱V103,通过手阀QV-116 回流至水箱V104 而形成水循环;其中,水箱V103的液位由LT-103 测得,用调节手阀QV-116 的开启程度来模拟负载的大小。

本例为定值自动调节系统,FV-101 为操纵变量,LT-103 为被控变量,采用PID 调节来完成。

2、在现场系统上,打开手阀QV102、QV105,调节下水箱闸板QV116开度(可以稍微大一些),其余阀门关闭。

3、在控制系统上,将IO面板的下水箱液位输出连接到AI0,IO面板的电动调节阀控制端连到AO0。

注意:具体那个通道连接指定的传感器和执行器依赖于控制器编程。

对于全连好线的系统,例如DCS,则必须安装已经接线的通道来编程。

4、打开设备电源。

启动右边水泵P102和调节阀。

5、启动计算机组态软件,进入测试项目界面。

启动调节器,设置各项参数,可将调节器的手动控制切换到自动控制。

6、设置比例参数。

观察计算机显示屏上的曲线,待被调参数基本稳定于给定值后,可以开始加干扰测试。

3、实验报告(1)设计一个报表:实验开始后,每20分钟记录一组数据,包括调节阀控制、V103液位、SP三个变量。

(2)改变参数设置,记录相应的变量曲线图。

(3)通过曲线图对比,谈谈对PID参数整定的心得。

ECS700单容水箱液位pid监控实验.docx

ECS700单容水箱液位pid监控实验.docx

第一章浙江中控ECS-700 装置实验实验四 ECS-700 单容水箱液位 PID 监控实验4.1 实验目的熟悉 ECS-700 系统的实验环境,通过对实验室 DCS 系统的实际操作,加深对集散控制系统概念的理解;掌握利用 ECS-700 组态软件 VisualField 对 DCS 控制对象现场参数进行配置,完成结构组态并实现单容水箱液位 PID 控制策略的组态;掌握利用 ECS-700 组态软件 VisualField 对 DCS 监控程序的配置,并实现单容水箱液位 PID 控制流程图监控画面的组态;掌握 ECS-700 系统组态发布流程,实现系统控制组态下载和监控组态发布;能够利用所编制组态程序对单容水箱液位进行单回路液位监控。

4.2 实验内容ECS-700 系统是 WebField 系列控制系统之一,是在总结 JX-300XP,ECS-100等WebField 系列控制系统广泛应用的基础上设计、开发的面向大型联合装置的大型高端控制系统,其融合了先进的控制技术、开放的现场总线标准、工业以太网安全技术等,为用户提供了一个可靠的、开放的控制平台。

ECS-700 系统按照提高可靠性原则进行设计,可以充分保证系统安全可靠;系统内部所有部件均支持冗余,在任何单一部件故障的情况下仍能稳定正常的工作。

同时, ECS-700 系统具备故障安全功能,模块在网络故障的情况下,进入预设的安全状态,保证人员、工艺设备的安全。

ECS-700 系统具备完善的工程管理功能,包括多工程师协作工作、组态完整性管理、单点组态在线下载等,并提供完善的操作记录以及故障诊断记录。

ECS-700 系统作为开放的控制平台,其融合了最新的现场总线技术和网络技术,支持 HART 、 FF、PROFIBUS、EPA 等国际标准现场总线的接入和多种异构系统综合集成。

VisualField 软件包是基于Windows 操作系统的自动控制应用软件平台,在ECS-700 系统中完成系统组态、数据服务和实时监控等功能。

PID水箱液位控制

PID水箱液位控制

摘要在人们生活以及工业生产等诸多领域经常涉及到液位和流量的控制问题, 例如居民生活用水的供应, 饮料、食品加工, 溶液过滤, 化工生产等多种行业的生产加工过程, 通常需要使用蓄液池, 蓄液池中的液位需要维持合适的高度, 既不能太满溢出造成浪费, 也不能过少而无法满足需求。

因此液面高度是工业控制过程中一个重要的参数,特别是在动态的状态下,采用适合的方法对液位进行检测、控制,能收到很好的效果。

PID控制(比例、积分和微分控制)是目前采用最多的控制方法。

本文主要是对一水箱液位控制系统的设计过程,涉及到液位的动态控制、控制系统的建模、PID算法、传感器和调节阀等一系列的知识。

作为单容水箱液位的控制系统,其模型为一阶惯性函数,控制方式采用了PID算法,调节阀为电动调节阀。

选用合适的器件设备、控制方案和算法,是为了能最大限度地满足系统对诸如控制精度、调节时间和超调量等控制品质的要求。

利用Matlab仿真,整定PID参数,得出仿真曲线,得到整定参数,控制效果很好,实现了水箱液位的控制。

关键词: PID控制过程控制液位控制 Matlab目录摘要 (I)第一章绪论 (1)1.1过程控制的定义 (1)1.2过程控制的目的 (1)1.3过程控制的特点 (2)1.4过程控制的发展与趋势 (2)第二章水箱液位控制系统的原理 (3)2.1 人工控制与自动控制 (3)2.2 水箱液位控制系统的原理框图 (4)2.3 水箱液位控制系统的数学模型 (5)第三章水箱液位控制系统的组成 (8)3.1 被控制变量的选择 (8)3.2 执行器的选择 (8)3.3 PID控制器的选择 (11)3.4 液位变送器的选择 (12)第四章 PID控制规律 (14)4.1 比例控制 (14)4.2积分控制(I) (16)4.3微分控制(D) (16)4.4比例积分控制(PI) (17)4.5比例积分微分控制(PID) (17)第五章利用MATLAB进行仿真设计 (18)5.1 MATLAB设计 (18)5.2 MATLAB设计任务 (18)5.3 MATLAB设计要求 (18)5.4 MATLAB设计任务分析 (19)5.4 MATLAB设计任务分析 (20)5.5 MATLAB设计内容 (24)5.5.1主回路的设计 (24)5.5.2副回路的设计 (24)5.5.3主、副回路的匹配 (24)5.5.4 单回路PID控制的设计 (25)5.5.5串级控制系统的设计 (30)心得体会 (33)参考文献 (34)第一章绪论1.1过程控制的定义生产过程自动化,一般是指石油、化工、冶金、炼焦、造纸、建材、陶瓷及电力发电等工业生产中连续的或按一定程序进行的生产过程的自动控制。

单容水箱液位控制系统仿真及PID参数调试

单容水箱液位控制系统仿真及PID参数调试

1 , 1 0 0 , D 1 0 0 l , 反馈 , S C S , 0 , 1
EN D A X

对 K p 、T 、K 、T d 取 不 同 的值 ,可 灵 活实 现 纯 比例 、
纯 积 分 、 纯微 分 关 系 ,在 此 基 础 上 实 现 所 需 的对 象 特 性 。
的关系如下 ;
据需 要,生成系统所 需的 i / o点和 中间变量点如下所示 。
BEGI N H E A D

V E R S 1 0 N O F C O N F I G E R 2 . 0
P R O J E C T 长 沙 电力 职业 技 术 学 院 D C S O N 2 0 1 4年 5月 1 9日
1 3 2
现代制造技术与装 备
2 0 1 5 第5 期 总 第2 2 8 期
单容水箱液位控制系统仿真及 P I D参数 调试
徐 站桂
( 长沙 电力职业技 术学院动力工程 系,长沙 4 1 0 1 3 1 )

要 :以 X DP S 组 态软件 为 平 台 ,开发 可 应用 于热控 专 业课程 教 学的仿 真软 件 。 系统介 绍热 工控 制过程 的
关键 词 :对 象特性 数 学建模 组态 P I D 调试
本文 以上海新 华公 司 X D P S组态软件 为工具 ,融入 自动 控制 的重 要知 识和概 念 ,开发 典型 的热工 自动 控制 系统 , 形成 的仿 真软 件应 用到 热工 自动控 制系 统课程 教 学 中,有 效促 进学 生知 识和 技能 的提升 。开发 的仿 真软 件具 备三个
根据物料 动态平衡 的关系 ,求得其特 性为公式 (1):
图 1所示 的单 容水 箱作 为仿 真对 象 ,设水箱 的进 水量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档