高中数学解题方法系列:函数问题中抽象函数的4种策略

合集下载

“四招”突破抽象函数问题

“四招”突破抽象函数问题

“四招”突破抽象函数问题作者:唐浩德来源:《甘肃教育》2015年第16期【关键词】数学教学;函数问题;抽象;求解【中图分类号】 G633.6 【文献标识码】 C【文章编号】 1004—0463(2015)16—0119—01抽象函数是指没有给出函数的具体解析式,只给出一些体现函数特征的式子的一类函数.抽象函数问题的解决往往要从函数的奇偶性、单调性、周期性以及函数的图象入手.下面,从四个不同的方面来探寻一些解题规律.一、利用赋值法巧求抽象函数的函数值赋值法是求抽象函数值的重要方法.通过观察与分析抽象数问题中已知与未知的关系寻找有用的取值,挖掘出函数的性质,特别是利用函数的奇偶性与周期性来转化解答,有时还需多次赋值.例1 定义在R上的单调函数f(x)满足:存在实数x0使得对于任意实数x1、x2总有f (x0x1+x0x2)=f(x0)+ f(x1)+f(x2)恒成立.1.求f(1)+f(0)的值;2.求x0的值.解:1. 因为对于任意实数x1、x2总有f(x0x1+x0x2)=f(x0)+ f(x1)+f(x2)恒成立,令x1=1、x2=0,有f(x0)= f(x0)+f(1)+f(0),∴f(1)+f(0)=0.解:2. 令x1=0、x2=0,有f(0)=f(x0)+f(0)+f(0),即f(0)=f(x0)+2f (0),∴f(0)=f(x0).∴f(x0)=-f(0).又∵f(1)+f(0)=0,∴f(0)=-f(1),∴f(1)=-f(0),∴f(x0)=f(1).又∵f(x)为定义在R上的单调函数,∴x0=1.二、利用函数图像和奇偶性定义判断抽象函数的奇偶性抽象函数的奇偶性是要判断f(x)与f(-x)之间的关系,从而得出图象关于原点或y轴的对称,再结合函数的图象作进一步判断;在利用奇偶性的定义进行判断时,若等式中还有其他的量未解决,就需要特殊赋值加以解决.例2 已知函数f(x)对x、y∈R都有f(x+y)+f(x-y)=2f(x)f(y),且f(0)≠0,求证:f(x)是偶函数.解:∵对任意x、y∈R都有f(x+y)+f(x-y)=2f(x)f(y)令x=0,y=0,有f(0)+f(0)=2f(0)f(0),∴2f(0)=2f(0)2,∴f(0)=f(0)2,∴f(0)=0或f(0)=1.又∵f(0)≠0,∴f(0)=1.令x=0,有f(y)+f(-y)=2f(0)f(y)=2f(y),∴f(y)=f(-y),又∵y∈R,∴f (x)为偶函数.三、利用函数单调性求解或证明抽象不等式抽象函数的单调性,需要对所含的参数进行分类讨论,或根据已知条件确定参数的范围,最后再根据单调性求解或证明抽象不等式,同时要注意定义域的限制.例3 设函数f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y).若f (3)=1,且f(a)>f(a-1)+2,求实数a的范围.解:∵f(xy)=f(x)+f(y)且f(3)= 1,∴2=2f(3)=f(3)+f(3)= f(3×3)=f (9),又∵f(a)>f(a-1)+2,∴f(a)>f(a-1)+f(9)=f[9(a-1)],∵f(x)是定义在(0,+∞)上的增函数,从而得不等式组:a>0 ; ; ; ; ; ; ①9(a-1) >0 ; ; ; ②a>9(a-1) ; ; ; ;③四、利用函数模型巧解抽象函数问题抽象函数问题的设计一般都有一个基本函数作为模型,若能分析出这个函数模型,结合其性质来思考解题方法,那么这类问题就能简单解决.例4 已知函数f(x)对于任意实数x,y均有f(x+y)=f(x)+f(y),且当x>0时,有f(x)>0,f(-1)=-2.求f(x)在[-2,1]上的值域.解:∵对于任意实数x,y均有f(x+y)=f(x)+f(y),令x=0,y=0有f(0)=f(0)+f(0),∴f(0)=0.再令y=-x有f(x-x)=f(x)+f(-x)=f(0)=0,∴f(-x)=-f(x),∴f(x)为奇函数.设x10.又∵当x>0时有f(x)>0,f(0)=0,∴f(x)>f(0),∴f(x1-x2)>0,∴f (x)-f(x)>0,∴f(x)>f(x).∴f(x)为R的增函数.又∵f(-2)=f(-1-1)=f(-1)+f(-1)=2f(-1)=-4,f(1)=-f(-1)=2,∴当x∈[-2,1]时,f(x)∈[-4,2].编辑:谢颖丽。

高考数学中抽象函数的解法

高考数学中抽象函数的解法

函数 y f ( x) 的图象关于点 (a b ,0) 成中心对称图形。 2
( 3)设 a, b 均为常数,函数 y f (x) 对一切实数 x 都满足 f (a x) f (b x) 函
数y
f (x) 的图象关于轴 x
ab 对称。
2
4
例 14:如果 f ( x) = ax 2 bx c 对任意的 t 有 f (2 t ) f 2 t ) , 比较
所以 f ( x2 ) f ( x1 (x2 x1)] f (x1) f (x2 x1) f ( x1 )
所以 y f ( x) 在 R 上为增函数。
评析:一般地,抽象函数所满足的关系式,应看作给定的运算法则,则变量的赋 值或变量及数值的分解与组合都应尽量与已知式或所给关系式及所求的结果相 关联。
七、解抽象不等式(确定参数的取值范围)
九、周期问题
命题 1:若 a 是非零常数,对于函数 y=f(x) 定义域的一切 x,满足下列条件之一,则函 数 y=f(x) 是周期函数 .
函数 y=f(x) 满足 f(x+a)= - f(x) ,则 f(x) 是周期函数,且 2a 是它的一个周期 .
1 函数 y=f(x) 满足 f(x+a)= f ( x ) ,则 f(x) 是周期函数,且 2a 是它的一个周期 .
下面来证明,对任意 x R, f ( x) 0 设存在 x0 R ,使得 f ( x0 ) 0 ,则 f (0) f (x0 x0 ) f ( x0 ) f ( x0 ) 0 这与上面已证的 f (0) 0矛盾,因此,对任意 x R, f ( x) 0 所以 f ( x) 0 评析:在处理抽象函数的问题时, 往往需要对某些变量进行适当的赋值, 般向特殊转化的必要手段。

抽象函数问题解法

抽象函数问题解法

抽象函数问题解法抽象函数是指没有给出具体的函数解析式或图像,但给出了函数满足的一部分性质或运算法则的函数。

它与函数的奇偶性、单调性、周期性、对称性等函数性质联系在一起,具有很强的抽象性。

这类问题主要考查数学思想方法的运用能力,以及对数学语言以及符号的阅读理解能力。

本文结合具体问题分类剖析这类问题的求解策略。

一、利用函数性质的解题思想函数性质是反映函数特征的主要途径,充分利用题设条件中已表明或隐含的函数性质,选择适当的方法解决抽象函数问题。

1.利用对称性,数形结合例1:已知函数f(x)对一切实数x都有f(2+x)= f(2-x),如果方程f(x)=0恰好有4个不同的实根,求这些实根之和。

策略:由f(2+x)= f(2-x)可知是函数图像关于直线x=2对称。

又f(x)=0四个根按由小到大的顺序可设为x1、x2、x3、x4,则x1+x4=2×2=4,x2+x3=2×2=4,∴x1+x2+x3+x4=8。

2. 利用奇偶性分析函数特征例2:已知函数f(x)=ax+bsinx+3,且f(-3)=7,求f(3)的值。

策略:注意到g(x)=ax+bsinx=f(x)-3是奇函数,可得g(-3)= -g(3),即f(-3)-3= -[f(3)-3],f(3)=6-f(-3)= -1。

3. 利用单调性等价转化例3:已知奇函数f(x)在定义域(-1,1)上是减函数,试求满足不等式f(1-a)+f(1-a2)4.利用周期性研究函数特征例4:已知f(x)是定义在正整数集上的函数,对任意正整数x 都有f(x)=f(x-1)+f(x+1),且f(1)=2002,求f(2002)。

分析:根据x的任意性,判断函数的周期。

略解:由f(x)=f(x-1)+f(x+1),可得:f(x+3)=-f(x)。

∴f(x+6)=-f(x+3)=[-f(x)]=f(x),∴f(x)是以6为周期的周期函数,∴f(2002)=f(333×6+4)=f(4)=f(3+1)=-f(1)=-2002。

高考数学复习点拨 抽象函数解题思路

高考数学复习点拨 抽象函数解题思路

抽象函数解题思路所谓抽象函数是指没有给出解析式,只是给出一些特殊条件的函数问题,因为抽象,难以理解,因此它是高中数学函数局部的难点,但是这类问题对于开展抽象思维能力,进行数学思想方法的渗透,培养创新思想,提高数学素质,有着重要作用,所以也是重点考查内容。

下面就这类问题的解题思路举例说明如下,供同学们学习参考。

一、利用特殊模型的解题教材中给出了一些抽象函数的特殊模型,假设充分利用这些模型解题,既可掌握解决数学问题的规律、培养解题能力,又能体会从感性通过抽象概括上升为理性的认识规律。

1、用特殊模型直接解抽象函数客观题例1、函数f(x)对一切实数x、y满足f(0)≠0,f(x+y)=f(x)(y),且当x>0时,f (x)>1,那么当x<0时,f(x)的取值范围是。

解析:借助函数f(x)=a x〔a>1〕,那么0<f〔a〕<1评注:借助特殊函数直接解抽象函数客观题是常用的解题处理方法,可迅速得到正确答案。

2、借助特殊模型为解抽象函数解答题铺路例2、函数f〔x〕(x≠0)满足f(xy)=f(x)+f(y),〔1〕求证:f(1)=f(-1)=0;〔2〕求证:f(x)为偶函数;解析:因为定义域为(-∞,0)∪(o,+∞),所以由f (x)=logax (0<a<1〕, 理解题意显然不当,但是只要稍加变通,可以发现用f(x)=loga|x︳较为恰当。

〔证明过程学生自己解决〕评注:借助特殊函数模型铺路是解抽象函数解答题的常用处理方法,虽然不可用特殊模型代替求解,但可借助特殊模型理解题意,类比探索出解题思路,使抽象函数变的有章可循。

二、利用函数性质的解题函数的特征是通过各种各样的性质反映出来的,抽象函数也不例外,只要充分利用题设条件已说明的或通过挖掘出隐含的函数性质,就能顺利解决抽象型函数问题。

1、利用奇偶性、周期性解题例3、函数f〔x〕是R上的奇函数,且任意x,有f〔x+4〕=f〔x〕+f〔2〕,求f〔14〕解析:取x=-2,f〔2〕=f〔-2〕+f〔2〕∴f〔-2〕=0,∴f〔2〕=0,由条件知4是函数f〔x〕的一个周期,∴f〔14〕=f〔4 3+2〕=f〔2〕=0评注:要充分利用周期性,化未知为;运用整体思想,优化整体为局部,再由各局部的解决使整体问题得解。

高三数学抽象函数问题的解题策略

高三数学抽象函数问题的解题策略

高三数学抽象函数问题的解题策略一、利用专门模型有些抽象函数咨询题,用常规解法专门难解决,但与具体函数〝对号入座〞后,咨询题容易迎刃而解.这种方法多用于解填空题、选择题、解答题的解题后的检验,但解答题的解答书写过程一样不能用此法.例1 假设函数f(x)与g(x)在R 上有定义,且f(x-y)=f(x)g(y)-g(x)f(y), f(-2)=f(1)≠0,那么g(1)+g(-1)= .解 因为 f(x-y)=f(x)g(y)-g(x)f(y), 这是两角差的正弦公式模型,又f(-2)=f(1)≠0,那么可取x x f 32sin )(π=因此 f(-1-1)=f(-1)g(1)-g(-1)f(1) 例2 设函数f(x)是定义在R 上的减函数,且满足f(x+y)=f(x)f(y),f(-3)=8,那么不等式f(x)f(x-2)< 的解集为 . 解 因为函数f(x)满足f(x+y)=f(x)f(y),这是指数函数模型,又 f(-3)=8, 那么可取 ∵f(x)f(x-2)< ∴2)21()21(-x x <2561, 即22)21(-x <8)21(,∴ 2x-2 >8, 解不等式,得 x >5,∴ 不等式的解集为 {x|x >5}.二、利用函数性质函数的特点是通过函数的性质反映出来的,抽象函数也不例外,只有充分利用题设条件所讲明的函数的性质,灵活进行等价转化,抽象函数咨询题才能峰回路转、化难为易.1. 利用单调性例3 设f(x)是定义在〔0,+∞〕上的增函数,满足f(xy)=f(x)+f(y), f(3)=1,解不等式f(x)+f(x-8)≤2.解 ∵ 函数f(x)满足f(xy)=f(x)+f(y), f(3)=1,32sin )1()1()32sin()34sin(πππ---=-⇒g g .1)1()1()1(23)1(2323-=-+⇒---=⇒g g g g 2561 2561 ,)21()(x x f =∴ 2=1+1=f(3)+f(3)=f(9),由f(x)+f(x-8)≤2,得 f[x(x-8)]≤f(9),∵ 函数f(x)是定义在〔0,+∞〕上的增函数,那么 ∴ 不等式解集为 {x|8<x ≤9}. 2. 利用奇偶性 例4 函数f(x)=ax 5+bsinx+3,且f(-3)=7,求f(3)的值.分析 f(x)的解析式含有两个参数a 、b,却只有一个条件f(-3)=7,无法确定a 、b 的值,因此f(x)仍是抽象函数,但我们注意到g(x)=ax 5+bsinx 是奇函数,有g(-3)=-g(3).解 设g(x)=ax 5+bsinx,明显g(x)是奇函数,∵ f(-3)=7,∴ f(-3)=g(-3)+3=-g(3)+3=7 g(3)=-4,∴ f(3)=g(3)+3=-4+3=-1.3. 利用周期性例5 设函数f(x)在R 上是奇函数,f(x+2)=-f(x) ,当0<x ≤1时,f(x)=x,那么f(7.5)= .解 由f(x+2)=-f(x) ,得 f(x+4)=-f(x+2)=f(x),那么f(x)是以4为周期的周期函数,且是奇函数,因此 f(7.5)=f(2×4-0.5)=f(-0.5)=-f(0.5)=-0.5.例6 函数f(x)满足f(1)=2,f(x+1)=)(1)(1x f x f -+,那么 f(2007)= . 解 ∵ ∴ f(x)是以4为周期的周期函数, 4. 利用对称性例7 f(x)是奇函数,定义域为{x|x ∈R,x ≠0},又f(x)在区间〔0,+∞〕上是增函数,且f(-1)=0,那么满足f(x)>0的x 的取值区间是 .解 依条件作出f(x)的大致图象,如图1所示,从图象中可看出,当f(x)>0时,x 的取值区间是〔-1,0〕∪〔1,+∞〕.x >0, x-8>0, x(x-8)≤9, ⇒ 8<x ≤9, ,)(1)(1)(11)(1)(11)1(1)1(1)2(x f x f x f x f x f x f x f x f -=-+--++=+-++=+ ),()2(1)4(x f x f x f =+-=+从而 .21)1(1)3()2007(-=-==∴f f f ⇒例8 定义在〔-∞,+∞〕上的函数y=f(x)在〔-∞,2〕上是增函数,且函数y=f(x+2)为偶函数,那么f(-1),f(4),f(6)的大小关系为 . 解 设F(x)=f(x+2),∵ F(x)为偶函数,∴ F(-x)=F(x), 即f(2+x)=f(2-x),∴ 函数f(x)的图象关于直线x=2对称,∴ f(-1)=f(5),∵ f(x)在〔-∞,2〕上是增函数,∴ f(x)在〔2,+∞〕上是减函数,∴ f(6)<f(5)<f(4), 即f(6)<f(-1)<f(4).三、利用专门方法有些抽象函数咨询题,用常规方法来解决往往难于奏效,但用一些专门规方法来求解,常收到意想不到的成效.1. 利用赋值法例9 函数f(x)的定义域为R,对任意x 、y ∈R,都有f(x+y)+f(x-y)= 2f(x)f(y),且f(0)≠0.〔1〕求证:f(0)=1;〔2〕求证:f(x)是偶函数; 〔3〕 ① 求证:对任意x ∈R,有f(x+c)= -f(x)成 立;② 求证:f(x)是周期函数.解〔1〕令x=y=0,那么有2f(0)=2f 2(0), ∵ f(0)≠0,∴ f(0)=1.〔2〕令x=0,那么有f(y)+f(-y)= 2f(0)f(y),∵ f(0)=1,∴ f(-y)=f(y),∴ f(x)是偶函数. 〔3〕① 分不用22c 、c x + (c ≠0)替换x 、y, 有f(x+c)+f(x)=2f(2c x +)f(2c ). ∵ f(2c )=0, ∴ f(x+c)= -f(x) .② 由①知 f(x+c)=-f(x),用x+c 替换x,有f(x+2c)=-f(x+c)=f(x),∴ f(x)是以2c 为周期的周期函数.2. 利用递推法例10 设函数f(x)的定义域为R ,且对任意实数x,都有f(x)=f(x+1)-f(x+2),求证:f(x)是周期函数.解 ∵ f(x)=f(x+1)-f(x+2),∴ f(x+1)=f(x+2)-f(x+3),将以上两式相加,得 f(x+3)=-f(x),.0)2()0(=≠c f ,c c 使若存在常数∴ f(x+6)=-f(x +3)=f(x),∴ f(x)是周期函数,6是它的一个周期.例11 f(x)是定义在正整数集的函数,且满足f(x+y)=f(x)+f(y)+xy (x,y ∈N +),f(1)=1,求函数f(x)的解析式.解 令y=1,∵ f(1)=1,∴ f(x+1)=f(x)+f(1)+x, 即f(x+1)-f(x)=x+1,那么 f 〔2)-f(1)=2,f 〔3)-f(2)=3,……f(x)-f(x-1)=x.将以上各式相加,得 f(x)-f(1)=2+3+4+ (x)∴ f(x)=1+2+3+4+…+x=21x(x+1) (x ∈N +). 3. 利用反证法例12 函数f(x)在区间(-∞,+∞〕上是增函数,a,b ∈R,假设f(a)+f(b)≥f(-a)+f(-b).求证:a+b ≥0.证明 假设a+b <0,那么a <-b,b <-a,∵ 函数f(x)在区间(-∞,+∞〕上是增函数,∴ f(a) <f(-b),f(b) <f(-a),∴ f(a)+f(b)<f(-a)+f(-b),这与矛盾,∴ a+b <0不成立,即a+b ≥0.例13 设函数f(x)对定义域内任意实数都有f(x) ≠0,且f(x+y)=f(x)f(y)成立,求证:对定义域内任意x,都有f(x) >0.证明 假设在定义域内存在x 0,使f(x 0)≤ 0, ∵ ∴ f(x 0) >0,这与假设的f(x 0)≤ 0矛盾, 因此假设不成立,故对定义域内任意x,都有f(x) >0. 以上我们利用抽象函数的专门模型、函数性质、专门方法等途径举例讲明了求解抽象函数咨询题的一些策略.事实上处理这类咨询题时,常将几种解题策略综合使用,〝多管齐下〞方能游刃有余.,0)2(),2()2()2()22()(00200000≠==+=x f x f x f x f x x f x f。

抽象函数问题求解的常用方法

抽象函数问题求解的常用方法

抽象函数问题求解的常用方法
高中数学中,抽象函数的解题方法主要包括以下几个方面:
1.确定定义域和值域:抽象函数的定义域和值域是解题的基础,需要根据题目中给出的条件进行确定。

2.运用函数性质:抽象函数和一般的函数一样,具有诸如奇偶性、周期性、单调性等函数性质。

在解题过程中,可以根据这些性质进行分析和推导,从而得出结论。

3.运用复合函数的性质:抽象函数可能会出现复合函数的形式,运用复合函数的性质可以将抽象函数化简,从而更加方便进行分析和计算。

4.利用函数的图像特征:抽象函数的图像特征包括零点、极值、拐点等,在解题过程中可以结合图像特征进行分析,进一步确定函数的性质和变化趋势。

需要注意的是,抽象函数作为高中数学中的一个较为高级的知识点,需要学生掌握一定的数学基础和思维方法,例如函数图像的绘制、导数和微积分等知识。

因此,在学习抽象函数时,需要逐步扩充自己的数学知识面,并不断提高自己的数学思维能力和分析能力。

高考数学抽象函数6种快速解题方法与技巧(....

高考数学抽象函数6种快速解题方法与技巧(....

高考数学抽象函数的6大快速解题技巧1.换元法换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法.例1. 已知f(1+sinx)=2+sinx+cos 2x, 求f(x)解:令u=1+sinx,则sinx=u-1 (0≤u ≤2),则f(u)=-u 2+3u+1 (0≤u ≤2)故f(x)=-x 2+3x+1 (0≤u ≤2)2.方程组法运用方程组通过消参、消元的途径也可以解决有关抽象函数的问题。

例2..232|)x (f :|,x )x 1(f 2)x (f ),)x (f ,x ()x (f y ≥=-=求证且为实数即是实数函数设 解:02)x (xf 3 x ,x1)x (f 2)x1(f ,x x 12=++=-与已知得得代换用 .232|)x (f |,024)x (9f 02≥∴≥⨯-≥∆得由例3.f(x).1),x 0(x ,x 1)x1x (f )x (f 求且已知≠≠+=-+ 解:(1)1),x 0(x x 1)x1x (f )x (f ≠≠+=-+且 ,x1x 1)x 1x 1x 1x (f )x 1x (f :x x 1-x -+=---+-得代换用 :x )1(x-11 (2) .x 1x 2)x 11(f )x 1-x f( 得中的代换再以即-=-+ (3) .x1x 2)x (f )x -11f( ,x 111)x111x 11(f )1x 1(f --=+-+=---+-即 1)x 0(x x2x 21x x )x (f :2)2()3()1(223≠≠---=-+且得由 3.待定系数法如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题。

例4.已知f(x)是多项式函数,且f(x+1)+f(x-1)=2x 2-4x,求f(x).解:由已知得f(x)是二次多项式,设f(x)=ax 2+bx+c (a ≠0)代入比较系数得过且过:a=1,b= -2,c= -1,f(x)=x 2-2x-1.4.赋值法有些抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决。

高三抽象函数总结

高三抽象函数总结

高三抽象函数总结抽象函数是高中数学的一个难点,也是近几年来高考的热点。

考查方法往往基于一般函数,综合考查函数的各种性质。

本节给出抽象函数中的函数性质的处理策略,供内同学们参考。

抽象函数是指只给出函数的某些性质,而未给出函数具体的解析式及图象的函数。

由于抽象函数概念抽象,性质隐而不显,技巧性强,因此学生在做有关抽象函数的题目时,往往感觉无处下手。

抽象函数常见题型讲解:一、定义域问题:解决抽象函数的定义域问题——明确定义、等价转换。

例一.若函数)1(+=x f y 的定义域为)3,2[-,求函数)21(+=xf y 的定义域。

提示:函数的定义域是指自变量的取值范围,求抽象函数的定义域的关键是括号内式子的地位等同(即同一对应法则后括号内的式子具有相同的取值范围),如本题中的1+x 与21+x的范围等同。

变式训练1:已知函数)(2x f 的定义域是[1,2],求)(x f 的定义域。

变式训练2:已知函数)(x f 的定义域是]2,1[-,求函数)]3([log 21x f -的定义域。

二、求值问题 例二、已知定义域为的函数f(x),同时满足下列条件:①1)2(=f ,51)6(=f ;②)()()(y f x f y x f +=⋅,求f(3),f(9)的值。

注:通过观察已知与未知的联系,巧妙地赋值,赋值法是解此类问题的常用技巧。

变式训练3:已知R x f 是定义在)(上的函数,且R x f ∈=对任意的,1)1(都有下列两式成立:)6(,1)()(.1)()1(;5)()5(g x x f x g x f x f x f x f 则若-+=+≤++≥+的值为变式训练4:设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f _____变式训练5:已知)(),(x g x f 都是定义在R 上的函数,对任意y x ,满足)()()()()(y f x g y g x f y x f ⋅-⋅=- ,且0)1()2(≠=-f f ,则)1()1(-+g g =_________三、值域问题:例三、设函数f(x)定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域。

高中数学解题方法系列:函数问题中抽象函数的4种策略

高中数学解题方法系列:函数问题中抽象函数的4种策略

高中数学解题方法系列:函数问题中抽象函数的4种策略抽象函数是指没有给出函数的具体解析式,但给出了函数满足的一部分性质或运算法则的函数问题。

对考查学生的创新精神、实践能力和运用数学的能力,有着十分重要的作用。

化抽象为具体,联想类比思维都有助于问题的思考和解决。

一、数形结合使抽象函数具体一般地讲,抽象函数的图象为示意图居多,有的示意图可能只能根据题意作出n 个孤立的点,但通过示意图却使抽象变形象化,有利于观察、对比、减少推理、减小计算量等好处。

例1、设奇函数()f x 的定义域为[5,5]-,若当x (]5,0∈时,()f x 是增函数且f(2)=o 求不等式x ()0f x <的解。

分析:f(x)的图像如图所示x>0时2<x 5≤x<0时-2<x 0≤例2、已知函数f (x )对一切实数x 都有f (2+x )=f (2-x ),如果方程f (x )=0恰好有4个不同的实根,求这些实根之和。

分析:由f (2+x )=f (2-x )知直线x=2是函数图象的对称轴,又f (x )=0有四根,现从大到小依次设为x 1、x 2、x 3、x 4,则x 1与x 4,x 2与x 3均关于x=2对称,∴x 1+x 4=x 2+x 3=2×2=4,∴x 1+x 2+x 3+x 4=8。

评注:一般地,若函数f (x )满足f (a+x )=f (a-x ),则直线x=a 是函数图象的对称轴,利用对称性,数形结合,可使抽象函数问题迎刃而解。

二、利用单调性定义使问题具体加上函数符号f 即为“穿”,去掉函数符号f 即为“脱”。

对于有些抽象函数,可根据函数的单调性,实现对函数符号的“穿脱”,以达到简化的目的。

例3已知f(x)是定义在(0,)上的增函数,且f(y x )=f(x)-f(y),若f(6)=1,解不等式。

f(x+5)-f(x1)<2分析:由f(6)=1,f(yx )=f(x)-f(y)得:f(636)=f(36)-f(6),所以f(36)=2。

高中数学 抽象函数解法

高中数学 抽象函数解法

抽象函数问题一般是由所给的性质,讨论函数的其它性质,如单调性、奇偶性、周期性及函数变换与图象的对称性之间的关系,或是求函数值、解析式等.抽象函数问题的解法,主要是“赋值法”、“变换法”和“特例法”。

一、“赋值法”。

把已知函数所满足的性质,即一般性的条件,赋予特殊的值,推出函数所必须满足的其它性质。

例1.已知函数y=f(x)是定义在R上的奇函数,且f(3)=0,对任意x∈R,都有f(x+6)=f(x)+f(6) 成立,则f(2007) = ( 0 )f(-3)=0,取x=-3代入f(x+6)=f(x)+f(6)得f(6) =0,f(x+6)=f(x),周期为6…,选D。

例2.(2006重庆高考)已知定义域为R的函数f(x)满足f(x)满足f(f(x)- x2+x)=f(x)- x2+x.(Ⅰ)若f(2)=3,求f(1);又若f(0)=a,求f(a);(Ⅱ)设有且仅有一个实数x0,使得f(x0)= x0,求函数f(x)的解析表达式。

解:(I)取x=2,又f(2)=3得f(f(2)- 22+2)=f(2)- 22+2,即f(1)=1。

又f(0)=a,故f(f(0)-02+0)= a-02+0,即f(a)=a。

(Ⅱ)又满足f(x0)= x0的实数x0唯一,由f(f(x)- x2+x)=f(x)- x2+x可知任意x∈R有f(x)- x2+x=x0。

在上式中令x=x0有f(x0)- x02+x0=x0。

再代f(x0)= x0得x0- x02=0,故x0=0或x0=1。

若x0=0,方程f(x)= x有两个根,故x0≠0。

若x0=1,则有f(x)= x2–x+1,二、“变换法”。

利用已知函数所满足的一般性的关系式,通过变量代换,推出所要求的关系式。

例3.下列命题正确的序号是__________①若f(x)满足f(a+x)=f(b-x)则y=f(x)的图象关于直线对称;②若f(a+x)+f(a-x)=2c则y=f(x)的图象关于点(a,c)中心对称.③函数y=f(a+x)与y=f(b-x)的图象关于直线对称.④函数y=f(a+x)与y=-f(b-x)的图象关于点中心对称.解析:①②③④都正确。

抽象函数题的几种解题策略

抽象函数题的几种解题策略

抽象函数题的几种解题策略徐雅晶策略之一:定义法凡涉及函数的定义、函数的奇偶性、单调性等有关概念的抽象函数问题,其求解的一般思路是:紧扣有关概念,充分利用定义来解决问题。

例1: 已知f (x )的定义域为(0,+∞),且满足f (2)=1,f (xy )=f (x )+f (y ),又当x 2>x 1>0时,f (x 2)>f (x 1).(1)求f (1)、f (4)、f (8)的值;(2)若有f (x )+f (x -2)≤3成立,求x 的取值范围.变式:设f(x)对任意x,y R ∈,都有)()()(y f x f y x f +=+,且0>x 时,f(x)<0,f(1)=-2.(1)求证:f(x)是奇函数;(2)试问在33≤≤-x 时,f(x)是否有最值?如果有求出最值;如果没有,说出理由.策略之二:特殊化思想根据抽象函数f(x)的性质和特征,从满足题设条件的特殊函数(或特殊值)入手分析、研究,寻求问题的解题思路或结论。

例2、定义在区间(-∞,+∞)的奇函数f(x)为增函数,偶函数g(x)在区间(0,+∞)的图象与f(x)的图象重合。

设a>b>0,给出下列不等式:①f(b)-f(-a)>g(a)-g(-b) ②f(b)-f(-a)<g(a)-g(-b) ③f(a)-f(-b)>g(b)-g(-a)④f(a)-f(-b)<g(b)-g(-a)其中成立的是( ) A 、①与④B 、②与③C 、①与③D 、②与④策略之三:整体思想运用整体思想进行求解,即先化整体为局部,再由各局部的解决使问题获解。

例3、已知f(x)、g(x)为奇函数,F(x)=af(x)+bg(x)+3(a,b 为常数),若F(4)=-4,则F(-4)=。

策略之四:巧用性质合理利用抽象函数的性质及性质间的内在联系,经过推理或计算来解决问题。

例4、如果奇函数f(x)在区间[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是( )A 、增函数且最小值为-5B 、增函数且最大值为-5C 、减函数且最小值为-5D 、减函数且最大值为-5策略之五:数形结合充分挖掘抽象函数的图象信息,运用数形结合思想方法来解决问题。

抽象函数的常见解法

抽象函数的常见解法

抽象函数的常见解法抽象函数的常见解法2019年3月抽象函数是指函数的三种表示法:列表法、图象法、解析法均未给出,只给出函数记号f(x)的一类函数. 这类函数解决起来较抽象,但却能有效地反映学生对知识的掌握、理解、应用及迁移的能力,对培养、提高学生的发散思维和创造思维等能力有很好的促进作用。

因此,这类问题在高中数学的各类考试中经常出现。

下面谈谈这类问题常见的几种解法:一、赋值法先以特殊值作尝试,在探索中发现题中条件遵循某些规律或特点, 从而使问题得以解决。

这类问题经常出现, 要认真理解其解题的要领和方法。

例1设函数f(x)的定义域为自然数集,若f(x+y) = f(x)+f(y)+x 对任意自然数x,y 恒成立,且f(1) = 1,求f(x)的解析式。

分析:当令y=1时, 可得f(x+1)=f(x)+x +1, 这相似于数列中的递推关系, 再利用相应的递推关系可求出函数的解析式。

解:令y = 1, 则f(x+1) = f(x)+f(1)+x = f(x)+x+1,∴ f(1) = 1f(2)= f(1) +2f(3) = f(2) +3…f(n) = f(n-1) +nn(n+1)各式相加得:f(n) = 1+2+3+…+n = 2∴ f(x) = x(x+1) 2例2已知函数f(x)满足f(x+y)+f(x-y) = 2 f(x) · f(y),x ∈R,y ∈R, 且f(0)≠0,求证:f(x)是偶函数。

分析: 当令 x=y=0时, 可得f(0)=1,再利用题中条件变形求解。

证明:令x = y = 0∴ f(0) +f(0) = 2f 2 (0)∵ f(0) ≠ 0, ∴ f(0) = 1令 x = 0 , 则 f(y) + f(-y) = 2f(0) · f(y)∴ f(-y) = f(y), ∵ y∈R,∴ f(x)是偶函数例3 已知函数f(x)的定义域为(0 , + ∞ ),对任意x > 0, y> 0恒有f(xy) = f(x) + f(y)1求证:当x > 0时, f( ) = -f(x) x1分析:当令x=y=1时, 可得f(1)=0,再灵活运用f(1)=f(x· )可求得。

抽象函数的解题策略

抽象函数的解题策略

抽象函数的解题策略1.理解抽象函数:首先,应该了解抽象函数的定义,它是指一个函数不涉及具体的参数值,而是做出一般性的抽象,表达一般行为的形式。

2.掌握函数的概念:除了理解抽象函数的定义外,还需要掌握函数的概念,它被定义为一个参数变量到另一个输出值的关系,一般分为变量和参数,参数是可以改变的。

3.熟悉函数的几种类型:熟悉函数的几种类型,有一元函数、双元函数、多元函数以及化简函数,以及还有抽象函数等,仔细分析各种函数,理解抽象函数的特点,并利用这些特点解决问题。

4.理解函数运算:函数运算是关于函数关系的常见解决方案,其中包括函数的求值、常见函数的图像因素、单调及其他运算,要想解决抽象函数的问题,需要理解这些函数的运算,充分利用数学知识找出最佳的解决方案。

5.利用特殊工具解决特殊问题:特殊工具包括特定编程语言,如C 语言或Matlab,还有函数图像分析等,然后利用这些特殊工具来解决抽象函数的问题。

6.通过图像因素处理:利用图像因素处理的方法,可以解决抽象函数的复杂性及其他问题,因此,当需要解决抽象函数问题时,可采用图像因素处理的方法进行解决。

7.建立抽象模型:抽象模型是指通过不涉及具体数字的方法来描述函数,可以利用单位跳变模型、皮克定理以及关于解析函数分析的常见方法,结合抽象模型,可以很好的解决抽象函数问题。

8.利用算法工具:在解决抽象函数的问题时,可以采取算法的方式来解决,在算法方面,包括基本的数学归纳法、分式法、牛顿迭代法、区间分割法、差值拟合法等,可以利用算法工具求解抽象函数的问题。

9.结合实际:最后,解决抽象函数的问题时,还可以结合实际情况,借鉴或者组合已有方法,根据实际情况及需求来抽象通用解决方案,使得解决问题更加简单、高效。

抽象函数的解题策略

抽象函数的解题策略

抽象函数的解题策略摘要:抽象函数问题可以以函数的性质为出发点去思考,有时也可利用赋值法、特殊模型法去加以解决。

关键词:抽象函数定义域值域周期对称性单调性赋值法抽象函数是指没有给出函数的具体解析式或图像,仅仅给出函数的符号和一些性质,要求解决相关问题的一类函数。

这类函数属于初等数学和高等数学的衔接点,具有一定的抽象性,构思新颖,在理解及解题上有一定的难度,是考查学生思维能力的一个很好的工具,在历年的高考中是一个热点问题,同时也是一个难点问题。

抽象函数虽然没有没有给出函数的具体解析式或图像,但抽象函数的考查还是在考查函数的定义域、值域、周期、对称性、单调性等性质,所以我们解抽象函数问题时,可以以函数的性质为出发点去思考问题。

本文将结合以上五个函数性质及赋值法、特殊模型法来阐述抽象函数的解题策略。

1抽象函数的定义域例1、(2008高考江西文科)若函数的定义域是,则函数的定[0,2],则函数g(x)=的定义域是()A、[0,1]B、[0,1)C、[0,1)∪(1,4]D、(0,1)分析:对于函数y=f(x),因为定义域是[0,2],所以0≤x≤2。

对于函数g(x)=,则0≤2x≤2且x-1≠0,所以0≤x0,即f(x)≤f(x)+1≤3f(x),可知≤x≤,所以值域为,。

规律技巧总结:抽象函数的值域问题须明确值域就是函数值的取值范围,同时还须注意对于函数y=f(x)及y=f(g(x))而言,f(x)和f(g(x))的取值范围是一致的。

如下题:例3、若函数y=f(x+1)的值域为[-1,1],则函数y=f(3x+2)的值域是。

分析:函数y=f(3x+2)中定义域和对应法则与函数y=f(x+1)的定义域和对应法则完全相同,故函数y=f(3x+2)的值域也为[-1,1]。

3抽象函数的周期性函数周期性的定义:函数y=f(x),如果对定义域内的任意x,都有f(x+T)=f(x)(T 为不为零的常数),则称y=f(x)为周期函数,T为它的一个周期。

抽象函数题的十种解题策略

抽象函数题的十种解题策略

抽象函数题的十种解题策略湖南省冷水江市第六中学(417500)邓赞武我们把未给出具体解析式的函数称为抽象函数。

由于它既能考查函数的概念与性质,又能考查学生的思维能力及对函数思想的理解程度,因而在高考中备受青睐。

本文结合实例,介绍求解抽象函数题的十种常用策略。

策略一:活用定义与性质以函数“三性”为突破口,紧扣其定义及性质间的相互联系,经推理或计算求解问题。

例1:己知定义在R上的函数f(x)满足条件f(x+32)=-f(x)且y=f(x-34)是奇函数,给出以下四个命题:(1)函数f(x)是周期函数,(2)函数f(x)的图象关于点(-34,0)对称,(3)函数f(x)是偶函数,(4)函数f(x)是R上的单调函数,以上四个命题中,真命题序号是。

解析:∵f(x+32)=-f(x) ∴f(x)=-f(x-32)两式相减得:f(x+32)= f(x-32)即f(x+3)=f(x)故(1)正确∵y=f(x-34)是奇函数所以f(-x- 34)= -f(x-34)即f(-x- 34)+f(x-34)=0 即f(x)的图象关于点(-34,0)对称。

故(2)正确;又由f(-x- 34)= -f(x-34)用x-34代替x得:f(-x)=-f(x+32) 而f(x+32)=-f(x) ∴f(-x)=f(x) 故(3)正确,从而(4)错误∴真命题是(1)、(2)、(3)策略二:巧妙赋值抽象函数常以函数方程的形式出现,求解这类问题常赋予变量恰当的数值或代数式,经运算与推理,得出结论:例2、己知定义在R上的函数f(x)对任意x1,x2,满足关系f(x1+x2)=f(x1)+f(x2)+2,(1)证明f(x)的图象关于点(0,-2)成中心对称,(2)若x>0,则有f(x)>-2,求证:f(x)是R 上的增函数。

证明:(1)令x1=x2=0,则f(0)=-2,对任意实数x,令x1=x,x2=-x,则有f(x-x)=f(x)+f(-x)+2即f(x)+f(-x)=-4,故f(x)的图象关于点(0,-2)成中心对称。

“抽象函数”常见题型解题策略

“抽象函数”常见题型解题策略
为 实 施 创 新 教 育 的 支 持 条 件 。 也 就 是
变传 统 的 、 一 的“ 单 传授——接 受 ” 的教
学 模 式 ,在 课 堂 教 学 中 ,首 先 要 营 造 平
就 需要教师本 身要善于 发现 问题 、综合
运 用 知 识 解 决 新 问 题 的 能 力 。 此 外 教 师
的一 数。 试题 性较强, 类函 这类 抽象 需要
较 强 的 理 性 思 维 ,特 别 是 在 数 学 高 考 强 调考查“ 理性思维 ” 的今天 更应引 起我们 的重视 。
重视运用“ 赋值法’ ’ 例 1 定 义在 实 数集 R 上 的 函数


点 拨 : 题 无法 直接 求 出厂 , 本 ( 若 ) 将 已知等式左边 看成两个 函数 ,利 用换
() I 分别用 争 , c 0替 3( ) + 争( > )
. ) . )I )【 ) . 望 ; + 丝 。 . 触 触 , ,
例5 已知 ) 是定义在R上的奇
偶函数


+ ) 争L c ) ) 、 墨 c
… . .

又 、 … I X ., ,时 S l G
思维价 值 , 为创新做 出示范 。其次 , 并 教
要掌握一点常用的探索、 探究的方法 和
技巧才行 。 ・ 要改变教育观 念 , 意接受继 续教育 , 注 比 如学 习现 代教 学理 论 , 构 主义 的认 知 建
理 论 , 元 智 力 理 论 等 , 解 我 国 一 级 多 了
厂 y )广 ( ) O ( t = 。 己的思维过程 ,敏 锐捕捉 学生 的思维 闪 光点 , 给予 支持 、 并 鼓励 : 并在 解题 后不

抽象函数几类问题的解题方法与技巧

抽象函数几类问题的解题方法与技巧

一、求解析式的一般方法 1、换元法例1:已知f(x+1)=x 2-2x 求f(x)解:令t=x+1则x=t-1 f(t)=(t-1)2-2(t-1)=t 2-4t-3∴f(x)=x 2-4x-3换元法是解决抽象函数问题的基本方法,换元法包括显性换元法和隐性换元法。

2、方程组法例2:若函数f(x)满足f(x)+2f(x1)=3x ,求f(x) 解:令x=x 1则f(x 1)+2f(x)= x 3 f(x)+2f(x 1)=3x =>f(x)= x 2-x2f(x)+f(x 1)=x 3∴f(x)= x2-x例3 .例43、待定系数法例5:如果f[f(x)]=2x-1则一次函数f(x)=______ 解:f(x)是一次函数∴不妨设f(x)=ax+b(a ≠0)则f[f(x)]=af(x)+b=a(ax+b)+b=a^2x+ab+b 又已知f[f(x)]=2x-1例6:已知f(x)是多项式函数,解:由已知得f(x)是二次多项式,设f(x)=ax2+bx+c (a≠0)代入比较系数得过且过:a=1,b= -2,c= -1,f(x)=x2-2x-1.如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题。

二、判断奇偶性的一般方法在奇偶性的求解中,常用方法是赋值法,赋值法中常见的赋值有-1、0、1。

例7 定义在(-1、1)上的函数f(x)满足。

(1)对任意x、y∈ (-1、1) 都有f(x)+f(y)=f()(2)当x∈ (-1、0) 时,有f(x)>0求证(I)f(x)是奇函数,(II)f(证明:(1)令x=y=0,则2f(0)=f(0) ∴f(0)=0令y=-x,则f(x)+f(y)=f(x)+f(-x)=f(=f(0)=0∴f(-x)=-f(x) ∴f(x)是奇函数例8定义在R上的函数f(x),对任意 x,y属于R,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)≠0(1)求证f(0)=1 (2)求证y=f(x)是偶函数证明:(1)令x=y=0∴f(0)+f(0)=2×f(0)2∵f(0)≠0∴f(0)=1(2)令x=0则f(0+y)+ f(0-y)=2 f(0)f(y)f(y)+f(-y)=2f(y) =>f(-y)=f(y) =>y=f(x)是偶函数例9.对任意实数x,y ,均满足f(x+y2)=f(x)+2[f(y)]2且f(1)≠0,则f(2001)=_______.解:令x=y=0,得:f(0)=0,令x=0,y=1,得f(0+1)=f(0)+2f[(1)]2,三、单调性的求解方法例6:定义域为R 的函数f(x)满足:对于任意的实数x 、y 都有f(x+y)=f(x)+f(y)成立,且当x >0时,f(x)<0恒成立。

抽象函数问题求解的几种常用求法

抽象函数问题求解的几种常用求法

抽象函数问题求解的几种常用求法抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数。

如函数的定义域、解析递推式、特定点的函数值、特定的运算性质等。

它是高中数学函数部分的难点,由于抽象函数没有具体的解析式作为载体,因此理解起来比较困难,那么怎样求解抽象函数问题呢?以下介绍几种解抽象函数问题的方法。

一. 特殊化方法1. 在求函数解析式或研究函数性质时,一般用“代换”的方法,如将x 换成x -或将x 换成1x 等。

2. 在求函数值时,可用特殊值(如0或1或-1)“代入” 例1.已知()f x 满足()123363f x f x x ⎛⎫+=⎪⎝⎭,求()f x 的解析式。

解:先令3u x =,解出3u x =,于是有:()1232f u f u u ⎛⎫+= ⎪⎝⎭-----------①再以1u代替u 得:()1223f f u u u ⎛⎫+=⎪⎝⎭------------②联立①、②式解方程组,并消去1f u ⎛⎫⎪⎝⎭,解得()6455u f u u=-即所求解析式为:()6455x f x x=-例2. 若对一切自然数a 、b 都有()()()f a b f a f b ab +=++且()11f =,求()f x 的解析式。

解:利用特殊值法 令1a =,等式变为:()()()()111f b f f b b f b b+=++=++,即:()()11f b f b b +-=+,注意到上式是一个关于自然数b 的递推关系式,令1b =, 有()()2111f f -=+2b =,有()()3221f f -=+1b n =-,有()()()111f n f n n --=-+将以上1n -条等式左右两边分别相加,得:()()()()1123111f n f n n -=++++-+⨯-即:()()()1123111f n n n =+++++-+⨯-()11232n n n -=++++=即所求解析式为:()()12x x f x -=二. 函数性质法函数的特征是通过其性质(如奇偶性、单调性、周期性、对称性、特殊点等)反应出来的,抽象函数也是如此。

抽象函数解题方法

抽象函数解题方法

抽象函数解题方法函数是高中数学的核心内容,它对于学生掌握双基和发展能力具有十分重要的意义。

通常所说的函数,一般都具有解析式、图表等某种具体的表现形式,但是有一类函数只给出了函数所满足的一部分性质或运算法则,而没有明确的表现形式,这类函数我们通常称之为抽象函数。

抽象函数作为初等数学和近代数学的衔接点,既能体现数学的本质特征、近现代数学发展的威力,又能体现新课标对知识和技能考核的要求和高考的能力命意,必将受到人们的重视。

以下介绍几种解决抽象函数问题的方法,力求使抽象函数问题的解法有“章”可循。

一、赋值法赋值法的基本思路是:将所给函数的性质转化为条件等式,在条件等式中对变量赋予一些具体的值,构造出所需条件或发现某些性质,其中f(0)、f(1)是常常起桥梁作用的重要条件。

例1设函数f(x)的定义域为(0,+∞),且对于任意正实数x,y都有f(xy)=f(x)+f(y)恒成立。

若已知f(2)=1,试求:(1)f(1/2)的值;(2)f(2 - n)的值,其中n为正整数。

思路:合理赋值,化抽象为具体,发现递推规律。

解:(1)令x=y=1,则f(1)=f(1)+f(1)∴f(1)=0再令x=2,y=1/2,则f(1)=f(2)+f(1/2)∴f(1/2)= -f(2)= -1(2)由于f(2 - 2)=f(1/2)+f(1/2)= -2,f(2 - 3)= f(1/2)+f(1/2)+f(1/2)= -3,依此类推就有f(2 - n)= -n,其中n为正整数。

二、利用函数单调性解抽象函数不等式,要设法将它转化成显性的不等式求解.这需要具备两个条件:一是要把不等式化为f(□)>f(△)的形式,二是要判断函数的单调性。

再根据函数的单调性,将抽象函数不等式的符号"f"去掉,得到具体的不等式求解.例2 若f(x)是定义在(0,+∞)上的减函数,且对一切a,b∈(0,+∞),都有f(a/b)=f(a)-f(b),且f(4)=1,试解不等式f(x+6)-f(1/x)>2.思路:逆用函数单调性,将不等式中的函数关系转化为自变量之间的关系.解:因为f(a/b)=f(a)-f(b),且f(4)=1,所以f(x+6)-f(1/x)>2,则f(x+6)-f(1/x)>2f(4),则有f(x 2+6x)-f(4)>f(4),故f[(x 2+6x)/4]>f(4).由于f(x)是(0,+∞)上的减函数,因此由1/x>0,x+6>0,(x 2+6x)/4<4同时成立解得0<x<2,故原不等式的解集是(0,2).三、利用函数的对称性例3 设函数y=f(x)对一切实数x都满足f(x+3)=f(3-x)且方程f(x)=0恰好有6个不同的实根,这6个根的和为()A.18B.12C.9D.0解:由命题1知,y=f(x)的图象关于x=3对称,故6个根的和为18,故选A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学解题方法系列:函数问题中抽象函数的4种策略抽象函数是指没有给出函数的具体解析式,但给出了函数满足的一部分性质或运算法则的函数问题。

对考查学生的创新精神、实践能力和运用数学的能力,有着十分重要的作用。

化抽象为具体,联想类比思维都有助于问题的思考和解决。

一、数形结合使抽象函数具体一般地讲,抽象函数的图象为示意图居多,有的示意图可能只能根据题意作出n 个孤立的点,但通过示意图却使抽象变形象化,有利于观察、对比、减少推理、减小计算量等好处。

例1、设奇函数()f x 的定义域为[5,5]-,若当x (]5,0∈时,()f x 是增函数且f(2)=o 求不等式x ()0f x <的解。

分析:f(x)的图像如图所示 x>0时2<x 5≤ x<0时-2<x 0≤例2、已知函数f (x )对一切实数x 都有f (2+x )= f (2-x ),如果方程f (x )=0恰好有4个不同的实根,求这些实根之和。

分析:由f (2+x )=f (2-x )知直线x=2是函数图象的对称轴,又f (x )=0有四根,现从 大到小依次设为x 1、x 2、x 3、x 4,则x 1与x 4,x 2与x 3均关于x=2对称, ∴x 1+x 4= x 2+x 3=2×2=4, ∴x 1+x 2+x 3+x 4=8。

评注:一般地,若函数f (x )满足f (a+x )=f (a-x ),则直线x=a 是函数图象的对称轴, 利用对称性,数形结合,可使抽象函数问题迎刃而解。

二、利用单调性定义使问题具体加上函数符号f 即为“穿”,去掉函数符号f 即为“脱”。

对于有些抽象函数,可根据函数的单调性,实现对函数符号的“穿脱”,以达到简化的目的。

例3已知f(x)是定义在(0,)上的增函数,且f(yx)=f(x)-f(y),若f(6)=1,解不等式。

f(x+5)- f(x1)<2 分析:由f(6)=1,f(y x )=f(x)-f(y)得:f(636)=f(36)-f(6),所以f(36)=2。

而 f(x+5)- f(x 1)<2“穿”f 号得f(x+5)- f(x1)<f(36)。

即f()52x x +<f(36)又根据f(x)是定义在(0,)上的增函数,“脱”得x 。

在结合函数的定义域可得:0<x<4三、类比模型使解题思路具体模型,就是根据题目给定的关系大胆猜想抽象函数的生成原始模型,作出目标猜想,利用模型函数的有关性质去探索解题方法尤其对选择题或填空题中抽象函数也可赋于具体的背景函数以帮助作答。

对于解答题则可以起到启迪思路并起验证作用。

例4、已知函数f (x )(x≠0)满足f(xy)=f(x)+f(y), f(6)=1 (1)求证:f(1)=f(-1)=0; (2)求证:f(x)为偶函数;(3)若f(x)在(0,+∞)上是增函数,解不等式f(x)+f(x+5)≤2。

分析:因为定义域为(-∞,0)∪(o,+∞),所以由f(x)=log a x(0<a <1)理解题意显然不当,但是只要稍加变通,可以发现用f(x)=log a |x ︳理解题意较为恰当,第(3)小题解不等式就可与解对数不等式类比处理。

(1)令x=y=1得f(1)=0,令x=y= -1得f(-1)=0; (2)令y= -1得f(-x)=f(x);(3)f(6)= f(6)+f(6) =2∵f(x)为偶函数,∴f(x )+f (x+5)=f (|x|)+f (|x+5 |)=f (|x(x+5)|)≤f(6)。

o<|x(x+5)| ≤6 ∴355612-≤<--<≤-≤≤-x x x 或或例4、已知函数f (x )对一切实数x 、y 满足f(0)≠0,f(x+y)=f(x)(y),且当x <0时,f (x )>1,求证:(1)当x >0时,0<f (x )<1;(2)f(x)在x∈R 上是减函数。

分析:由f (x )= a x(0<a <1)理解题意。

(1)令x=y=0得f (0)=f 2(0),又f (0)≠0,f (0)=1,再令y=-x 得f (x )(-x )=1,∵当时x >0时,f (-x )>1,∴0<f (x )<1;(2)受指数函数的单调性启发得,x <0时,f (x )>1;x >0时,0<f (x )<1;x=0时,f (x )≠0,f (x )>0。

又∵f(x+y)=f(x)f(y), (x、y∈R) ,设x 1<x 2,x+y= x 1 ,x= x 2则()()=21x f x f f(x 1-x 2)>1,∵f(x 2)>0∴f(x 1)>f(x 2),因此,f(x)在x∈R 上是减函数。

四、赋值策略使问题具体抽象函数常常以函数方程的形式出现,解决这类问题的时候让变量取一些特殊值或特殊式,从而使问题解决,并具有一定的规律性。

例5.如果()()()f a b f a f b +=⋅且(1)2f =,则(1)(3)(5)(0)(2)(4)f f f f f f ++++L (2005)(2004)f f =( )A. 1002B. 1003C. 2004D. 2006 分析:所求的是函数值分式的和,从已知式变形()()()f a b f b f a +=知函数值商等于自变量值差的函数。

解:(1)(3)(5)(2005)(1)(1)(1)(0)(2)(4)(2004)f f f f f f f f f f f ++++=+++L L 1003(1)2006f ==例6 设f(x)是区间(0,1)上的函数,且同时满足:①对任意x ∈(0,1),恒有f(x)>0;②对于任意),(x ,x 1021∈,恒有)()(21x f x f +)1()1(21x f x f --≤2.试证明:(I )对任意x ∈(0,1)都有)1()(x f x f -=;(II )对任意),(x ,x 1021∈都有)()(21x f x f =. 解:(Ⅰ)令,x x ,x x -==121),(x ,x 1021∈,由②知)1()(x f x f -+)()1(x f x f -≤2,由①知∴>->,)x (f ,)x (f 010)1()(x f x f -+)()1(x f x f -≥2,)1()(x f x f -∴+)()1(x f x f -=2.上式取等号时)1()(x f x f -=1,故)1()(x f x f -=. 1003个(Ⅱ)由已知及(Ⅰ)得,)()(21x f x f +=--)x (f )x (f 2111)()(21x f x f +)()(21x f x f 2≤,1)()(21≤∴x f x f ,同理1)()(12≤x f x f ,∴)x (f )x (f 21=.例.7已知定义在R 上的函数()f x 满足:(1) 值域为()1,1-,且当0x >时,()10f x -<<(2)对于定义域内任意的实数,x y ,均满足:()()()()()1f m f n f m n f m f n ++=+试回答下列问题:(Ⅰ)试求()0f 的值;(Ⅱ)判断并证明函数()f x 的单调性; (Ⅲ)若函数()f x 存在反函数()g x ,求证:21111511312g g g g n n ⎛⎫⎛⎫⎛⎫⎛⎫+++> ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭L . 讲解:(Ⅰ)在()()()()()1f m f n f m n f m f n ++=+中,令0,0m n >=,则有()()()()()010f m f f m f m f +=+.即:()()()()()100f m f m f f m f +=+⎡⎤⎣⎦. 也即:()()()2010f f m ⎡⎤-=⎣⎦.由于函数()f x 的值域为()1,1-,所以,()()210f m ⎡⎤-≠⎣⎦,所以()00f =.(Ⅱ)函数()f x 的单调性必然涉及到()()f x f y -,于是,由已知()()()()()1f m f n f m n f m f n ++=+,我们可以联想到:是否有()()()()()1f m f n f m n f m f n --=-?(*)这个问题实际上是:()()f n f n -=-是否成立?为此,我们首先考虑函数()f x 的奇偶性,也即()()f x f x -与的关系.由于()00f =,所以,在()()()()()1f m f n f m n f m f n ++=+中,令n m =-,得()()0f m f m +-=.所以,函数()f x 为奇函数.故(*)式成立.所以,()()()()()1f m f n f m n f m f n -=--⎡⎤⎣⎦.任取12,x x R ∈,且12x x <,则210x x ->,故()210f x x -<且()()211,1f x f x -<<.所以,()()()()()21212110f x f x f x x f x f x -=--<⎡⎤⎣⎦所以,函数()f x 在R 上单调递减.(Ⅲ)由于函数()f x 在R 上单调递减,所以,函数()f x 必存在反函数()g x ,由原函数与反函数的关系可知:()g x 也为奇函数;()g x 在()1,1-上单调递减;且当10x -<<时,()0g x >.为了证明本题,需要考虑()g x 的关系式.在(*)式的两端,同时用g 作用,得:()()()()1f m f n m n g f m f n ⎡⎤--=⎢⎥-⎣⎦,令()(),f m x f n y ==,则()(),m g x n g y ==,则上式可改写为:()()1x y g x g y g xy ⎛⎫--= ⎪-⎝⎭.不难验证:对于任意的(),1,1x y ∈-,上式都成立.(根据一一对应). 这样,我们就得到了()g x 的关系式.这个式子给我们以提示:即可以将2131n n ++写成1x yxy--的形式,则可通过裂项相消的方法化简求证式的左端.事实上,由于()()()()()()211112111211131121111212n n n n n n n n n n n n -++++===++++-⎛⎫⎛⎫--⋅ ⎪ ⎪++++⎝⎭⎝⎭, 所以,21113112g g g n n n n ⎛⎫⎛⎫⎛⎫=-⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭. 所以,211151131g g g n n ⎛⎫⎛⎫⎛⎫+++ ⎪⎪ ⎪++⎝⎭⎝⎭⎝⎭L 1111112334121122111222g g g g g g n n g g n g g g n ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎪⎢⎥⎢⎥⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦⎛⎫⎛⎫=- ⎪ ⎪+⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫=+-> ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭L点评:一般来说,涉及函数奇偶性的问题,首先应该确定()0f 的值.。

相关文档
最新文档