10型,12型游梁式抽油机用53型双圆弧齿轮减速器设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10型,12型游梁式抽油机用53型双圆弧齿轮减速器设计

摘要

本文阐述了常规游梁式抽油机结构组成、工作原理及特点。中的双圆弧齿轮对游梁式抽油机53型双圆弧齿轮减速器进行的设计计算。并结合设计对系统进行了动态校正和设计工作过程中图文分析。

游梁式抽油机采用四连杆机构进行传动,对于减速器齿轮的转动,以及齿轮之间的传动进行了数字运算,对于53型双圆弧齿轮减速器的内部结构进行了设计。

关键字:抽油机工作原理,悬点载荷,双圆弧齿轮

目录

1

2

3

4

绪论

随着原油和油气的产出,贮存压力减小。最终在某一点,贮存压力达到小的必需用人工举升的方式才可以产油。

游梁式抽油机,是一个借鉴了水井工业的理想应用。自从1925年Trout 设计的油泵演变到现今的具有统治地位游梁是人工举升设备。在石油采油过程中对常规游梁式抽油机的应用已有上百年的历史,由于其结构简单,平衡性、稳定性突出等特点而被延用至今。历经多年的发展和完善,主要是提高其可靠性和零件的设计方法上。随着科技的发展,游梁式抽油机出现了好多的类型。

如下分类:

(1)传统型传统的曲柄配重型被广泛的接受和认可,是久经考验的油田“战士”。支点前面是负载,后面是配重。

(2)前置配重型由于其独特的几何结构和配重特征,低转矩峰值和低动力需求。运行特点是是快速的下冲程,慢速的上冲程。减小重型负载上冲程的加速载荷。降低峰值转矩延长油杆寿命。

(3)结构紧凑型紧凑结构的设计防便用于经常移动的工作方式或者城区的应用,很多部件在工厂已经完成安装。

(4)气压配重型应用压缩气体替代沉重的铸铁配重块并且可以更精确得控制配重。大大的减轻了系统地重量,运输和安装费用明显降低。气压配重独特的优点在于更大的增大冲程,而对于铸铁配重结构来说将是非常庞大难于实现。

(5)游梁配重型配重块安装在游梁的另一端,是一种适合浅井应用的经济型。

我国生产的抽油机按照抽油机承受的悬点额定载荷主要分为2、3、5、8、10、12、14、16等型,每种型式的抽油机又按照不同冲程、曲柄轴额定扭矩分为多种规格的机型。近几年随着计算机应用技术的不断提高,优化设计方法也被广泛应用于抽油机的设计中,使得抽油机设计周期大大缩短,设计精度大大提高,抽油机的规格和类型也更加多样化。

抽油机减速器是一种承受重复交变载荷、长期连续运转的减速装置。双圆弧齿轮减速器是根据机械工业部和石油工业部通过的JB2677-80常规型游梁式抽油机结构尺寸规定设计的, 现今已经设计了很多型号,如CYJ2-0.6-2.5Y等, 并已陆续投入产和现场使用。

本文我们要研究53型双圆弧齿轮减速器的设计制造,并对其内部结构进行设计计算。游梁式抽油机的工作原理

游梁式抽油机是有杆抽油系统的地面驱动装置,它由动力机、减速器、机架和连杆机构等部分组成。减速器将动力机的高速旋转运动变为曲柄轴的低速旋转运动;曲柄轴的低速旋转圆周运动由连杆机构变为驴头悬绳器的上下往复直线运动,从而带动抽油泵进行抽油工作。游梁式抽油机是机械采油设备中问世最早的抽油机机种,基本结构如图1所示:

图1 常规游梁式抽油机基本机构图

1—刹车装置2一电动机3一减速器皮带轮4一减速器5一动力输入轴6一中间轴7一输出轴8一曲柄9一曲柄销10一支架11一曲柄平衡块12一连杆13一横梁轴14一横梁15一游梁平衡块16一游梁17一支架轴18一驴头19一悬绳器20一底座

常规53型游梁式抽油机结构尺寸示意

前臂长:a=3.0m;

后臂长:b=2.4m;

连杆长:L=3.350m;

支架高:H=5.290m;

减速器输出轴中心高:G=2.020m;

水平中距:I=2.300m;

曲柄旋转半径:OR=1.15Om。

常规游梁式抽油机的悬点载荷计算

一、抽油机悬点载荷简介

当游梁式抽油机通过抽油杆的上下往复运动带动井下抽油泵工作时,在抽油机的驴头悬点上作用有下列几类载荷:

(1)静载荷 包括抽油杆自重以及油管内外的液体静压作用于抽油泵柱塞上的液柱静载荷。

(2)动载荷 由于抽油杆柱和油管内的液体作非匀速运动而产生的抽油杆柱动载荷以及作用于抽油泵柱塞上的液柱动载荷。

(3)各种摩擦阻力产生的载荷 包括光杆和盘根盒间的摩擦力、抽油杆和油液间的摩擦力、抽油杆(尤其是接箍)和油管间的摩擦力、油液在杆管所形成的环形空间中的流动阻力、油液通过泵阀和柱塞内孔的局部水力阻力,还有柱塞和泵筒之间的摩擦阻力。

二、悬点载荷计算

j d W W W =+ j W ---悬点静载荷; d W ---悬点动载荷;

(1)悬点静载荷

1.抽油杆自重计算

在上下冲程中,抽油杆自重始终作用于抽油机驴头悬点上,是一个不变的载荷,它可以用下列式子计算:

'/1000r r r p r p W A gL q L ρ==

'r W -抽油杆自重,kN; p L -抽油杆总长度,m;r A -抽油杆的截面积,m 2;g 重力加速度,9.81N/kg 2;r ρ-抽油杆的密度,kg/m 3;r q -每米抽油杆自重,kN/m 。 对于组合杆柱,如果级数为K,则可用下式计算:

r q =1k

ri i i q ε=∑

ri q ---第i 级抽油杆住每米自重,KN/m;

i ε----第i 级杆柱长度与总长之比值;

由于抽油杆全部沉没在油管内的液体之中,所以在计算悬点静载荷时,要考虑液体浮力的影响。用r W 代表抽油杆柱在液体中的自重,则它可以用下式计算:

'()(1)f r r f r p r r

W A L g W ρρρρ=-=-=(1-0.127f ρ)**r p q L 其中,f ρ---井液密度,t/3m ;r W ---液体中抽油杆自重;

2. 作用于柱塞的液柱静载荷计算

作用于柱塞上的液柱载荷随着抽油泵阀门开闭状态的不同而变化。下冲程时,柱塞上的游动阀是打开的,柱塞上下连通。若不计井液通过游动阀和柱塞孔的阻力,则柱塞上下的井液压力相等,作用于柱塞上的液柱载荷等于零。上冲程时,游动阀关闭而固定阀打开,柱塞上下不再连通。柱塞上面的液体压力等于油管内液体静压力,而柱塞下面的液体压力,忽略液体通过固定阀时的阻力,等于油管外动液面以下液柱的静压力。这一压力差在柱塞上产生液柱载荷f W (单位kN ):

f W = f ρ*g*(p L -h)* p A =f ρ*g*0H * p A

式中,f W ---作用于柱塞的液柱载荷;f ρ---井液密度,t/3m ;g----重力加速度,g=9.81m/2

s ;p L ---抽油杆总长或挂泵深度,m;h---泵的沉没深度,m;0H ---油井动液面深度,m p A ---泵的柱塞面积,2m 3.悬点静载荷计算

上冲程时,悬点静载荷等于上述两项载荷之和,则有:

j W = r W +f W

下冲程时, 悬点静载荷等于抽油杆柱在液体中的自重,则有:

j W = r W

(2)悬点动载荷

1.抽油杆柱动载荷

抽油杆和液柱在非匀速运动过程中产生惯性力而作用于抽油机悬点上的载荷称为动载荷。惯性力的方向与加速度方向相反。在抽油机系统中,我们规定取向上加速度为正,即取向下的载荷为正。忽略抽油杆的弹性,将其视为一集中质量,则抽油杆柱动载荷就等于抽油杆质量与加速度的乘积。

rd W ≈ j W ×a g = j W g

×(2***dTF d TF d d ωωωθθ+)=r p r L A a ρ rd W ---抽油杆柱动载荷;

j W ---悬点静载荷;

a ---悬点加速度(驴头圆弧切向加速度);

相关文档
最新文档