运筹学 动态规划应用---背包问题

合集下载

运筹学及其应用9.3 背包问题

运筹学及其应用9.3 背包问题
此模型解决的是运输工具包括卫星的最优装载问题。 其数学模型为:
1
设 xi为第 i 种物品装入的件数,则背包问题可归结为如下
形式的整数规划模型:
n
∑ max z = gi (xi ) i =1
∑ n
i=1
ai xi

a
xi ≥ 0
整数 (i = 1,2,L, n)
下面从一个例子来分析动态规划建模。
9.3 背 包 问 题
一般的提法为:一旅行者携带背包去登山。已知他所能承受 的背包重量的极限为a (千克),现有n种物品可供他选择装入 背包。第i种物品的单位重量为 ai (千克),其价值(可以是表
明本物品对登山者的重要性指标)是携带数量 xi 的函数
gi ( xi )(i=1,2,…n).问旅行者应如何选择携带物品的件 数,以使总价值最大?
x1
+ 4x2 + 5x3 ≤ xi ≥ 0, 整数
10
(i = 1,2,3)
5x3
s3 = s4 − 5x3 货物3
s4 = 10
g1 ( x1 ) = 4 x1
g2(x2 ) = 5x2
g3(x3) = 6x3
K=2 时 其中
f2 (s3)
=
max {g
0≤4 x2 ≤s3
2
(
x2
)
+
f1(s2 )}
3
x1
+ 4x2 + 5x3 ≤ xi ≥ 0, 整数
10
(i = 1,2,3)
5x3 s3 = s4 − 5x3
货物3
s4 = 10
g1 ( x1 ) = 4 x1
g2(x2 ) = 5x2

动态规划——01背包问题

动态规划——01背包问题

动态规划——01背包问题⼀、最基础的动态规划之⼀01背包问题是动态规划中最基础的问题之⼀,它的解法完美地体现了动态规划的思想和性质。

01背包问题最常见的问题形式是:给定n件物品的体积和价值,将他们尽可能地放⼊⼀个体积固定的背包,最⼤的价值可以是多少。

我们可以⽤费⽤c和价值v来描述⼀件物品,再设允许的最⼤花费为w。

只要n稍⼤,我们就不可能通过搜索来遍查所有组合的可能。

运⽤动态规划的思想,我们把原来的问题拆分为⼦问题,⼦问题再进⼀步拆分直⾄不可再分(初始值),随后从初始值开始,尽可能地求取每⼀个⼦问题的最优解,最终就能求得原问题的解。

由于不同的问题可能有相同的⼦问题,⼦问题存在⼤量重叠,我们需要额外的空间来存储已经求得的⼦问题的最优解。

这样,可以⼤幅度地降低时间复杂度。

有了这样的思想,我们来看01背包问题可以怎样拆分成⼦问题:要求解的问题是:在n件物品中最⼤花费为w能得到的最⼤价值。

显然,对于0 <= i <= n,0 <= j <= w,在前i件物品中最⼤花费为j能得到的最⼤价值。

可以使⽤数组dp[n + 1][w + 1]来存储所有的⼦问题,dp[i][j]就代表从前i件物品中选出总花费不超过j时的最⼤价值。

可知dp[0][j]值⼀定为零。

那么,该怎么递推求取所有⼦问题的解呢。

显⽽易见,要考虑在前i件物品中拿取,⾸先要考虑前i - 1件物品中拿取的最优情况。

当我们从第i - 1件物品递推到第i件时,我们就要考虑这件物品是拿,还是不拿,怎样收益最⼤。

①:⾸先,如果j < c[i],那第i件物品是⽆论如何拿不了的,dp[i][j] = dp[i - 1][j];②:如果可以拿,那就要考虑拿了之后收益是否更⼤。

拿这件物品需要花费c[i],除去这c[i]的⼦问题应该是dp[i - 1][j - c[i]],这时,就要⽐较dp[i - 1][j]和dp[i - 1][j - c[i]] + v[i],得出最优⽅案。

实验报告:动态规划01背包问题)范文(最终五篇)

实验报告:动态规划01背包问题)范文(最终五篇)

实验报告:动态规划01背包问题)范文(最终五篇)第一篇:实验报告:动态规划01背包问题)范文XXXX大学计算机学院实验报告计算机学院2017级软件工程专业班指导教师学号姓名2019年 10月 21日成绩课程名称算法分析与设计实验名称动态规划---0-1 背包问题①理解递归算法的概念实验目的②通过模仿0-1 背包问题,了解算法的思想③练习0-1 背包问题算法实验仪器电脑、jdk、eclipse 和器材实验:0-1 背包算法:给定N 种物品,每种物品都有对应的重量weight 和价值 value,一个容量为maxWeight 的背包,问:应该如何选择装入背包的物品,使得装入背包的物品的总价值最大。

(面对每个物品,我们只有拿或者不拿两种选择,不能选择装入物品的某一部分,也实验不能把同一个物品装入多次)代码如下所示:内 public classKnapsackProblem {容 /**、上 * @paramweight 物品重量机 * @paramvalue 物品价值调 * @parammaxweight背包最大重量试程 *@return maxvalue[i][j] 中,i 表示的是前 i 个物品数量,j 表示的是重量序 */、publicstaticint knapsack(int[]weight , int[]value , intmaxweight){程序运行结果实验内 intn =;包问题的算法思想:将前 i 个物品放入容量容为 w 的背包中的最大价值。

有如下两种情况:、①若当前物品的重量小于当前可放入的重量,便可考虑是上否要将本件物品放入背包中或者将背包中的某些物品拿出机来再将当前物品放进去;放进去前需要比较(不放这个物调品的价值)和(这个物品的价值放进去加上当前能放的总试重量减去当前物品重量时取i-1 个物品是的对应重量时候程的最高价值),如果超过之前的价值,可以直接放进去,反序之不放。

动态规划——背包问题python实现(01背包、完全背包、多重背包)

动态规划——背包问题python实现(01背包、完全背包、多重背包)

动态规划——背包问题python实现(01背包、完全背包、多重背包)参考:⽬录描述:有N件物品和⼀个容量为V的背包。

第i件物品的体积是vi,价值是wi。

求解将哪些物品装⼊背包,可使这些物品的总体积不超过背包流量,且总价值最⼤。

⼆维动态规划f[i][j] 表⽰只看前i个物品,总体积是j的情况下,总价值最⼤是多少。

result = max(f[n][0~V]) f[i][j]:不选第i个物品:f[i][j] = f[i-1][j];选第i个物品:f[i][j] = f[i-1][j-v[i]] + w[i](v[i]是第i个物品的体积)两者之间取最⼤。

初始化:f[0][0] = 0 (啥都不选的情况,不管容量是多少,都是0?)代码如下:n, v = map(int, input().split())goods = []for i in range(n):goods.append([int(i) for i in input().split()])# 初始化,先全部赋值为0,这样⾄少体积为0或者不选任何物品的时候是满⾜要求dp = [[0 for i in range(v+1)] for j in range(n+1)]for i in range(1, n+1):for j in range(1,v+1):dp[i][j] = dp[i-1][j] # 第i个物品不选if j>=goods[i-1][0]:# 判断背包容量是不是⼤于第i件物品的体积# 在选和不选的情况中选出最⼤值dp[i][j] = max(dp[i][j], dp[i-1][j-goods[i-1][0]]+goods[i-1][1])print(dp[-1][-1])⼀维动态优化从上⾯⼆维的情况来看,f[i] 只与f[i-1]相关,因此只⽤使⽤⼀个⼀维数组[0~v]来存储前⼀个状态。

那么如何来实现呢?第⼀个问题:状态转移假设dp数组存储了上⼀个状态,那么应该有:dp[i] = max(dp[i] , dp[i-v[i]]+w[i])max函数⾥⾯的dp[i]代表的是上⼀个状态的值。

分支界限方法01背包问题解题步骤

分支界限方法01背包问题解题步骤

分支界限方法是一种用于解决优化问题的算法。

在动态规划算法中,分支界限方法被广泛应用于解决01背包问题。

01背包问题是一个经典的动态规划问题,其解题步骤如下:1. 确定问题:首先需要明确01背包问题的具体描述,即给定一组物品和一个背包,每个物品有自己的价值和重量,要求在不超过背包容量的情况下,选取尽可能多的物品放入背包,使得背包中物品的总价值最大。

2. 列出状态转移方程:对于01背包问题,可以通过列出状态转移方程来描述问题的求解过程。

假设dp[i][j]表示在前i个物品中,背包容量为j时能够获得的最大价值,则状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]]+v[i])3. 初始化边界条件:在动态规划中,需要对状态转移方程进行初始化,一般情况下,dp数组的第一行和第一列需要单独处理。

对于01背包问题,可以初始化dp数组的第一行和第一列为0。

4. 利用分支界限方法优化:针对01背包问题,可以使用分支界限方法来优化动态规划算法的效率。

分支界限方法采用广度优先搜索的思想,在每一步选择最有希望的分支,从而减少搜索空间,提高算法的效率。

5. 实际解题步骤:根据上述步骤,实际解决01背包问题的步骤可以概括为:确定问题,列出状态转移方程,初始化边界条件,利用分支界限方法优化,最终得到问题的最优解。

分支界限方法在解决01背包问题时起到了重要的作用,通过合理的剪枝策略,可以有效地减少动态规划算法的时间复杂度,提高问题的求解效率。

分支界限方法也可以应用于其他优化问题的求解过程中,在算法设计和实现中具有重要的理论和实际意义。

在实际应用中,分支界限方法需要根据具体问题进行灵活选择和调整,结合动态规划和剪枝策略,以便更好地解决各类优化问题。

掌握分支界限方法对于解决复杂问题具有重要的意义,也是算法设计和优化的关键技术之一。

分支界限方法在解决01背包问题的过程中,具有重要的作用。

动态规划解决背包问题和旅行商问题

动态规划解决背包问题和旅行商问题

动态规划解决背包问题和旅行商问题动态规划(Dynamic Programming)是一种解决复杂问题的算法思想,它通过将问题划分为多个子问题,并记录子问题的解来解决原始问题。

在背包问题和旅行商问题中,动态规划是一种常见且高效的解决方法。

1. 背包问题背包问题是一个经典的优化问题,可以用动态规划的方法解决。

给定一组物品,每个物品有自身的价值和重量,同时给定一个背包的容量,要求在不超过背包容量的前提下,选择物品放入背包,使得背包中物品的总价值最大化。

动态规划的思路是定义一个二维数组dp[i][j],其中i表示从第1个到第i个物品,j表示背包的容量。

dp[i][j]表示在前i个物品中,容量为j的背包中能够放入的物品的最大价值。

通过状态转移方程可以求解dp[i][j],其中状态转移方程为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i])其中w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。

通过计算dp[i][j],最终可以得到在背包容量为j的情况下的最大价值。

可以通过回溯的方法找到具体放入背包的物品。

2. 旅行商问题旅行商问题是一个典型的组合优化问题,它要求在给定的一组城市中,寻找一条最短的路径使得旅行商经过每个城市一次后返回起始城市。

动态规划可以通过建立一个二维数组dp[S][i]来解决旅行商问题,其中S表示城市的集合,i表示当前所在的城市。

dp[S][i]表示从起始城市出发经过集合S中的城市,最后到达城市i的最短路径长度。

对于dp[S][i],可以通过以下状态转移方程来计算:dp[S][i] = min(dp[S-{i}][j] + d[j][i])其中S-{i}表示从集合S中去除城市i,d[j][i]表示从城市j到城市i的距离。

通过计算dp[S][i],最终可以得到从起始城市出发经过所有城市一次后返回起始城市的最短路径长度。

同样可以通过回溯的方法找到具体的最短路径。

动态规划问题常见解法

动态规划问题常见解法

动态规划问题常见解法
动态规划是一种高效解决优化问题的方法。

它通常用于涉及最
优化问题和最短路径的计算中。

下面是一些常见的动态规划问题解法:
1. 背包问题
背包问题是动态规划中的经典问题之一。

其目标是在给定的背
包容量下,选择一些物品放入背包中,使得物品总价值最大。

解决
这个问题的常见方法是使用动态规划的思想,定义一个二维数组来
记录每个物品放入背包时的最大价值,然后逐步计算出最终的结果。

2. 最长公共子序列问题
最长公共子序列问题是寻找两个字符串中最长的公共子序列的
问题。

解决这个问题的常见方法是使用动态规划的思想,定义一个
二维数组来记录两个字符串中每个位置的最长公共子序列的长度。

然后通过递推关系来计算出最终的结果。

3. 矩阵链乘法问题
矩阵链乘法问题是计算一系列矩阵相乘的最佳顺序的问题。


决这个问题的常见方法是使用动态规划的思想,定义一个二维数组
来记录每个矩阵相乘时的最小乘法次数,然后逐步计算出最终的结果。

4. 最长递增子序列问题
最长递增子序列问题是寻找一个序列中最长的递增子序列的问题。

解决这个问题的常见方法是使用动态规划的思想,定义一个一
维数组来记录每个位置处的最长递增子序列的长度,然后通过递推
关系来计算出最终的结果。

以上是一些常见的动态规划问题解法。

通过灵活运用这些方法,我们可以更高效地解决优化问题和最短路径计算等相关任务。

动态规划求解01背包问题

动态规划求解01背包问题

动态规划求解01背包问题问题给定n种物品和⼀个背包,物品(1<=i<=n)重量是w I ,其价值v i,背包容量为C,对每种物品只有两种选择:装⼊背包和不装⼊背包,即物品是不可能部分装⼊,部分不装⼊。

如何选择装⼊背包的物品,使其价值最⼤?想法该问题是最优化问题,求解此问题⼀般采⽤动态规划(dynamic plan),很容易证明该问题满⾜最优性原理。

动态规划的求解过程分三部分:⼀:划分⼦问题:将原问题划分为若⼲个⼦问题,每个⼦问题对应⼀个决策阶段,并且⼦问题之间具有重叠关系⼆:确定动态规划函数:根据⼦问题之间的重叠关系找到⼦问题满⾜递推关系式(即动态规划函数),这是动态规划的关键三:填写表格:设计表格,以⾃底向上的⽅式计算各个⼦问题的解并填表,实现动态规划过程。

思路:如何定义⼦问题?0/1背包可以看做是决策⼀个序列(x1,x2,x3,…,xn),对任何⼀个变量xi的决策时xi=1还是xi=0. 设V(n,C)是将n个物品装⼊容量为C的背包时背包所获得的的最⼤价值,显然初始⼦问题是将前i个物品装如容量为0的背包中和把0个物品装⼊容量为j的背包中,这些情况背包价值为0即V(i,0)=V(0,j)=0 0<=i<=n, 0<=j<=C接下来考虑原问题的⼀部分,设V(I,j)表⽰将前i个物品装⼊容量为j的背包获得的最⼤价值,在决策xi时,已经确定了(x1,x2,…,xi-1),则问题处于下列两种情况之⼀:1. 背包容量不⾜以装⼊物品i,则装⼊前i-1个物品的最⼤价值和装⼊前i个物品最⼤价值相同,即xi=0,背包价值没有增加2. 背包容量⾜以装⼊物品i,如果把物品i装⼊背包,则背包物品价值等于把前i-1个物品装⼊容量为j-wi的背包中的价值加上第i个物品的价值vi;如果第i个物品没有装⼊背包,则背包价值等于把前i-1个物品装⼊容量为j的背包中所取得的价值,显然,取⼆者最⼤价值作为把物品i装⼊容量为j的背包中的最优解,得到如下递推公式为了确定装⼊背包中的具体物品,从V(n,C)的值向前推,如果V(n,C)>V(n-1,C),则表明第n个物品被装⼊背包中,前n-1个物品被装⼊容量为C-wn的背包中;否则,第n个物品没有被装⼊背包中,前n-1个物品被装⼊容量为C的背包中,依次类推,直到确认第⼀个物品是否被装⼊背包中代码C++实现1. // dp_01Knapsack.cpp : 定义控制台应⽤程序的⼊⼝点。

动态规划方案解决算法背包问题实验报告含源代码

动态规划方案解决算法背包问题实验报告含源代码

动态规划方案解决算法背包问题实验报告含嘿,大家好!今天我来给大家分享一个相当有趣的编程问题——背包问题。

这可是算法领域里的经典难题,也是体现动态规划思想的好例子。

我会用我10年的方案写作经验,给大家带来一份详细的实验报告,附带哦!让我简单介绍一下背包问题。

假设你是一个盗贼,要盗取一个博物馆里的宝贝。

博物馆里有n个宝贝,每个宝贝都有它的价值v和重量w。

你有一个承重为W的背包,你希望放入背包的宝贝总价值最大,但总重量不能超过背包的承重。

这个问题,就是我们要解决的背包问题。

一、算法思路1.创建一个二维数组dp,dp[i][j]表示前i个宝贝放入一个承重为j的背包中,能达到的最大价值。

2.初始化dp数组,dp[0][j]=0,因为如果没有宝贝,那么无论背包承重多少,价值都是0。

3.遍历每个宝贝,对于每个宝贝,我们有两种选择:放入背包或者不放入背包。

4.如果不放入背包,那么dp[i][j]=dp[i-1][j],即前i-1个宝贝放入一个承重为j的背包中,能达到的最大价值。

5.如果放入背包,那么dp[i][j]=dp[i-1][j-w[i]]+v[i],即前i-1个宝贝放入一个承重为j-w[i]的背包中,加上当前宝贝的价值。

6.dp[i][j]取两种情况的最大值。

二、defknapsack(W,weights,values,n):dp=[[0for_inrange(W+1)]for_inrange(n+1)]foriinrange(1,n+1):forjinrange(1,W+1):ifj>=weights[i-1]:dp[i][j]=max(dp[i-1][j],dp[i-1][j-weights[i-1]]+values[i -1])else:dp[i][j]=dp[i-1][j]returndp[n][W]测试数据W=10weights=[2,3,4,5]values=[3,4,5,6]n=len(values)输出结果max_value=knapsack(W,weights,values,n)print("最大价值为:",max_value)三、实验结果分析通过上面的代码,我们可以得到最大价值为15。

5.5动态规划求解01背包问题

5.5动态规划求解01背包问题
xn-1: 若xn=0,则判断(Pl,Wl)∈ Sn-2?,以确定Xn-1的值 若xn=1,则依据(Pl-pn,Wl-wn)∈ Sn-2?,以判断Xn-1的值
xn-2,…,x1将依次推导得出
例2的解向量推导
S0={(0,0)}
S1={(0,0),(1,2)}
S2={(0,0),(1,2), (2,3),(3,5)}
● Si的构造
记S1i 是fi-1(X-wi)+pi的所有序偶的集合,则
S1i {( P,W ) | (P pi ,W wi ) S i1}
其中,Si-1是fi-1的所有序偶的集合
Si的构造:由Si-1和 S1i 按照支配规则合并而成。
支配规则:如果Si-1和S1i 之一有序偶(Pj,Wj),另一有(Pk,Wk),
5.5动态规划求解 0/1背包问题
1.问题描述 背包容量M,n个物品,分别具有效益值P1…Pn,物
品重量w1…wn,从n个物品中,选择若干物品放入 背包,物品要么整件放入背包,要么不放入。怎 样决策可以使装入背包的物品总效益值最大?
形式化描述:
目标函数:
约束条件:
max pixi
1i j
wixi M
1in
xi
0或1,
pi
0, wi
0,1
i
n
0/1背包问题:KNAP(1,n,M)
❖ 0/1背包问题:M=6,N=3,W=(3,3,4),P=(3,3,5) ❖ 贪心法:p3/w3 > p1/w1 > p2/w2 ❖ 贪心解 ∑P=5(0,0,1) ❖ 最优解是:∑P=6(1,1,0)
❖ 贪心法求解0/1背包问题不一定得到最优解! ❖ 动态规划求解的问题必须满足最优化原理

动态规划算法0-1背包问题课件PPT

动态规划算法0-1背包问题课件PPT

回溯法
要点一
总结词
通过递归和剪枝来减少搜索空间,但仍然时间复杂度高。
要点二
详细描述
回溯法是一种基于递归的搜索算法,通过深度优先搜索来 找出所有可能的解。在0-1背包问题中,回溯法会尝试将物 品放入背包中,并递归地考虑下一个物品。如果当前物品 无法放入背包或放入背包的总价值不增加,则剪枝该分支 。回溯法能够避免搜索一些无效的组合,但仍然需要遍历 所有可能的组合,时间复杂度较高。
缺点
需要存储所有子问题的解,因此空间 复杂度较高。对于状态转移方程的确 定和状态空间的填充需要仔细考虑, 否则可能导致错误的结果。
04
0-1背包问题的动态规划解法
状态定义
状态定义
dp[i][ j]表示在前i个物品中选,总 重量不超过j的情况下,能够获得 的最大价值。
状态转移方程
dp[i][ j] = max(dp[i-1][ j], dp[i1][ j-w[i]] + v[i]),其中w[i]和v[i] 分别表示第i个物品的重量和价值。
02
计算时间复杂度:时间复杂度是指求解问题所需的时间与问题规模之间的关系。对 于0-1背包问题,时间复杂度主要取决于状态总数。由于每个状态都需要被遍历, 因此时间复杂度为O(2^n),其中n是物品的数量。
03
空间复杂度:空间复杂度是指求解问题所需的空间与问题规模之间的关系。在0-1 背包问题中,空间复杂度主要取决于状态总数。由于每个状态都需要被存储,因此 空间复杂度也为O(2^n),其中n是物品的数量。
06
0-1背包问题的扩展和实际应用
多多个物品和多个 背包,每个物品有各自的重量和价值, 每个背包有各自的容量,目标是选择物 品,使得在不超过背包容量限制的情况 下,所选物品的总价值最大。

背包算法知识点总结

背包算法知识点总结

背包算法知识点总结背包问题是一种典型的组合优化问题,在计算机科学和运筹学中具有广泛的应用。

它的核心思想是在给定一组物品和背包容量的条件下,如何选择物品以使得背包中物品的总价值最大化。

背包问题可以分为0-1背包问题、完全背包问题和多重背包问题等类型。

0-1背包问题是最基本的背包问题,其中每个物品只有一件,且只能选择放入或不放入背包。

解决0-1背包问题通常采用动态规划的方法。

动态规划算法通过构建一个二维数组dp,其中dp[i][j]表示在前i个物品中,背包容量为j时的最大价值。

通过状态转移方程dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i]),其中w[i]和v[i]分别表示第i个物品的重量和价值,可以逐步填充dp数组,最终得到最优解。

完全背包问题与0-1背包问题的主要区别在于,完全背包问题中的物品可以无限选取。

这意味着对于每个物品,可以选择放入0个、1个、2个,甚至更多个。

解决完全背包问题同样可以采用动态规划的方法,但状态转移方程有所不同。

对于完全背包问题,dp[i][j] =max(dp[i-1][j], dp[i-1][j-w[i]] + v[i]),其中如果j >= w[i],则需要考虑所有可能的选取数量。

多重背包问题是0-1背包问题和完全背包问题的结合,其中每种物品有限定的数量。

解决多重背包问题需要对每种物品的数量进行遍历,然后采用0-1背包问题的动态规划方法来求解。

除了动态规划,背包问题还可以通过贪心算法、回溯算法等方法求解。

贪心算法通过每次选择当前价值最大的物品来构建解,但这种方法并不总是能够得到最优解。

回溯算法则通过搜索所有可能的解空间来寻找最优解,但时间复杂度较高。

在实际应用中,背包问题可以用于资源分配、投资组合优化、货物装载等问题。

通过合理的算法设计和优化,可以有效地解决这些实际问题,提高资源的利用效率。

总结来说,背包问题是一类重要的组合优化问题,通过动态规划等算法可以有效求解。

动态规划应用案例

动态规划应用案例

动态规划应用案例动态规划是一种解决复杂问题的优化算法。

它通过将问题拆分成多个子问题,并记录每个子问题的解,以避免重复计算,从而提高算法的效率。

在实际应用中,动态规划被广泛用于解决各种问题,包括最优化问题、路径搜索问题、序列问题等。

本文将介绍几个动态规划的应用案例,以展示其在实际问题中的强大能力。

案例一:背包问题背包问题是动态规划中经典的一个例子。

假设有一个背包,容量为V,现有n个物品,每个物品的重量为wi,价值为vi。

要求在不超过背包容量的前提下,选取一些物品放入背包,使得背包中的物品总价值最大。

这个问题可以用动态规划来解决。

首先定义一个二维数组dp,其中dp[i][j]表示在前i个物品中选择一些物品,使得它们的总重量不超过j时的最大总价值。

然后,可以得到如下的状态转移方程:dp[i][j] = max(dp[i-1][j], dp[i-1][j-wi] + vi)最后,根据状态转移方程,可以循环计算出dp[n][V]的值,即背包中物品总价值的最大值,从而解决了背包问题。

案例二:最长递增子序列最长递增子序列是指在一个序列中,选取一些数字,使得这些数字按照顺序排列,且长度最长。

动态规划也可以应用于解决最长递增子序列问题。

假设有一个序列nums,长度为n。

定义一个一维数组dp,其中dp[i]表示以nums[i]为结尾的最长递增子序列的长度。

然后,可以得到如下的状态转移方程:dp[i] = max(dp[j] + 1),其中j < i且nums[j] < nums[i]最后,循环计算出dp数组中的最大值,即为最长递增子序列的长度。

案例三:最大子数组和最大子数组和问题是指在一个数组中,选取一段连续的子数组,使得子数组的和最大。

动态规划也可以用于解决最大子数组和问题。

假设有一个数组nums,长度为n。

定义一个一维数组dp,其中dp[i]表示以nums[i]为结尾的连续子数组的最大和。

然后,可以得到如下的状态转移方程:dp[i] = max(dp[i-1] + nums[i], nums[i])最后,循环计算出dp数组中的最大值,即为最大子数组的和。

《背包问题详解》课件

《背包问题详解》课件

VS
约束条件
背包的容量有限,每个物品的数量和重量 、价值是已知的,目标是最大化背包中物 品的总价值。
多重背包问题的最优解法
贪心算法
按照物品单位重量的价值进行排序,优先选择单位重量价值最高的物品,直到背包满或者无法再放入更多物品。
动态规划
将问题分解为子问题,通过解决子问题的最优解来得到原问题的最优解。具体来说,对于多重背包问题,可以将 问题分解为多个一维背包问题,然后分别求解每个一维背包问题的最优解,最后取最优解中的最大值。
02
背包问题通常涉及到多个约束条 件,如物品的重量、价值、体积 等,以及一个目标函数,如背包 中物品的总价值或总重量。
背包问题的分类
根据物品能否分割,背包问题可以分为可分割问题和不可分 割问题。在可分割问题中,物品可以被切割成任意大小,而 在不可分割问题中,物品只能以完整的形式装入背包。
根据是否考虑时间因素,背包问题可以分为静态问题和动态 问题。在静态问题中,所有物品的属性和背包的容量都是固 定的,而在动态问题中,物品的属性和背包的容量可能会随 着时间变化。
完全背包问题的最优解法
最优解法通常采用贪心算法,即每次选择单位重量价值最高的物品,直到背包容量用完为止。这种方 法能够得到最优解,但并不是所有情况下都能找到最优解。
在某些情况下,贪心算法可能会错过最优解,因为它的选择是基于当前的最优选择,而不是全局的最 优选择。
完全背包问题的动态规划解法
动态规划是解决完全背包问题的另一 种方法,它通过将问题分解为更小的 子问题来求解。对于完全背包问题, 动态规划的思路是先解决子问题,再 根据子问题的解来解决原问题。
《背包问题详解》ppt 课件
目录
• 背包问题的定义与分类 • 0-1背包问题详解 • 多重背包问题详解 • 完全背包问题详解 • 变种背包问题详解

动态规划——背包问题1:01背包

动态规划——背包问题1:01背包

动态规划——背包问题1:01背包背包问题是动态规划中的⼀个经典题型,其实,也⽐较容易理解。

当你理解了背包问题的思想,凡是考到这种动态规划,就⼀定会得很⾼的分。

背包问题主要分为三种:01背包完全背包多重背包其中,01背包是最基础的,最简单的,也是最重要的。

因为其他两个背包都是由01背包演变⽽来的。

所以,学好01背包,对接下来的学习很有帮助。

废话不多说,我们来看01背包。

01 背包问题:给定 n 种物品和⼀个容量为 C 的背包,物品 i 的重量是 wi,其价值为 vi 。

问:应该如何选择装⼊背包的物品,使得装⼊背包中的物品的总价值最⼤?第⼀眼看上去,我们会想到贪⼼(背包问题还不会QAQ)。

⽤贪⼼算法来看,流程是这样的:1.排序,按价值从⼤到⼩排序2.选价值尽可能⼤的物品放⼊。

但是,贪⼼做这题是错的。

让我们举个反例:n=5,C=10重量价值第⼀个物品:105第⼆个物品:14第三个物品:23第四个物品:32第五个物品:41⽤贪⼼⼀算。

答案是5,但正解是⽤最后4个,价值总和是10.那将重量排序呢?其实也不⾏。

稍微⼀想就想到了反例。

我们需要借助别的算法。

贪⼼法⽤的是⼀层循环,⽽数据不保证在⼀层循环中得解,于是,我们要采⽤⼆层循环。

这也是背包的思想之⼀。

来看背包算法:1.⽤⼆维数组dp [ i ] [ j ],表⽰在⾯对第 i 件物品,且背包容量为 j 时所能获得的最⼤价值⽐如说上⾯的那个反例:dp [ 1 ] [ 3 ] = 4 + 3 = 7.2.01背包之所以叫“01”,就是⼀个物品只能拿⼀次,或者不拿。

那我们就分别来讨论拿还是不拿。

(1)j < w[i] 的情况,这时候背包容量不⾜以放下第 i 件物品,只能选择不拿dp [ i ] [ j ] = dp [ i - 1 ] [ j ];(2)j>=w[i] 的情况,这时背包容量可以放下第 i 件物品,我们就要考虑拿这件物品是否能获取更⼤的价值。

运筹学背包问题例题

运筹学背包问题例题

运筹学背包问题例题
运筹学中的背包问题是一个经典的组合优化问题,通常分为0-1背包问题和分数背包问题。

这个问题可以用来描述一个背包有限的容量,以及一系列物品,每个物品都有自己的重量和价值。

问题的目标是找到一个组合,使得放入背包的物品总重量不超过背包容量,同时使得这些物品的总价值最大化。

举一个例子来说明背包问题:假设有一个背包容量为10kg,现有以下物品:
物品A,重量3kg,价值150元。

物品B,重量4kg,价值300元。

物品C,重量5kg,价值200元。

针对这个例子,我们可以用动态规划或者贪心算法来解决背包问题。

在0-1背包问题中,每个物品只能选择放或者不放,不能进行分割。

而在分数背包问题中,物品可以进行分割放入背包。

解决背包问题的关键是建立递推关系和状态转移方程,以确定
如何选择物品放入背包以达到最优解。

动态规划是解决背包问题的
常用方法,通过填写一个二维的状态转移表格来逐步求解最优解。

贪心算法则是通过每一步选择当前最优的策略,不断迭代直至达到
最优解。

除了动态规划和贪心算法,还有其他方法可以解决背包问题,
比如分支限界法、回溯法等。

每种方法都有其适用的场景和局限性。

总的来说,背包问题是运筹学中的一个经典问题,有着广泛的
应用。

通过合适的算法和方法,我们可以有效地解决背包问题,找
到最优的放置方案,这对于资源分配、生产调度等实际问题有着重
要的意义。

【转载】各种背包问题模板讲解

【转载】各种背包问题模板讲解

【转载】各种背包问题模板讲解 背包问题集合 ⼀般来说,动态规划(DP)。

都是初学者最难闯过的⼀关,⽽在这⾥详细解说动态规划的⼀种经典题型:背包问题。

这⾥介绍的背包分为以下⼏种:01背包,完全背包,多重背包,混合背包,⼆维费⽤的背包。

(以后会持续更新)【⼀:01背包】⾸先放上例题:01背包问题【题⽬描述】:⼀个旅⾏者有⼀个最多能装M公⽄的背包,现在有n件物品,他们的重量分别是W1,W2…Wn,它们的价值分别是C1,C2……Cn,求旅⾏者能够获得的最⼤总价值。

【输⼊格式】:第⼀⾏:两个整数,M,(背包容量,M<=200)和N(物品数量N<=30)第2⾄N+1⾏,每⾏两个整数,Wi,Ci,表⽰每个物品的重量和价值。

【输出格式】:仅⼀⾏,⼀个数,表⽰最⼤总价值。

【输⼊样例#1】:10 42 13 34 57 9【输出样例#1】:1201背包问题可以说是最简单的背包问题,简单之处就在:他的每⼀个物品都只有⼀个。

⾸先定义⼀个f[MAXN][MAXN]数组,⽤来记录最⼤价值。

即:f[i][v]表⽰的就是当前i件物品放⼊⼀个容量为v的背包的时候可以获得的最⼤价值。

01背包的状态转移⽅程式便是:f[i][v]=max(f[i-1][v],f[i-1][v-w[i]]+c[i])。

众所周知DP问题最重要的便是状态转移⽅程式了,那么这个状态转移⽅程式究竟是怎么来的呢??详解来啦“既然说了是“将第i件物品放⼊背包”,那么如果只考虑第i件物品的⽅式策略,那么就只和第i-1件物品有关了,如果是放第i件物品,那么问题就转化为:“前i-1件物品放⼊容量为v的背包中”,此时能够获得的最⼤价值就是f[i-1][v-w[i]],也就是第i-1件物品放⼊容量为v(原来的总容量)减去w[i](第i件物品的占容)产⽣的最优价值,再加上放通过⼊第i件物品增加的价值c[i]。

那么放⼊第i件物品产⽣的最⼤价值就是要在”放“,或者是”不放“中选择了,”不放“的话,产⽣的价值就是f[i-1] [v],”放“的话,产⽣的最⼤价值就是,f[i-1][v-w[i]]+c[i])。

背包问题----完全背包(最优方案总数分析及实现)

背包问题----完全背包(最优方案总数分析及实现)

背包问题----完全背包(最优⽅案总数分析及实现)本⼈博⽂》中已详细谈过完全背包问题,同时在博⽂》中也总结过01背包的最优⽅案总数的实现。

这⾥我们模仿01背包最优⽅案总数⽅法给出完全背包的最优⽅案求解⽅法。

重写完全背包的动态规划的状态及状态⽅程:完全背包是在N种物品中选取若⼲件(同⼀种物品可多次选取)放在空间为V的背包⾥,每种物品的体积为C1,C2,…,C n,与之相对应的价值为W1,W2,…,W n.求解怎么装物品可使背包⾥物品总价值最⼤。

设物品种类为N,背包容量为V,每种物品的体积为C[i],价值为W[i]。

⼦问题定义:F[i][j]表⽰前i种物品中选取若⼲件物品放⼊剩余空间为j的背包中所能得到的最⼤价值。

状态⽅程为:(2-2)在⽂章》中曾定义G[i][j]代表F[i][j]的⽅案总数。

这⾥我们也做相同的定义,那么最终的结果应该为G[N][V]。

由01背包转变到完全背包后G[i][j]该怎么求?对于01背包来说,G[i][j]求法如下(摘⾃:》):如果F[i][j]=F[i-1][j]且F[i][j]!=F[i-1][j-C[i]]+W[i]说明在状态[i][j]时只有前i-1件物品的放⼊才会使价值最⼤,所以第i件物品不放⼊,那么到状态[i][j]的⽅案数应该等于[i-1][j]状态的⽅案数即G[i][j]=G[i-1][j];如果F[i][j]=F[i-1][j-C[i]]+W[i] 且F[i][j]!=F[i-1][j]说明在状态[i][j]时只有第i件物品的加⼊才会使总价值最⼤,那么⽅案数应该等于[i-1][j-C[i]]的⽅案数,即G[i] [j]=G[i-1][j-C[i]];如果F[i][j]=F[i-1][j-C[i]]+W[i] 且F[i][j]=F[i-1][j]则说明即可以通过状态[i-1][j]在不加⼊第i件物品情况下到达状态[i][j],⼜可以通过状态[i-1][j-C[i]]在加⼊第i件物品的情况下到达状态[i][j],并且这两种情况都使得价值最⼤且这两种情况是互斥的,所以⽅案总数为G[i][j]=G[i-1][j-C[i]]+ G[i-1][j]。

动态规划专题01背包问题详解【转】

动态规划专题01背包问题详解【转】

动态规划专题01背包问题详解【转】对于动态规划,每个刚接触的⼈都需要⼀段时间来理解,特别是第⼀次接触的时候总是想不通为什么这种⽅法可⾏,这篇⽂章就是为了帮助⼤家理解动态规划,并通过讲解基本的01背包问题来引导读者如何去思考动态规划。

本⽂⼒求通俗易懂,⽆异性,不让读者感到迷惑,引导读者去思考,所以如果你在阅读中发现有不通顺的地⽅,让你产⽣错误理解的地⽅,让你难得读懂的地⽅,请跟贴指出,谢谢!初识动态规划经典的01背包问题是这样的:有⼀个包和n个物品,包的容量为m,每个物品都有各⾃的体积和价值,问当从这n个物品中选择多个物品放在包⾥⽽物品体积总数不超过包的容量m时,能够得到的最⼤价值是多少?[对于每个物品不可以取多次,最多只能取⼀次,之所以叫做01背包,0表⽰不取,1表⽰取]为了⽤⼀种⽣动⼜更形象的⽅式来讲解此题,我把此题⽤另⼀种⽅式来描述,如下:有⼀个国家,所有的国民都⾮常⽼实憨厚,某天他们在⾃⼰的国家发现了⼗座⾦矿,并且这⼗座⾦矿在地图上排成⼀条直线,国王知道这个消息后⾮常⾼兴,他希望能够把这些⾦⼦都挖出来造福国民,⾸先他把这些⾦矿按照在地图上的位置从西⾄东进⾏编号,依次为0、1、2、3、4、5、6、7、8、9,然后他命令他的⼿下去对每⼀座⾦矿进⾏勘测,以便知道挖取每⼀座⾦矿需要多少⼈⼒以及每座⾦矿能够挖出多少⾦⼦,然后动员国民都来挖⾦⼦。

题⽬补充1:挖每⼀座⾦矿需要的⼈数是固定的,多⼀个⼈少⼀个⼈都不⾏。

国王知道每个⾦矿各需要多少⼈⼿,⾦矿i需要的⼈数为peopleNeeded[i]。

题⽬补充2:每⼀座⾦矿所挖出来的⾦⼦数是固定的,当第i座⾦矿有peopleNeeded[i]⼈去挖的话,就⼀定能恰好挖出gold[i]个⾦⼦。

否则⼀个⾦⼦都挖不出来。

题⽬补充3:开采⼀座⾦矿的⼈完成开采⼯作后,他们不会再次去开采其它⾦矿,因此⼀个⼈最多只能使⽤⼀次。

题⽬补充4:国王在全国范围内仅招募到了10000名愿意为了国家去挖⾦⼦的⼈,因此这些⼈可能不够把所有的⾦⼦都挖出来,但是国王希望挖到的⾦⼦越多越好。

动态规划 运筹学 例题

动态规划 运筹学 例题

动态规划运筹学例题动态规划(DynamicProgramming)是运筹学中一种基于分析多阶段决策过程的重要算法。

它主要指用于多步决策的最优化方法,是在一定时期内,为了达到目标,从多种可能的决策中选择最优方案的过程。

它的最大特点就是将一个较大的复杂的问题分解成若干个小的子问题,将解决这些子问题的过程和结果组合起来,从而解决原问题。

下面以最常见的“背包问题”为例,来深入讲解动态规划的基本原理。

假设有一个背包,背包容量为5KG,要放入这个背包中的有:物品A(重量3kg,价值2),物品B(重量2kg,价值3),物品C(重量1kg,价值4)。

问:最多能放入背包中的最大价值是多少?动态规划会将这个问题分解成两个子问题,即:当第一个物品放入背包时,最多能放入背包中的最大价值是多少?当第二个物品放入背包时,最多能放入背包中的最大价值是多少?通过上面划分出来的2个子问题,我们就可以用动态规划来解决这个问题。

首先,定义f(i,w)表示前i个物品放入背包中,总重量不超过w的最大价值,即:f(i,w)=max{f(i-1,w),f(i-1,w-wi)+vi}其中,f(i-1,w)表示前i-1个物品放入背包中,总重量不超过w的最大价值,f(i-1,w-wi)+vi表示前i-1个物品放入背包中,总重量不超过w-wi的最大价值,再加上第i个物品的价值vi。

下面我们来解决上面所说的背包问题:对于第一个物品A,有两种情况,第一种情况:不放入背包,则背包中的最大价值f(1,5)=0;第二种情况:将物品A放入背包,则背包中最大价值f(1,2)=2。

由于5>2,所以f(1,5)=2。

第二个物品B,有两种情况,第一种情况:不放入背包,f(2,5)=2;第二种情况:将物品B放入背包,则背包中最大价值f(2,3)=2+3=5。

由于5>3,所以f(2,5)=5。

同理,有第三个物品C,有两种情况,第一种情况:不放入背包,f(3,5)=5;第二种情况:将物品C放入背包,则背包中最大价值f(3,4)=5+4=9。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Dk(xk)={dk|0 dkxk/wk,dk为整数};
5. 状态转移方程:xk+1=xk-wkdk 6. 阶段指标:vk=ckdk
7. 递推方程
fk(xk)=max{ckdk+fk+1(xk+1)} =max{ckdk+fk+1(xk-wkdk)}
8. 边界条件:fn+1(xn+1)=0
例:对于一个具体问题 c1=65,c2=80,c3=30;w1=2,w2=3,w3=1以及 W=5.
即应取第一种物品 2 件,第三种物品 1 件,最高价
值为 160 元,背包没有余量。由 f1(x1)得列表可 以看出,如果背包得容量为 W=4,W=3,W=2 和 W=1 时,相应的最优解立即可以得到。
用动态规划求解 f4(x4)=0 {d1=0,1,2; d2=0,1; d3=0,1,2,3,4,5 }
对于k=3
列出 f3(x3)的数值表
由题意知,x1=5,由表 f1(x1)、f2(x2)、f3(x3),
经回朔可得:
d1*=2,x2=x1-2d1=1,d2*=0,x3=x2-3d2=1,d3*=1, xx1+c2x2+…+cnxn s.t. w1x1+w2x2+…+wnxn≤W
x1,x2,…,xn为正整数
1. 阶段k:第k次装载第k种物品(k=1,2,…,n) 2. 状态变量xk:第k次装载时背包还可以装载的重
量;状态允许集合0 xk W; 3. 决策变量dk:第k次装载第k种物品的件数; 4. 决策允许集合:
相关文档
最新文档