反证法PPT教学课件
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴假设不成立
∴AB//CD
考考你
“对角线相等的四边形是矩形” A
是真命题吗?为什么? 你是用什么方法说明的?
B A
你能说说举反例和反证法的B
联系和区别吗?
D C D
C
1、求证:垂直于同一条直线的两条 直线平行.
2、证明不存在整数m,n,使得 m2 n2成立20.06
华盛顿抓小偷
美国总统华盛顿从小非常聪明,小偷翻进 鲍克家偷走了许多东西,根据迹象表明小偷就 是本村人,华盛顿灵机一动,对全村人讲起了 故事:“黄蜂是上帝的使者,能辨别人间的真假.” 忽然华盛顿大声喊道:“小偷就是他,黄蜂正 在他的帽子上兜圈子,要落下来了!”大家 回头张望,看着那个想把帽子上的黄蜂赶走 的人,其实哪有什么黄蜂?华盛顿大喝一声: “小偷就是他!”
所以假设“甲去新加坡玩了6天”不正确, 于是“甲没有去新加坡玩了6天”正确.
议一议
在古希腊,有两个哲学家,由于争论 和天气的炎热感到疲倦,于是就在花园 里的一棵大树下躺下休息,不一会儿就 睡着了,这时一个爱开玩笑的人用炭涂 黑了他们的前额,当他们醒来后,彼此相 看时都笑了.一会儿其中一个人突然不 笑了.这是为什么呢?
综合① 和②知假设不成立,
所以∠B一定是锐角.
例3、证明:如果两条直线都和第三条直 线平行,那么这两条直线也互相平行.
已知:如图,AB//EF,CD//EF,
求证:AB//CD
A
B
D C
E
F
A
B
C
D
O
E
F
证明:假设AB ∥CD,即AB与CD相交于点O
∵AB//EF,CD//EF
∴过点O有两条直线AB、CD与直线EF平行 这与“过直线外一点有且只有一条直线和这 条直线平行”矛盾,
这与已知条件AB≠AC矛盾,
所以假设∠B=∠C不正确,
于是∠B≠∠C正确.
B
A C
A C
回顾与归纳
假 设
公 得理
结 论
推理论证
出 矛
、 定
的 反 面 正
反确设
盾理 (等 已) 知
、归谬
命
假题
得出结论
设成 不立
.
成
立
,
原
结论
说出下列结论的反面:
1. a⊥b
1. a不垂直于b
2. a ∥ b
2. a ∥b
= 1/4 .
10.化简:(
x
1
1
1
1 x
2
)
3x x1
1 3(x 1)
➢ 典型例题解析
【例1】 当a取何值时,分式 a2 3a 4 (1)值为零;(2)分式有2意a 义3 ?
解:a 3a 4 = (a 4)(a 1)
2a 3
(1)当(2aa43)(a0
1)
2a 3
0时,有
a a
或等于60 °.
即∠A<60°,∠B 6<0°,∠C 60<° 则∠A+∠B+∠C<180 °. 这与 三角形的内角和等于180° 矛盾,
所以假设不正确 ,
所以原命题成立.
例2、已知:在△ABC中,∠C=90°.
求证: ∠B一定是锐角.
A
证明:假设∠B不是锐角,即∠B是直角或钝角.
①当∠B是直角,即∠B= 90°时,
的值为零,则x ( C)
A.3 B.3或-3 C.-3 D.0
3.(2004年·杭州)甲、乙两人分别从两地同时出发,
若相向而行,则a小时相遇;若同向而行,则b小时
甲追上乙,那么甲的速度是乙速度的
(C)
A.
ab b
b
B. a b
ba
C. b - a
ba
D. b a
➢ 课时训练
4果.(是2:004年x ·1黄2 冈)化。简:(
3x xy 3 y
中 ,最
简分式的个数是 A.1 B.2 C.3 D.4
(B)
➢ 课前热身
5.
将分式
x
2y x
中的x和y都扩大10倍,那么分式的值
( D)
A.扩大10倍
B.缩小10倍
C.扩大2倍
D.不变
6.当式子
x
|
2
x
| 5 4x
5
的值为零时,x的值是
(B )
A.5 C.-1或5
B.-5 D.-5或5
甲:在五一长 假里,我和爸 爸、妈妈去新 加坡玩了整整6 天,真是太高 兴了.
丙:是啊,5 月4号我确实 和甲在观前
街逛街!
乙:这不可能,5月4 号上午还看见你和丙
在观前街逛街呢!
乙:甲没有去新加坡玩了6天.
假设甲去新加坡玩了6天,
那么甲从5月1号至6号或是2号至7号在 新加坡,即5月4号甲在新加坡, 这与“5月4号甲在苏州的观前街”矛盾,
7.当x=cos60°时,代数式 x2 3x ÷(x+ 3 )的值是( A )
x2
2x
A.1/3
B. 3
3
C.1/2
D. 3 1
3
➢ 课前热身
8.(2004·西宁市)若分式 x2 2x 3 的值为0,则x= -3 。
x1
9. (2004年·呼和浩特)已知x 1 , xy 1
2 3
则
x2y xy2 x2 y2
2.解分式方程一定要验根.
➢ 课前热身
1. (2004·南宁市)当x ≠1
时,分式
3 1 x
有意义。
2.
(2004年·南京)计算:a a
b
a
b
b
=
1
.
3.计算:x2 4x 4 5x x2 = 6 .
x2
x3 x3
x y
4.在分式① x y
3x2 y ,② 2x
,③4
5xy 5xy
,④
a2
a
a
解:(1)原式=
a2 4 1 a2=Fra biblioteka2 4 a2
4 a2
= a2 8
a2
➢ 典型例题解析
(2)原式=
1
x3
x 1 ( x 1)( x 1)
• ( x 1)2 ( x 1)( x 3)
1 x1
x1 x1
= x 1 ( x 1)2 = ( x 1)2 ( x 1)2
=
40x2 50 x 15 6x2 7x 3
= 5(2 x 3)(4 x 1)
(3 x 1)(2 x 3)
= 20x 5
3x 1
➢ 典型例题解析
【例3】 计算:(1) a 2 4
;
a2
1
(2)
x1
x3 x2 1
•
x2 x2
2x 1 4x 3
;
(3)[(1 4 )( a 4 4 )-3]÷( 4 1 ).
各抒己见
自己的前额也被涂黑了.
假设自己的前额没有被涂黑,
那么另一个哲学家也不会有异常行为, 这与另一个哲学家笑个不停矛盾,
所以假设“自己的前额没有涂黑”不正 确于,是自己的前额也被涂黑了.
方法的迁移
在△ABC中,若AB≠AC,
则∠B≠∠C.如何说明呢?
B
假设∠B=∠C,根据等角对 等边得AB=AC,
你知道华盛顿是如何推理的吗?
这节课你有什么收获?
1、体会了反证法源于生活又应用 于生活,有时反证法的威力很大.
2、反证法的一般步骤:
(1)反设;(2)归谬;(3)结论.
3、反证法与举反例的区别与联系.
P57 练习 2、习题 7、
课后实践:收集一两个反证法在生活中 应用的例子,并相互交流 .
求证:圆内两条不是直径的弦不 能互相平分.
5.分式方程 分母中含有未知数的方程,叫做分式方程.
分式的基本性质:分式的分子、分母都乘以(或除 以)同一个不等于零的整式,分式的值不变.这一 性质用式表示为:
A AM B BM
A A M (M 0) B BM
分式的基本性质是分式进行恒等变形的基础和根据.
1.分式的加、减法法则
a b = a b , a c = ad bc = ad bc
3. a ≥0
3. a <0
4. d是正数
5.至少有一个 6.至多有一个
4. d不是正数,即d ≤0 5.一个也没有 6.至少有两个
例1、求证:在三角形的内角中,至少有 一个角大于或等于60°.
已知:∠A,∠B,∠C是△ABC的内角.
求证:∠A,∠B,∠C中至少有一个角
大于或等于60°.
证明:假设∠A,∠B,∠C中没有一个角大于
设计制作:
1.分式 A
在分式中 B ,分式的分母B中必须含有字母,且分母 不能为零.
2.有理式 整式和分式统称为有理式.
3.最简分式 一个分式的分子与分母没有公因式时,叫做最简分 式4..最简公分母
几个分式,取各分母的系数的最小公倍数与各分 母所有因式的最高次幂的积作公分母,这样的公分 母叫做最简公分母.
(
a2 a2 2a
a2
a1 4a 4
)
÷a 4
a2
,其中a满足:a2-2a-1=0.
解:原式=[a(aa22)
a1 (a 2)2
]×
a2 a4
=
(a
2
4) a(a
(a 2 2)2
a)×
a2 a4
=
a
a (a
4 2)2
×
a a
2 4
1
1
= a(a 2) = a2 2a
又∵a2+2a-1=0, ∴a2+2a=1 ∴原式=1
∠B+ ∠C=90° +90°=180°,
B
C
于是∠ A+∠B+ ∠C= ∠ A +180°>180°,
这与三角形的内角和等于180°相矛盾;
②当∠B是钝角,即∠B > 90°时,
∠B+ ∠C > 90° +90°=180°,
于是∠ A+∠B+ ∠C > ∠ A +180°>180°,
这与三角形的内角和等于180° 相矛盾;
60 20
的分子、分母的最高次项系数化为正整数,然后约分,
化成最简分式.
解:原式=
( 1 5 x 2 x2 ) 60 46 3
( 7 )x 1 0.1x2 ) 60
=157x503x64x02x 2
40x2 50x 15 6x2 7x 3
60 20
=
15 50 x 40 x2 7x 3 6x2
➢ 典型例题解析
【例5】
化简: 1
1a
+1
1 a
+
2 1 a2
+
4 1 a4
.
解:原式=
(1 a) (1 a) (1 a)(1 a)
2 1 a2
4 1 a4
2(1 a2 )2(1 a2 ) 4
=
1 a4
1 a4
=
4 1 a4
1
4 a
4
8
= 1 a8
1.当分式的值为零时,必须同时满足两个条件: ①分子的值为零; ②分母的值不为零.
4或a 3 2
1
即a=4或a=-1时,分式的值为零. (2)当2a-3=0即a=3/2时无意义. 故当a≠3/2时,分式有意义.
思考变题:(1当)为a正为;何(值2)时为,零.aa32 的值
➢ 典型例题解析
1 5 x 2 x2
【例2】
不改变分式的值,先把分式:
46 3 7 x 1 0.1x2
x
x 2
x
x 2
)
4x 2x
的结
5.(2004年·青海)化简:(
2x x 3
x
x 3
)
•
x
2 9 x
解:原式=2x 2 6 x x 2 3 x • x 2 9
( x 3)( x 3)
x
x2 9x x 9
x
6.当1<x<3时,化简
|
x
3
|
|
x
1|
|
x
|
得
x 3 1 x x
(D)
A.1 B.-1 C.3 D.-3
2.分式的混和运算应注意运算的顺序,同时要 掌握通分、约分等法则,灵活运用分式的基本 性质,注意因式分解、符号变换和运算的技巧, 尤其在通分及变号这两个方面极易出错,要小心 谨慎!
➢ 课时训练
1. (2004年·上海)函数 y
x x1
的定义域是
x>-1
.
2.(2004 年·重庆)若分式 的值为
x2 9 x2 4x 3
c c c b d bd bd bd
2.分式的乘、除法法则
a · c = ac , a c = a · d = ad .
b
d bd
bd b
c bc
3.分式的乘方法则
a n =
b
an bn
(n
为正整数)
着重提示:
1.分式的“值为零”和分式“无意义”. 分式的值为零,是在分式有意义的前提下考虑的.要 使分式的值为零,一定要同时满足两个条件;(1)分母 的值不为零;(2)分子的值为零.特别应注意,分子、 分母的值同时为零时,分式无意义. 分式的分母为零,分式无意义,这时无须考虑分子 的值是否为零.
2
= ( x 1)2
(3)原式=[a
a
2
2
4
a2 4a 4
a
=[aa
2 2
(a
2)2 a
3]
a
a
4
]÷(
4a )
a
=( a2 4 3a ) a = (a 4)(a 1) a
a
(a 4)
a
4a
= (a 1) = a 1
➢ 典型例题解析
【例4】 (2002年·山西省)化简求值: