概率论与数理统计_第1章3节讲述
王松桂、程维虎等-概率论与数理统计(第三版)科学出版社第1章

再如:
测量一件物体的长度,由于仪器或观测 者受到环境的影响,每次测量的结果可能有 差异,但多次测量结果的平均值随着测量次 数的增加而逐渐稳定在常数,并且各测量值 大多落在此常数附近,离常数越远的测量值 出现的可能性越小。
概率论与数理统计的研究内容
随机现象具有偶然性一面,也有必然性一 面。偶然性一面表现在“对随机现象做一次观 测时,观测结果具有偶然性(不可预知)”;必 然性一面表现在“对随机现象进行大量重复观 测时,观测结果有一定的规律性,即统计规律 性”。
当试验次数 n充分大时,事件的频率总在 一个定值附近摆动,而且,试验次数越多, 一般说来摆动的幅度越小。这一性质称频率 的稳定性。
频率在一定程度上反映了事件在一次试 验中发生的可能性大小。尽管每进行一连 n次 试验,所得到的频率可能各不相同,但只要 n 足当大,频率就会非常接近一个固定值—— 概率。
特别地,称Ω-A为 A 的对 立事件(或 A的逆事件、补 事件)等,记成 A 。
A就是 A不发生。
例1(续):A1={1}, B ={2,4,6},于是
A1 {2,3,4,5,6} B {1,3,5}
II. 事件的运算法则(与集合运算法则相同)
交换律: A∪B=B∪A,AB=BA; 结合律: A∪(B∪C)=(A∪B)∪C,
随机现象的特点
• 对随机现象进行观察 、观测或测量,每次 出现的结果是多个可能结果中的一个, “每次结果都是 不可预知的”; 但“所有 可能的结果是已知的”。
• 在一定条件下对随机现象进行大量重复观 测后就会发现:随机现象的发生具有统计 规律性。
例如: 一门火炮在一定条件下进行射击,个别
炮弹的弹着点可能偏离目标(有随机误差), 但多枚炮弹的弹着点就呈现出一定的规律。 如:命中率等。
概率论与数理统计 第一章 1.3等可能概型

概率论
54 3 P(C) = 2 = . 所以 8 12 (2) 采取不放回抽样.
从箱子中任取两件产品,每次取一件,取法总数为12⋅ 11 . ⋅
⋅ 即样本空间中所含有的基本事件总数为 12⋅ 11 . 1 1 事件A 事件 中所含有的基本事件数为 C9C8 = 9⋅ 8 . 9⋅ 8 6 = . 所以 P( A) = 12⋅ 11 11 事件B 事件 中所含有的基本事件数为 C1C1 = 9⋅ 3 . 9 3 9⋅ 3 9 所以 P( B) = = . 12⋅ 11 44
8 5 1 9 4 6 7 2 3 10
概率论
我们用 i 表示取到 i 号球, 号球, i =1,2,…,10 . 则该试验的样本空间
如i =2
2
S={1,2,…,10} ,
且每个样本点(或者说基本 且每个样本点 或者说基本 事件)出现的可能性相同 事件 出现的可能性相同 . 称这样一类随机试验为古 称这样一类随机试验为古 典概型. 典概型
乘法原理
概率论
完成某件事情需先后分成m个步骤 做第一步有 完成某件事情需先后分成 个步骤,做第一步有 1 个步骤 做第一步有n 种方法,第二步有 种方法,依次类推 第二步有n 依次类推,第 步有 步有n 种方法 第二步有 2种方法 依次类推 第m步有 m种方 特点是各个步骤连续完成. 法,特点是各个步骤连续完成 特点是各个步骤连续完成 则完成这件事共有N=n1×n2×…×nm种不同的方法 则完成这件事共有 × 种不同的方法,
即样本空间中所含的基本事件数为122 . C1C1 = 92 . 事件A 事件 中所含有的基本事件数为 9 9 92 9 = 2 = . 所以 P( A) 12 16 C1C1 = 9⋅ 3 . 事件B 事件 中所含有的基本事件数为 9 3 9⋅ 3 3 所以 P( B) = 2 = . 16 12 事件C 事件 中所含有的基本事件数为
随机事件与概率教案

概率论与数理统计教学教案第1章随机事件与概率B 称为事件k n A 个事件为B 称为事件1nk k A =为n 个事件,n A 的积事件,称1k k A ∞=为可列个事件的积事件)事件A B -称为事件与事件B 的差事件,表示A 发生且 ,∅=B A 称为事件A 与事件B 是互不相容或互斥的,表示事件与事件B 不能同时发生A B S =且B =∅,称事件与事件B 互为逆事件,或称事件A 与事件A ,B 中必有一个发生,且仅有一个发生,的对立事件记作S A =-..事件间的运算律:设,,A B C 为事件,则有)交换律: A B A =, A )结合律: A C B A ()(=)分配律: ()(B A C B A = ()(B A C B A =B C ;ABC A B C =;ABCABC ABC ; ABC ABC ABC ABC AB BC CA =;)至多有两个次品(考虑其对立事件))()()ABC ABC ABC ABC ABC ABC ABC A B C ==.授课序号02(n k -+)k n ≤个元素的不同组合总数为1)(1)!n k k --+是平面上某个区域, 它的面积记为的位置和形状无关,)()A A μ=. ,2,, 有11i i i A ∞∞==⎫=⎪⎭∑2.概率的运算性质(1)0≤(2)A 若+P(A n ).(3)对于任意两个事件)(A B P -=,)k人取到具有快充功能的充电器(记为事件件产品,其中有货架上有外观相同的商品求这两件商品来自同一产地的概率某接待站在某一周曾接待过推断接待时间是有规定的?B=)0.6授课序号03)2|B A =两点说明:计算条件概率的方法在缩减的样本空间)在样本空间S 中,先求事件.乘法公式:(P AB A A A ,,,21 2,,;n2n B B S =,)n,则()AP=全概率公式的主要用处在于它可以将一个复杂事件的概率计算问题,题,最后应用概率的可加性求出最终结果的样本空间为,.)(|)C P A B C在矿内同时装有两种报警系统(Ⅰ)和(Ⅱ),每种系统单独使用时,失灵的情况下,系统(Ⅱ)仍有效的概率为只白球,每次自袋中任取一只球若在袋中连续取球四次, 试求第一、二次取到红球且第三、四次取到授课序号04k i n <≤三个事件相互独立:)()(C P A ,)()3n n ≥)若事件,21A A ,,n A 相互独立,则有212()1()n n P A A P A A A =-1212()1()()()n n P A A A P A P A P A =-=- .独立性在系统可靠性中的应用 对于一个元件,它能正常工作的概率称为元件的可靠性. 对于一个系统,它能正常工作的概率称为系统的(2)每次试验都仅考虑两个可能结果:事件A 和事件A ,且在每次试验中都有p A P =)(,p A P -=1)(.2.定理:设在一次试验中事件A 发生的概率为p ()01p <<,则在n 重伯努利试验中,事件A 恰好发生了k ()k n ≤次的概率为k n k k n n p p C k P --=)1()(,n k ,,2,1,0 =,10<<p .三.例题讲解例1.设B A ,互不相容,若0)(,0)(>>B P A P ,问B A ,是否相互独立?例2.设随机事件A 与B 相互独立,A 与C 相互独立,BC =∅,若1()(),2P A P B ==1(|)4P AC A B =,求()P C .例3.甲、乙、丙三人独立破译一份密码,设甲的成功率为0.4,乙的成功率为0.3,丙的成功率为0.2,求密码被破译的概率.例1.26 加工某一零件共需经过7道工序, 每道工序的次品率都是5%,假定各道工序是互不影响的, 求加工出来的零件的次品率.例4.来看四个独立工作的元件组成的系统的可靠性,设每个元件的可靠性均为p ,分别按图1.4的两种方式组成系统(分别记为S 1和S 2),求两种组合方式的可靠性.图1.4 系统S 1(左图)和系统S 2(右图) 例5.某店内有4名售货员,根据经验每名售货员平均在1小时内用秤15分钟.问该店配置几台秤较为合理.数字化仓库评估规范1 范围本文件规定了数字化仓库评估的基本原则与评估指标构成及评估内容,并提供了评估指标体系的构建和评估分析方法。
概率论与数理统计第一章(浙大第四版)ppt课件

ppt课件
9
例:
概率论
一枚硬币抛一次
记录一城市一日中发生交通事故次数
记录一批产品的寿命x
记录某地一昼夜最高温度x,最低温 度y
ppt课件
10
概率论
S={正面,反面}; S={0,1,2,…}; S={ x|a≤x≤b }
S={(x,y)|T0≤y≤x≤T1};
ppt课件
111
n—总试验次数。称 fn ( A) 为A
在这n次试验中发生的频率。
ppt课件
27
例:
概率论
中国男子国家足球队,“冲出亚洲”
共进行了n次,其中成功了一次,在
这n次试验中“冲出亚洲”这事件发
生的频率为 1 n;
ppt课件
28
概率论
某人一共听了16次“概率统计”课,其 中有12次迟到,记A={听课迟到},则
ppt课件
33
(二) 概率
概率论
定义1:fn ( A) 的稳定值p定义为A的概率,记为P(A)=p
定义2:将概率视为测度,且满足:
1。 P( A) 0
2。 P(S ) 1
3。 A1, A2,...,Ak ,...,Ai Aj (i j),
P( Ai ) P( Ai )
(1)从袋中随机摸一球,记A={ 摸到红 球 },求P(A).
(2)从袋中不放回摸两球,记B={恰是一 红一黄},求P(B).
ppt课件
47
概率论
解:(1)
S={1,2, ,8},A={1,2,3}
P
A
3 8
(2)P(B)
C31C51
概率论与数理统计 第一章1.3古典概型与几何概型

基本事件总数为 24. 记 (1), (2), (3), (4) 的事件分
别为 A, B,C, D.
(1) 各球自左至右或自右至左恰好排成 1,2,3,4 的
顺序;
(1) A 中有两种排法, 故有
P(
A)
2 24
1 12
.
(2) 第 1 号球排在最右边或最左边;
(2) B 中有 2 (3!) 12 种排法, 故有
完
计算古典概率的方法
基本计数原理
加法原理
乘法原理
排列组合方法 排列公式
应用举例
组合公式
二项式
完
例 1 一个袋子中装有 10 个大小相同的球, 其中 3
个黑球, 7 个白球, 求: (1) 从袋子中任取一球, 这个球是黑球的概率;
(2) 从袋子中任取两球, 刚好一个白球一个黑球的
概率 以及两个球全是黑球的概率.
顺序;
(2) 第 1 号球排在最右边或最左边; (3) 第 1 号球与第 2 号球相邻;
解 将 4 个球随意地排成一行有4!=24 种排法, 即 基本事件总数为 24. 记 (1), (2), (3), (4) 的事件分 别为 A, B,C, D.
解 将 4 个球随意地排成一行有4!=24 种排法, 即
三班 6 名的分法有:
C145C151C
6 6
15! 4!5!6!
(种).
解 15 名优秀生分别分配给一班 4 名, 二班 5 名,
三班 6 名的分法有:
C145C151C
பைடு நூலகம்
6 6
15! 4!5!6!
(种).
(1) 将 3 名优秀生分配给三个班级各一名, 共有 3!
种分法, 再将剩余的 12 名新生分配给一班 3 名,
概率论与数理统计教程第一章精品PPT课件

4.互不相容(互斥)事件 AB
5.事件的和(并) AB
A1,A2, ,An 的并,记作
n
A i.
i 1
6.对立事件(互逆事件)
若AB ,且AB ,
则B为A的对立事件,记A为 。
7.差事件 AB A B AAB
事件的运算(Operation of Events)
样本点简记为: wi ={直到第i次才击中目标}, i = 1,2,…。
则样本空间可记为 Ω={w1,w2,…} 。
随机事件(Random Events)
在随机试验中可能的结果称为随机事件, 简称事件. 如在掷色子试验中,观察掷出的点数 .
“掷出1点”
"掷出奇数点"
事件就是由样本点组成的某个集合.
(1)事件“A与B发生,C不发生”可表示成
ABC
(2)事件“A,B,C中至少有一个发生”可表示成
ABC
(3)事件“A,B,C中恰好有一个发生”可表示成
A B C A B C A B C
A={w2,w4,w6,w8 , w10}
85 1946 7 2 3 10
B~"取出的球号大于8" B={w9,w10} C~"取出的球号大于10" D~"取出的球号不大于10"
事件间的关系 (Relation of Events)
1.事件的包含 AB
2.事件的相等 AB
3.事件的积(交) AB
n
机事件吗?
两个特殊的事件:
然
即在试验中必定发生的事件,记为Ω ;
可
即在一次试验中不可能发生的事件,记为φ 。
概率论与数理统计第一章

第五节
独立重复试验
n重独立重复试验 重伯努利试验 : 重独立重复试验(n重伯努利试验 重独立重复试验 重伯努利试验) 试验模型的特点: 试验模型的特点: (1)每次试验都在相同条件下进行; 每次试验都在相同条件下进行; 每次试验都在相同条件下进行 (2)各次试验是相互独立的,即各次试验的结果之间相互独立; 各次试验是相互独立的,即各次试验的结果之间相互独立 各次试验是相互独立的 (3)每次试验有且仅有两种结果:A发生或 A 发生; 每次试验有且仅有两种结果: 发生或 发生; 每次试验有且仅有两种结果 (4)每次试验的结果发生的概率相同,即P(A)=p, 每次试验的结果发生的概率相同, 每次试验的结果发生的概率相同 , P( A )=1p=q 凡是具有上述特征的重复进行的试验称为独立重复试验, 凡是具有上述特征的重复进行的试验称为独立重复试验,若 试验共进行n次,即称为n重独立重复试验。 试验共进行 次 即称为 重独立重复试验。 重独立重复试验 n重伯努利试验中事件 恰好出现 次的概率简记为 重伯努利试验中事件A恰好出现 次的概率简记为b(k;n,p), 重伯努利试验中事件 恰好出现k次的概率简记为 则P(Bk)= P(A1A2 Ak Ak+1 An ++ A1A2 Ank Ank+1 An )
3.独立性在可靠性理论中的计算
设有n个元件,每个元件的可靠性均为 设有 个元件,每个元件的可靠性均为r(0<r<1),且每个元 个元件 且每个元 件能否正常工作是相互独立的, 为第i个元件正常工作 个元件正常工作, 件能否正常工作是相互独立的,记Ai为第 个元件正常工作, A为系统正常工作。 为系统正常工作。 为系统正常工作 1 n 2 ①串联系统 系统能正常工作的充分必要条件是每个元件都正常工作 P(A)=P(A1A2…An)=P(A1)P(A2)…P(An)=rn … ②并联系统 1 系统正常工作等价于n个元件中 系统正常工作等价于 个元件中 2 至少有一个正常工作, 至少有一个正常工作,即 P(A)=P(A1+A2+…+An) … n
概率论与数理统计第一章ppt课件

事件独立的例题:
P ( A 1 ) 1 / 5 , P ( A 2 ) 1 / 3 , P ( A 3 ) 1 / 4
P (A 1 A 2 A 3) 1P (A 1 A 2 A n)
3
1
1P(A1A2A3)
1P (A 1)P (A 2)P (A 3)
=1-[1-P(A1)][1-P(A2)][1-P(A3)]
❖练习 某人从外地赶来参与紧急会议, 他乘火车、轮船、汽车、飞机来的概率 分别是0.3、0.2、0.1、0.4,假设他乘 飞机来就不会迟到;而乘火车、轮船或 汽车来迟到的概率分别为1/4、1/3、 1/12。
❖〔1〕求他迟到的概率;
❖〔2〕假设他迟到了,试推断他是怎样 来的,说说他的理由。
❖例4 据以往的临床记录,某种诊断 糖尿病的实验具有以下的效果:假设 一被诊断者患有糖尿病那么实验结果 呈阳性的概率为0.90;假设一被诊断 者未患糖尿病,那么实验结果呈阳性 的概率为0.06。又知受实验的人群患 糖尿病的概率为0.03。假设一被诊断 者其实验结果呈阳性,求此人患糖尿 病的条件概率。
这一节我们引见了
全概率公式
贝叶斯公式
它们是加法公式和乘法公式的综合运用, 同窗们可经过进一步的练习去掌握它们. 值得一提的是,后来的学者根据贝叶斯公 式的思想开展了一整套统计推断方法,叫 作“贝叶斯统计〞. 可见贝叶斯公式的影 响.
小结
全概率公式:由因遡果 贝叶斯公式:由果索因
Company
LOGO
❖例2 甲、乙两人独立地对同一目的射击 一次,其命中率分别是0.5和0.4。现知 目的被命中,那么它是乙射中的概率是 多少?
❖例3 设0<P(A)<1,且P(B|A)=P(B|A ), 试证:A、B相互独立.
《概率论与数理统计》1-123(频率与概率)

某一事件发生
它包含的一个样本点出现
三、事件间的关系及其运算
试验E S(样本空间) 事件A 必然事件 S 基本事件
不可能事件
A(子集) 样本点
1.事件的关系
① 包含、相等关系 A发生必然导致B发生
AB
称事件A包含于B或B包含A.
文氏图(Venn图)
A与B相等 ,记为A=B
例1: 产品有长度、直径、外观三个质量指标,
②(有﹏放﹏回﹏选﹏取﹏)从n个不同元素中有放回地抽取r个,依 次排成一列,称为可重复排列,排列数记
例 将三封信投入4个信箱,问在下列情形下各有几种 投法? ⑴ 每个信箱至多允许投入一封信。 ⑵ 每个信箱允许投入的信的数量不受限制。 解:⑴ 无重复排列:
⑵ 可重复排列:
Ⅳ. 组合 从n个元素中每次取出r个元素,构成一组,称为从n个 元素里每次取出r个元素的组合。 组合数为 或 几个常用性质:
两两互不相容。
证明 由三公理中的可列可加性,令
则由性质1可得 所以下式成立
如果
则
①
≤
②
,0≤
≤1
(加法公式) 推广:
P11
例1 (天气问题) 某人外出旅游两天,据天气预报知: 第一天下雨的概率为0.6,第二天下雨的概率为0.3, 两天都下雨的概率为0.1 试求下列事件的概率: (1) 第一天下雨,第二天不下雨; (2) 第一天不下雨,第二天下雨; (3) 至少有一天下雨; (4) 两天都不下雨; (5) 至少有一天不下雨
解:设A、B分别表示第一、二天下雨 则 (1) (2) (3) (4) (5)
例2 (订报问题) 在某城市中,共发行三种报纸A,B,
C,订购A,B,C的用户占用分别为45%,35%,30%,
概率论与数理统计知识点总结(超详细版)

《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)())(()( C A B A C B A ⋂⋂=⋃⋂徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk knk kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P (v ))(1)(A P A P -=(逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
概率论与数理统计(第3版)(谢永钦)第1章 概率论的基本概念

(4)
A∪(B ∩ C)=(A∪B)∩(A∪C)
(5)
概率论与数理统计
02
第2节 概率、古典概率
概率论与数理统计
1. 概率 定义1.1
在相同条件下,进行了n次试验.若随机事件A在这n次试验中发 生了k次,则比值 称为事件A在n次实验中发生的频率,记为
并按其出现的先后排成一行.试求下列事件的概率
概率论与数理统计
P(A2 )
C19 103 104
0.9
P(A3 )
C24 92 104
0.0486
概率论与数理统计
例题
(一个古老的问题)一对骰子连掷25次.问出现双 6与不出现双6的概率哪个大?
概率论与数理统计
4. 几何概型
若试验具有如下特征:
频率具有下列性质:
(1)对于任一事件A,有 (2)
概率论与数理统计
概率论与数理统计
定义1.2 设事件A在n次重复试验中发生了k次, n很大时,频率 k/n稳定在某一数值p的附近波动,而随着试验次数n的增 加,波动的幅度越来越小,则称p为事件A发生的概率, 记为:P(A)=p.
概率论与数理统计
历史上著名的统计学家德·摩根(De Morgan)蒲丰(Buffon)和皮尔逊
对于任意的事件A,B只有如下分解:
概率论与数理统计
AB
A B
AB
AB
A B
AB
A B
AB
A B
概率论与数理统计
A
AB
B
A
A
概率论与数理统计
第1章第3节 频率与概率

概率论的基本概念第1节随机试验第2节样本空间、随机事件第3节频率与概率第4节等可能概型(古典概型)第5节条件概率第6节独立性概率的描述性定义:随机事件A发生的可能性大小的度量,称为事件A发生的概率,记作P(A)。
注记:概率的描述性定义不能定量的刻画概率值。
下面通过引入频率的概念,给出概率的统计定义。
粗略的讲,在大量重复的试验中,随机事件出现的频率会逐渐稳定到一个数值,称为事件的概率。
1933年,柯尔莫哥洛夫给出了概率论的公理化定义,这是概率的严格定义。
它涉及σ代数(事件域)等概念,有兴趣的同学可参考相关概率论教材。
粗略的讲,样本空间中的一部分子集“不可测”,因此不能定义“概率”,但不可测的子集在实际应用中几乎不会遇到。
在相同的条件下,进行了n次试验,在这n次试验中,事件A 发生的次数n A 称为事件A发生的频数。
比值n A /n称为事件A发生的频率,记为。
频率的基本性质设A是随机试验E的任一事件,则;1)(0)1( A f n ).()()()(,,,,)3(212121k n n n k k A f A f A f A A A f A A A 则是两两互不相容的事件若;0)(,1)()2( f S f n次试验中,事件A至少发生0次,至多发生n次必然事件发生n次,不可能事件发生0次如果几个事件不可能同时发生,总的发生次数等于各事件发生次数之和A f n实例:将一枚硬币抛掷5次、50次、500次,各做7遍,观察正面出现的次数及频率。
随着n增大,f在0.5附近波动幅度减小,呈现出稳定性试验序号5 n H n fHn f50n 22252125241827H n 500 n 2512492562472512622580.40.60.21.00.20.40.80.440.500.420.480.360.54f0.5020.4980.5120.4940.5240.5160.500.502只要我pao得足够快,寂寞就追不上我。
概率论与数理统计第1.3节

美国数学家伯格米尼曾经做过 一个别开生面的实验,在一个盛况 空前、人山人海的世界杯足球赛赛场上, 他随机地在某号看台上召唤了22个球迷, 请他们分别写下自己的生日,结果竟发现 其中有两人同生日.
用上面的公式可以计算此事出现的概率为
P(A)=1-0.524=0.476
即22个球迷中至少有两人同生日的概率为 0.476.
解 方法1 把a+b个球编上1至a+b号,将球一只一只 取出后排成一排,考虑取球的先后顺序,因此共有 (a+b)!种取法,由球的均匀性知每种取法机会都相 同,故属于古典概型,A发生可以先从a个红球中 任取一个放在第k个位置上,然后将剩下的a+b+1 个球随意排在另外a+b+1个位置上,
共有 Ca1(a b 1)! 种排法,故
(1)不放回地从中任取一件,共取3次,求取到3 件次品的概率;
(2)每次从中任取一件,有放回地取3次,求取到 3件次品的概率;
(3)从中任取3件,求至少取得1件次品的概率。
例2 已知10件产品中有7件正品,3件次品。 (1)不放回地从中任取一件,共取3次,求取到3 件次品的概率; 解 (1)设A={取到3件次品}
由于此试验是不放回抽取3次,所以由乘法原理 3次取产品共有10×9×8=720种不同取法,
而3次取3件次品共有3×2×1=6种不同取法,所以
P( A) 6 1 0.0083 720 120
例2 已知10件产品中有7件正品,3件次品。 (2)每次从中任取一件,有放回地取3次,求取到 3件次品的概率; 解 (2)设B={取到3件次品}
(1)事件A包含的基本事件个数是3!个,所以
P( A)
3! 33
2 9
东华大学《概率论与数理统计》课件 第一章 随机事件与概率

(3) 设A1,A何2,…时,P是(A一|列B两)两<互P不(A相)容? 的事件,即AiAj=
,(ij), i , j=1, 2, …, 有 P( A1 A2 … )= P(A1) +P(A2)+….
则称P(A)为事件A的概率。
例 一盒中混有100只新 ,旧乒乓球,各有红、白两 色,分 类如下表。从盒中随机取出一球,若取得的 是一只红球,试求该红球是新球的概率。
1.定义 若对随机试验E所对应的样本空间中的 每一事件A,均赋予一实数P(A),集合函数P(A)满足 条件:
(1) 非负性: P(A) ≥0;
(2) 规范性: P(S)=1;
(3) 可列可加性:设A1,A2,…, 是一列两两互不 相容的事件,即AiAj=,(ij), i , j=1, 2, …, 有
概率论与数理统计
第一章 随机事件与概率
教材:
《概率论与数理统计》
魏宗舒编
高等教育出版社
本章主要内容:
1. 概率的概念与性质 2. 事件的关系与运算性质 3. 古典概型概率的计算 4. 加法公式、条件概率、乘法公式 5. 事件的独立性、伯努利概型
重点:古典概型、概率的计算 难点:事件的关系和运算
条件概率、伯努利概型
(2) 单调不减性:若事件AB,则 P(A)≥P(B)
(3) 事件差: A、B是两个事件,
则
P(A-B)=P(A)-P(AB)
(4) 加法公式:对任意两事件A、B,有 P(AB)=P(A)+P(B)-P(AB)
该公式可推广到任意n个事件A1,A2,…,An的情形 ;
(5) 互补性:P(A)=1- P(A); (6) 可分性:对任意两事件A、B,有
概率论与数理统计第一章课件

所有样本点的平均值
样本方差
描述样本点离散程度的量
无偏估计
样本统计量的值等于总体参数的真实值
t分布与F分布
t分布
用于描述小样本数据的分布情况,也 称学生t分布
F分布
用于描述两个比例的方差之间的比例 关系
04
参数估计
点估计与估计量
点估计
用样本统计量来估计未知参数的 过程。
估计量
用于估计未知参数的样本统计量。
假设检验的分类单侧检验、双侧检验。来自 单侧与双侧检验单侧检验
01
只关注参数的一个方向是否满足假设,如检验平均值是否大于
某个值。
双侧检验
02
关注参数的两个方向是否满足假设,如检验平均值是否在两个
值之间。
单侧与双侧检验的选择
03
根据实际问题需求和数据特征选择合适的检验方式。
显著性检验与P值
显著性检验
通过比较样本数据与理论分布,判断样本数据是否显著地偏离理 论分布。
P值
观察到的数据或更极端数据出现的概率,用于判断是否拒绝或接 受假设。
P值的解读
P值越小,表明数据越显著地偏离理论分布,假设越可能不成立。
第一类错误与第二类错误
1 2
第一类错误
拒绝实际上成立的假设,也称为假阳性错误。
第二类错误
接受实际上不成立的假设,也称为假阴性错误。
3
错误率控制
通过调整临界值的大小,可以控制第一类错误和 第二类错误的概率,从而实现错误率控制。
通过参数估计,还可以对生产过 程进行实时监控和预警,及时发 现并解决生产中的问题,保证生
产的稳定性和可靠性。
假设检验在医学研究中的应用
假设检验是数理统计中的一种 重要方法,在医学研究中有着
矿产

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
性质 4 P( A) 1
第一章 随机事件和概率
性质 5 P( A ) 1 P( A) ;
性质 (一般加法公式) 6 P( A B) P( A) P( B) P( AB)
重 要 推 广
1) P ( A B C ) P ( A) P ( B ) P (C ) P ( AB ) P ( AC ) P ( BC ) P ( ABC )
(i) F ; (ii) 如果 A F ,那么 A F ;;
(iii) 如果 Ai F ,i 1, 2, ,那么
i 1
Ai F ;;
称满足上述条件的集合族为 域,也称 -代数.
F 中的元素称为事件,也称 F 为事件域. 称为必 然事件, 称为不可能事件.
例4 对于一般的 ,若 F 由 的一切子集构成,
可以验证 F 为一 注
事件域可以很简单,也可以十分复杂,要根 据问题的不同要求来选择适当的事件域.
把任一样本空间,以及由的子集所组成的一个
-代数F x 写在一起,记为 ,F ,称为具有 -代数
结构的样本空间,简称为 可测空间
利用多除少补原理来作概率的计算,常能使解题思路 清晰,计算便捷. 例5(匹配问题放入一只信封中,试求至少 有一封信放对的概率.(1708年为Montmort所解决,后
由Laplace等人推广)
解 若以 Ai 记第i 封信与信封符合,则所求的事件为
第一章 随机事件和概率
§1.3 概率的公理化定义 概率空间 一、概率空间及其三要素
1、样本空间 2、 F 与可测空间 3、概率P与概率空间 二、概率的可列可加性与连续性 三、概率空间的实际例子
一、概率空间及其三要素 1、样本空间
为样本点,相应于随机试验的结果.
2、 F 与可测空间
是一非空集合,称为样本空间;其中的元素称
我们把事件A定义为 的一个子集,它包含若干 样本点,事件A发生当且仅当A 所包含的样本点中有 一个发生. 一般并不把 的一切子集都作为事件,因为这将 对给定概率带来困难.同时,又必须把问题中感兴趣 的事件都包括进来,因为事件的交、余、并等也应该 为事件,也应该有相应的概率.
于是,我们把事件的全体记为 F ,它是由 的 某些子集构成的集合族,并且还应满足下面的条件:
第一章 随机事件和概率
前面讲到:事件就是某些样本点组成的集合,事件 之间的运算也就是集合运算.
但是,并没有对事件的集合进行限制. 对于事件,一 个很明显的要求就是所有事件组成的集合对于并、交 、余这三种运算封闭. 前苏联学者柯尔莫哥洛夫于1933年在《概率论基 础概念》一书中,用公理化的方法与集合论的观点 成功地解决了这一问题,提出了概率空间的概念.
3、概率P与概率空间
概率P 为定义在事件域 上的函数,即它是一个从 到 的映射: ,且它满足 (i)
(ii) (iii)完全可加性:
称这样的P为可测空间 (, F ) 上的一个概率测度 , 简称为概率,(, F , P ) 称为概率空间.
性质(iii)也称为可列可加性.
数学上所说的“公理”,就是一些不加证明而承认的前提, 这些前提规定了所讨论的对象的一些基本关系和所满足的 条件,然后以之为基础,推演出所讨论的对象的进一步的 内容.几何学就是一个典型例子.成功地将概率论实现公理化 的是现代苏联大数学家柯莫哥洛夫.值得赞赏的不止在于他 实现了概率论的公理化,还在于他提出的公理为数很少且 极为简单,而在这么一个基础上建立起了概率论的宏伟大厦.
A1 A2 An
不难求得
(n 2)! P ( Ai A j ) , n! , P ( A1 A2 1 An ) n!
(n 1)! P ( Ai ) , n!
(n 3)! P ( Ai A j Ak ) , n!
因此
P( A1
A2
1 2 n 2 ! An ) C Cn n n!
A2 , ,
An , 有
1 i j k n
P A A A
i j k
1
n 1
P A1 A2 An
提示:可用归纳法证明
推论 (次可加性)
对任意 n 个事件 A1 ,
A2 ,
,
An , 有
n n P Ai P Ai i 1 i 1
1 n
C
3 n
n 3 !
n!
n 1
(1)
n 1
1 n!
1 1 1 2! 3!
(1)
1 n!
二、概率的可列可加性与连续性 定义1 若 An F , n 1, 2, 且 An An 1 ,则 An 是 F 中的一个单调不减的集序列. 若 An F , n 1, 2, 且 An An 1,则 An 是 F 中的一个单调不增的集序列. 定义2 对于 F 上的集合函数 P (),若它对 F 中任何一 个单调不减的集序列 { An }均有:
很显然,根据定义,必然事件和不可能事件都在事 件域中,事件的有限及可列交、并以及差也都在事件 域中.
例1 F {, } 为一 -代数. 例2 为一
-代数.
例3
{1 , , n }, F 是由 的一切子集构成.
F 是一个有限的集合,共有元素2n 个. 这时,
F 为一
-代数. -代数.
第一章 随机事件和概率
概率测度P的性质与推广:
性质 1 P() 0 ; 反之不然!
性质 (有限可加性)若 2 A1, A2, , An是两两互不相容事件, 则
P ( A1 A2 An ) P ( A1) P ( A2) P ( An )
性质(减法公式)若 3 A B ,则有 P( B A) P( B) P( A), 且P( B) P( A)
2) P ( B A) P ( B ) P ( AB )
第一章 随机事件和概率
加法公式的推广(多除少补原理)
对任意 n 个事件 A1 , n P Ai P Ai i 1 i 1 P Ai A j
n 1 i j n