[计算机网络:自顶向下方方法](中文版课件)第七章
计算机网络:自顶向下方法与互联网特色 教学指导
复习题
9.传输延迟:一个长度为1000字节的分组在距离为5000Km的链路上传播,其传输延迟是多大?假设传播速度为2.5X108m/s,链路的传输速率为1Mbps。一般化,如果链路的长度为d公里,传输速率为R bps,传播速率为s米/秒。则长度为L字节的分组的传输播延迟为多少?传输延迟与分组的长度L有关系吗?传输延迟与链路的传输速率有关系吗?
10.协议层次:计算机网络中使用了多达上百种不同的协议。为了更好地处理这种复杂性,将协议分成了不同的层次,这些协议层次组成了“栈(stack)”。例如,Internet的协议分为五层,从顶向下分别为:应用层、传输层、网络层、链路层和物理层。N层协议使用N-1层协议提供的服务。关于计算机网络协议层次的概念比较抽象,开始时很难把握,随着课程内容的逐步深入将变得越来越清晰。
3.Packet switching分组交换:当一个端系统向另一个端系统发送数据时,发送端将数据分成一个一个的数据块(chunks),这些数据块叫做分组(packet)。同邮政系统分发邮件的过程类似,Internet独立地处理每个分组并将其向目的端系统传输。当分组交换机收到一个分组后,利用分组携带的目的地址确定传输分组所需使用的输出链路。因此,一个分组交换机执行“分组交换”,将到达的分组一个一个地从输出链路转发(forwarding)出去。另外,分组交换机在转发分组时采用存储转发(store and forward)方式,即交换机只有在完整地收到并存储下整个分组后才开始将分组从输出链路上转发出去。
(计算机网络:自顶向下方方法)TopDownV3-8
输数据包的核心协议。
传输层简介
定义传输层在计算机 网络中的作用
传输层负责确保数据在发送方和 接收方之间可靠地传输,并提供 端到端的通信服务。
描述传输层的主要功 能
传输层的主要功能包括建立连接、 数据传输、错误控制和流量控制 等。
解释传输层的协议
传输层协议包括TCP (Transmission Control Protocol)和UDP(User Datagram Protocol)。TCP是 一种可靠的、面向连接的协议, 而UDP则是一种不可靠的、无连 接的协议。
07 应用层
应用层简介
01
应用层是计算机网络体系结构中的最高层,直接面 向用户提供服务。
02
它负责处理特定的应用程序细节,例如文件传输、 电子邮件、网页浏览等。
03
应用层协议定义了应用程序之间的通信规则和数据 交换格式。
应用层协议
HTTP协议
用于网页浏览和信息检索,如浏览器和Web服务器之间的通信。
FTP客户端
用于在计算机之间传输文件,使用FTP协议。
DNS服务器
提供域名解析服务,将域名转换为IP地址。
08 网络安全与网络管理
网络安全简介
网络安全定义
网络安全是指保护网络系统免受未经授权的访问、使用、 泄露、破坏、修改或销毁,确保网络服务的可用性、完整 性和保密性。
网络安全威胁
网络安全面临的威胁包括恶意软件、黑客攻击、网络钓鱼、 身份盗窃等,这些威胁可能导致数据泄露、系统瘫痪或经 济损失。
网络层简介
01
定义网络层在计算机网络中的作用
网络层负责将数据包从一个网络节点传输到另一个网络节点,确保数据
包能够到达目的地。
计算机网络(中文版_谢希仁)
计算机网络讲义参考文献:【1】James F. Kurose著, 鸣译. 计算机网络—自顶向下方法与Internet特色. : 机械工业, 2005 【2】Andrew S. Tanenbaum著,熊桂喜等译. 计算机网络〔第四版〕.:清华大学,2004【3】高传善等编. 数据通信与计算机网络. :高等教育,2001【4】William A. Shay著. 高传善等译. 数据通信与网络教程. :机械工业,2000第一章概述1.1 建立计算机网络的目的1.目的●资源共享●高可靠性●节约经费●通信手段2.计算机网络与分布式系统的区别分布式系统是建立在计算机网络之上的软件系统,它具有高度的整体性和透明性。
因此计算机网络和分布式系统的区别在于软件〔尤其是操作系统〕而不是硬件。
1.2 计算机网络的开展过程〔四代〕1.2.1 通信与计算机的结合——产生计算机网络〔电路交换〕●通信网络为计算机之间的数据传递和交换提供了必要的手段。
●数字计算机技术的开展渗透到通信技术中,又提高了通信网络的各种性能。
●电路交换:建立连接数据通信释放连接●电路交换的分类:空分交换是交换比特流所经过的端口号;时分交换是交换比特所在的时隙;波分交换是交换荷载比特的光的波长。
1.2.2 分组交换网的出现〔包交换〕●传统的电路交换技术不适合计算机数据的传输。
●分组交换网的试验成功:存储转发原理——即断续〔或动态〕分配传输带宽。
●分组交换的主要特点:高效、灵活、迅速、可靠。
●分组交换网:以通信子网为中心,主机和终端都处在网络的外围。
●电路交换、报文交换和分组交换的主要区别:参见课本P5图1-4。
1.2.3 计算机网络体系结构的形成:OSI/RM〔ISO〕、TCP/IP〔Internet〕、SNA〔IBM〕、DNA〔Digital〕等。
〔分层网络体系结构的形成〕●OSI/RM:开放系统互联根本参考模型。
●TCP/IP:INTERNET的体系结构。
计算机网络自顶向下期末总复习课件
交换机是一种多端口的网络设备,能够根据数据包的MAC地址进行数据交换。 它在局域网中广泛应用,提供快速的数据交换服务。
06
应用层
应用层定义
应用层定义
应用层是计算机网络体系结构中的最高层,直接面向用户提供服务 。
作用
应用层负责处理特定的应用程序细节,为用户提供直接的网络服务 ,如文件传输、电子邮件、网页浏览等。
计算机网络自顶向下 期末总复习课件
目 录
• 概述 • 物理层 • 数据链路层 • 网络层 • 传输层 • 应用层
01
概述
计算机网络定义
01
计算机网络
是计算机技术和通信技术相结合的产物,由各种硬件和软件组成,使处
在不同位置的计算机可以进行数据交换、资源共享等操作。
02
计算机网络的主要功能
数据交换、资源共享、分布式处理。
常见的物理层协议包括Ethernet(以太网)、Token Ring(令牌环)、FDDI( 光纤分布式数据接口)等。
物理层设备
物理层设备包括网卡、调制解调器、集线器、中继器等,它 们负责在物理层上实现比特流的传输和接收。
物理层设备必须遵循物理层协议的规定,以确保网络通信的 正确性和可靠性。
03
数据链路层
03
计算机网络的分类
局域网、城域网、广域网。
计算机网络分类
01
02
03
局域网(LAN)
通常覆盖较小地理区域, 如一个办公室、一栋大楼 或一个校园,用于连接近 距离的计算机。
城域网(MAN)
覆盖中等地理区域,如一 个城市或一个地区,用于 连接多个局域网。
广域网(WAN)
覆盖较大地理区域,如一 个国家或全球范围,用于 连接远程计算机。
计算机网络自上向下第七版Chapter_8_V7.0
m plaintext message
KA(m) ciphertext, encrypted with key KA m = KB(KA(m))
Security 8-9
Breaking an encryption
scheme
cipher-text only attack: Trudy has ciphertext she can analyze
• denial of service: prevent service from being used by others (e.g., by overloading resources)
Security 8-7
Chapter 8 roadmap
8.1 What is network security? 8.2 Principles of cryptography 8.3 Message integrity, authentication 8.4 Securing e-mail 8.5 Securing TCP connections: SSL 8.6 Network layer security: IPsec 8.7 Securing wireless LANs 8.8 Operational security: firewalls and IDS
ciphertext: mnbvcxzasdfghjklpoiuytrewq
e.g.: Plaintext: bob. i love you. alice ciphertext: nkn. s gktc wky. mgsbc
Encryption key: mapping from set of 26
access and availability: services must be accessible
《计算机网络——自顶向下方法与Internet特色》幻灯片Lecture.ppt
• contacted by local name server that can not resolve name • root name server:
– contacts authoritative name server if name mapping not known
– gets mapping – returns mapping to local name server
authoritative DNS server
7. Recursive query: In theory, the following is true. In practice, not
• puts burden of
– Can be maintained by organization or service provider
6. Local Name Server
• Does not strictly belong to hierarchy • Each ISP (residential ISP, company,
m WIDE Tokyo
b USC-ISI Marina del Rey, CA l ICANN Los Angeles, CA
13 root name servers worldwide
4. Top-level domain (TLD) servers: responsible for com, org, net, edu, etc, and all top-level country domains uk, fr, ca, jp.
DNS servers
DNS serversDNS servers
Client wants IP for ; 1st approx:
计算机网络自顶向下方法
Introduction
1-10
The network edge:
end systems (hosts):
client/server model
run application programs e.g. Web, email at “edge of network”
access points wired links
Institutional network
router
Introduction
1-3
“Cool” internet appliances
Web-enabled toaster + weather forecaster IP picture frame /
receiving of msgs
Mobile network Global ISP
Internet: “network of
networks”
e.g., TCP, IP, HTTP, Skype, Ethernet
Home network Regional ISP
loosely hierarchical public Internet versus private intranet
Introduction 1-13
Residential access: cable modems
HFC: hybrid fiber coax
asymmetric: up to 30Mbps downstream, 2 Mbps upstream network of cable and fiber attaches homes to ISP router homes share access to router deployment: available via cable TV companies
《计算机网络自顶向下方法》第七章中文版答案
WRI 研究生06017复习题1.流式存储音频/视频:暂停/恢复,重新定位,快进,实时交互的音频视频:人们进行实时的通信和响应。
2.第一阵营:TCP/IP协议中的基本原理没有变化,按照需求增加带宽,仍然使用有超高速缓存,内容分布,多点覆盖的网络。
第二阵营:提供一个可以使应用在网络中节省带宽的网络服务。
第三阵营:有区别的服务:提出了在网络边缘的简单分类和维护方案。
并且根据他们在路由队列中的级别给出了不同的数据包和级别。
3. 6.1:简单,不需要meta file 和流媒体服务器6.2:允许媒体播放器通过web服务器直接进行交互,不需要流媒体服务器。
6.3:媒体播放器直接与流媒体服务器进行交互,以满足一些特殊的流媒体应用。
4.端到端时延是分组从源经过网络到目的地所需要的时间。
分组时延抖动是这个分组与下个分组的端到端时延的波动。
5.在预定的播放时间之后收到的分组不能被播放,所以,从应用的观点来看,这个分组可以认为是丢失了。
6.第一种方案:在每n个数据块之后发送一个冗余的数据块,这个冗余的被。
【the redundant chunk is obtained byexclusive OR-ing the n original chunks】第二种方案:随起始的数据流发送一个低分辨率,低比特率的方案,这种交错不会增加数据流的带宽需求。
7.不同会话中的RTP流:不同的多播地址同一会话中不同流:SSRC fieldRTP和RTCP分组通过端口号区别。
8.传达报告分组:包括分组丢失部分的信息,最后序列号,两次到达时间间隔的抖动。
发送报告分组:大部分目前产生的RTP分组的时间戳和wall clock time ,发送分组的数量,发送字节的数量,源描述分组:发送方的e-mail地址,发送方的姓名,产生RTP流的应用。
9.在非抢占式优先级排队中,一旦开始分组的发送,它就不会被打断。
在抢占式优先级排队中,当一个比目前分组有着更高优先级的分组到达时,即使目前的分组没有传送完毕,也会被打断,来传送更高优先级的分组。
计算机网络自顶向下方方法中文版73页PPT
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证—雨果
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you
20210911#_《计算机网络-自顶向下》
20210911#_《计算机⽹络-⾃顶向下》第1章计算机⽹络1.1 什么是因特⽹1.1.1 具体构成描述计算机⽹络(computer network)主机(host)或端系统(end system)通信链路(communication link)和分组交换机(packet switch)传输速率(transmission rate)分组(packet)路由器(router)链路层交换机(link-layer switch)路径(mute或path)因特⽹服务提供商(Internet Service Provider, ISP)协议(protocol)TCP (Transmission Control Protocol,传输控制协议)和IP (Internet Protocol,⽹际协议)因特⽹标准(Internet standard)由因特⽹⼯程任务组(Internet Engineering Task Force, IETF )请求评论(Request For Comment, RFC)1.1.2 服务描述分布式应⽤程序(distributed applicalion)套接字接⼝( socket interface),1.1.3 什么是协议1.2 ⽹络边缘客户(client)和服务器(server)数据中⼼(data center)1.2.1 接⼊⽹接⼊⽹边缘路由器(edge router)1.家庭接⼊:DSL、电缆、FTTH、拨号和卫星数字⽤户线(Digital Subscriber Line,DSL)复⽤器(DSLAM)电缆因特⽹接⼊(cable Internet access)所以它经常被称为混合光纤同轴(Hybrid Fiber Coax, HFC)系统。
电缆因特⽹接⼊需要特殊的调制解调器,这种调制解调器称为电缆调制解调器(cablemodem)电缆调制解调器端接系统(Cable Modem Termination System, CMTS)光纤到户(Fiber To The Home, FTTH)进⾏这种分配有两种有竞争性的光纤分布体系结构:主动光纤⽹络(Active Optical Network,AON)被动光纤⽹络(Passive Optical Network, P0N)光纤⽹络端接器(Optical Network Terminator, ONT)分配器(splitter)光纤线路端接器(Optical Line Tenninator, OLT)2.企业(和家庭)接⼊:以太⽹和WiFi3.⼴域⽆线接⼊:3G和LTELTE (长期演进“Long-Term Evolution”的缩写,被评为最差⾸字母缩写词年度奖候选者)1.2.2 物理媒体HFC使⽤了光缆和同轴电缆相结合的技术。
计算机网络——自顶向下方法与Internet特色(答案)(中文版第三版)
计算机网络(第三版)习题答案-自顶向下方法与Internet特色1复习题1.没有不同。
主机和端系统可以互换。
端系统包括PC,工作站,WEB服务器,邮件服务器,网络连接的PDA,网络电视等等。
(张士波)2.假设爱丽丝是国家A的大使,想邀请国家B的大使鲍勃吃晚餐。
爱丽丝没有简单的打个电话说“现在我们一起吃晚餐吧”。
而是她先打电话给鲍勃建议吃饭的日期与时间。
鲍勃可能会回复说那天不行,另外一天可以。
爱丽丝与鲍勃不停的互发讯息直到他们确定一致的日期与时间。
鲍勃会在约定时间(提前或迟到不超过15分钟)出现在大使馆。
外交协议也允许爱丽丝或者鲍勃以合理的理由礼貌的退出约会。
3.联网(通过网络互联)的程序通常包括2个,每一个运行在不同的主机上,互相通信。
发起通信的程序是客户机程序。
一般是客户机请求和接收来自服务器程序的服务。
4.互联网向其应用提供面向连接服务(TCP)和无连接服务(UDP)2种服务。
每一个互联网应用采取其中的一种。
面相连接服务的原理特征是:①在都没有发送应用数据之前2个端系统先进行“握手”。
②提供可靠的数据传送。
也就是说,连接的一方将所有应用数据有序且无差错的传送到连接的另一方。
③提供流控制。
也就是,确保连接的任何一方都不会过快的发送过量的分组而淹没另一方。
④提供拥塞控制。
即管理应用发送进网络的数据总量,帮助防止互联网进入迟滞状态。
无连接服务的原理特征:①没有握手②没有可靠数据传送的保证③没有流控制或者拥塞控制5.流控制和拥塞控制是两个面向不同的对象的不同的控制机理。
流控制保证连接的任何一方不会因为过快的发送过多分组而淹没另一方。
拥塞控制是管理应用发送进网络的数据总量,帮助防止互联网核心(即网络路由器的缓冲区里面)发生拥塞。
6.互联网面向连接服务通过使用确认,重传提供可靠的数据传送。
当连接的一方没有收到它发送的分组的确认(从连接的另一方)时,它会重发这个分组。
7.电路交换可以为呼叫的持续时间保证提供一定量的端到端的带宽。
计算机网络自顶向下方法讲义资料课件
详细描述
计算机网络体系结构是用来标准化计算机网络各层之 间关系的结构框架,它规定了不同计算机之间进行通 信应遵循的规则和标准。计算机网络体系结构通常分 为OSI参考模型和TCP/IP模型两部分。OSI参考模型将 计算机网络划分为七个层次,从上到下分别是应用层 、表示层、会话层、传输层、网络层、数据链路层和 物理层。TCP/IP模型则将计算机网络划分为四个层次 ,分别是应用层、传输层、网络层和网络接口层。
计算机网络自顶向下方 法讲义资料课件
目录
Contents
• 概述 • 物理层 • 数据链路层 • 网络层 • 传输层 • 应用层
01 概述
计算机网络定义
总结词
计算机网络是利用通信设备和线路将地理位置不同的、功能独立的多个计算机系 统连接起来,以功能完善的网络软件实现网络中资源共享和信息传递的系统。
详细描述
计算机网络是一个复杂的系统,它利用各种硬件和软件技术,将地理位置分散的 计算机系统连接在一起,形成一个能够进行信息交换和资源共享的虚拟环境。计 算机网络的基本构成包括通信设备和线路、计算机系统和网络软件。
计算机网络分类
总结词
根据不同的分类标准,计算机网络可以分为多种类型,如按覆盖范围可分为局域网、城域网和广域网;按拓扑结 构可分为总线型、星型、环型和网状型等。
应用层协议
FTP协议
用于文件传输。
DNS协议
用于域名解析。
HTTP协议
用于万维网中网页的传输和访 问。
SMTP协议
用于电子邮件传输。
TLS/SSL协议
用于实现安全的网络通信。
全套课件-计算机网络自顶向下
实时性(Timing) • 某些应用(e.g., IP 电话, 交
互式游戏) 要求较低的时 延
第2讲:应用层
6
常用应用程序对传输功能的要求
应用程序 数据丢失
文件传输 e-mail
Web 网页 实时音频/视频
存储音频/视频 交互式游戏 金融应用
– 教科书p232-234
第2讲:应用层
5
应用进程需要怎样的传输服务?
数据丢失(Data loss)
• 某些应用 (e.g., audio) 可以容 忍某种程度上的数据丢失
• 其他应用 (e.g., 文件传输, telnet) 要求 100% 可靠的数 据传输
带宽(Bandwidth)
某些应用(e.g., 多媒体) 对最低带宽有要求
所依赖的传输协议
TCP TCP TCP TCP TCP or UDP
TCP or UDP typically UDP
第2讲:应用层
9
http 协议
http: TCP 传输服务:
• 客户端启动TCP连接(创建插口) 到服务器, 端口 80
• 服务器接受来自客户端的 TCP 连接
• http 报文(应用层协议报文) 在 浏览器 (http client) 和Web服务 器(http server)之间进行交换
数据, e.g., 被请求的html文件
data data data data data ...
第2讲:应用层
17
http 响应状态码和短语
位于(服务器->客户端)响应报文的第一行. 样例: 200 OK
– 请求成功, 被请求的对象在报文中
计算机网络自顶向下第七版第七章答案
计算机⽹络⾃顶向下第七版第七章答案Computer Networking: A Top-Down Approach,7th Edition计算机⽹络⾃顶向下第七版Solutions to Review Questions and ProblemsChapter 7 Review Questions1.In infrastructure mode of operation, each wireless host is connected to the largernetwork via a base station (access point). If not operating in infrastructure mode, a network operates in ad-hoc mode. In ad-hoc mode, wireless hosts have noinfrastructure with which to connect. In the absence of such infrastructure, the hosts themselves must provide for services such as routing, address assignment, DNS-like name translation, and more.2.a) Single hop, infrastructure-basedb) Single hop, infrastructure-lessc) Multi-hop, infrastructure-basedd) Multi-hop, infrastructure-less3.Path loss is due to the attenuation of the electromagnetic signal when it travelsthrough matter. Multipath propagation results in blurring of the received signal at the receiver and occurs when portions of the electromagnetic wave reflect off objects and ground, taking paths of different lengths between a sender and receiver. Interference from other sources occurs when the other source is also transmitting in the samefrequency range as the wireless network.4.a) Increasing the transmission powerb) Reducing the transmission rate5.APs transmit beacon frames. An AP’s beacon frames will be transmitted over one ofthe 11 channels. The beacon frames permit nearby wireless stations to discover and identify the AP.6.False7.APs transmit beacon frames. An AP’s beacon frames will be transmitted over one ofthe 11 channels. The beacon frames permit nearby wireless stations to discover and identify the AP.8.False9.Each wireless station can set an RTS threshold such that the RTS/CTS sequence isused only when the data frame to be transmitted is longer than the threshold. This ensures that RTS/CTS mechanism is used only for large frames.10.No, there wouldn’t be any advantage. Suppose there are two stations that want totransmit at the same time, and they both use RTS/CTS. If the RTS frame is as long asa DATA frames, the channel would be wasted for as long as it would have beenwasted for two colliding DATA frames. Thus, the RTS/CTS exchange is only useful when the RTS/CTS frames are significantly smaller than the DATA frames.11.Initially the switch has an entry in its forwarding table which associates the wirelessstation with the earlier AP. When the wireless station associates with the new AP, the new AP creates a frame with the wireless station’s MAC address and broadcasts the frame. The frame is received by the switch. This forces the switch to update itsforwarding table, so that frames destined to the wireless station are sent via the new AP.12.Any ordinary Bluetooth node can be a master node whereas access points in 802.11networks are special devices (normal wireless devices like laptops cannot be used as access points).13.False14.“Opportunistic Scheduling” refers to matching the physical layer protocol to channelconditions between the sender and the receiver, and choosing the receivers to which packets will be sent based on channel condition. This allows the base station to make best use of the wireless medium.15.UMTS to GSM and CDMA-2000 to IS-95.16.The data plane role of eNodeB is to forward datagram between UE (over the LTEradio access network) and the P-GW. Its control plane role is to handle registration and mobility signaling traffic on behalf of the UE.The mobility management entity (MME) performs connection and mobility management on behalf of the UEs resident in the cell it controls. It receives UE subscription information from the HHS.The Packet Data Network Gateway (P-GW) allocates IP addresses to the UEs and performs QoS enforcement. As a tunnel endpoint it also performs datagram encapsulation/decapsulation when forwarding a datagram to/from a UE.The Serving Gateway (S-GW) is the data-plane mobility anchor point as all UE traffic will pass through the S-GW. The S-GW also performs charging/billing functions and lawful traffic interception.17.In 3G architecture, there are separate network components and paths for voice anddata, i.e., voice goes through public telephone network, whereas data goes through public Internet. 4G architecture is a unified, all-IP network architecture, i.e., both voice and data are carried in IP datagrams to/from the wireless device to several gateways and then to the rest of the Internet.The 4G network architecture clearly separates data and control plane, which is different from the 3G architecture.The 4G architecture has an enhanced radio access network (E-UTRAN) that is different from 3G’s radio access network UTRAN.18.No. A node can remain connected to the same access point throughout its connectionto the Internet (hence, not be mobile). A mobile node is the one that changes its point of attachment into the network over time. Since the user is always accessing theInternet through the same access point, she is not mobile.19.A permanent address for a mobile node is its IP address when it is at its homenetwork. A care-of-address is the one its gets when it is visiting a foreign network.The COA is assigned by the foreign agent (which can be the edge router in theforeign network or the mobile node itself).20.False21.The home network in GSM maintains a database called the home location register(HLR), which contains the permanent cell phone number and subscriber profileinformation about each of its subscribers. The HLR also contains information about the current locations of these subscribers. The visited network maintains a database known as the visitor location register (VLR) that contains an entry for each mobile user that is currently in the portion of the network served by the VLR. VLR entries thus come and go as mobile users enter and leave the network.The edge router in home network in mobile IP is similar to the HLR in GSM and the edge router in foreign network is similar to the VLR in GSM.22.Anchor MSC is the MSC visited by the mobile when a call first begins; anchor MSCthus remains unchanged during the call. Throughout the call’s duration and regardless of the number of inter-MSC transfers performed by the mobile, the call is routed from the home MSC to the anchor MSC, and then from the anchor MSC to the visited MSC where the mobile is currently located.23.a) Local recoveryb) TCP sender awareness of wireless linksc) Split-connection approachesChapter 7 ProblemsProblem 1Output corresponding to bit d 1 = [-1,1,-1,1,-1,1,-1,1]Output corresponding to bit d 0 = [1,-1,1,-1,1,-1,1,-1]Problem 2Sender 2 output = [1,-1,1,1,1,-1,1,1]; [ 1,-1,1,1,1,-1,1,1]Problem 3181111)1()1(111111)1()1(1112=?+?+-?-+?+?+?+-?-+?=d 181111)1()1(111111)1()1(1122=?+?+-?-+?+?+?+-?-+?=dProblem 4Sender 1: (1, 1, 1, -1, 1, -1, -1, -1)Sender 2: (1, -1, 1, 1, 1, 1, 1, 1)Problem 5a) The two APs will typically have different SSIDs and MAC addresses. A wirelessstation arriving to the café will associate with one of the SSIDs (that is, one of the APs). After association, there is a virtual link between the new station and the AP. Label the APs AP1 and AP2. Suppose the new station associates with AP1. When the new station sends a frame, it will be addressed to AP1. Although AP2 will alsoreceive the frame, it will not process the frame because the frame is not addressed to it. Thus, the two ISPs can work in parallel over the same channel. However, the two ISPs will be sharing the same wireless bandwidth. If wireless stations in different ISPs transmit at the same time, there will be a collision. For 802.11b, the maximum aggregate transmission rate for the two ISPs is 11 Mbps.b) Now if two wireless stations in different ISPs (and hence different channels) transmitat the same time, there will not be a collision. Thus, the maximum aggregatetransmission rate for the two ISPs is 22 Mbps for 802.11b.Problem 6Suppose that wireless station H1 has 1000 long frames to transmit. (H1 may be an AP that is forwarding an MP3 to some other wireless station.) Suppose initially H1 is the onlystation that wants to transmit, but that while half-way through transmitting its first frame, H2 wants to transmit a frame. For simplicity, also suppose every station can hear every other station’s signal (that is, no hidden terminals). Before transmitting, H2 will sense that the channel is busy, and therefore choose a random backoff value.Now suppose that after sending its first frame, H1 returns to step 1; that is, it waits a short period of times (DIFS) and then starts to transmit the second frame. H1’s second frame will then be transmitted while H2 is stuck in backoff, waiting for an idle channel. Thus, H1 should get to transmit all of its 1000 frames before H2 has a chance to access the channel. On the other hand, if H1 goes to step 2 after transmitting a frame, then it too chooses a random backoff value, thereby giving a fair chance to H2. Thus, fairness was the rationale behind this design choice.Problem 7A frame without data is 32 bytes long. Assuming a transmission rate of 11 Mbps, the time to transmit a control frame (such as an RTS frame, a CTS frame, or an ACK frame) is (256 bits)/(11 Mbps) = 23 usec. The time required to transmit the data frame is (8256 bits)/(11 Mbps) = 751DIFS + RTS + SIFS + CTS + SIFS + FRAME + SIFS + ACK= DIFS + 3SIFS + (3*23 + 751) usec = DIFS + 3SIFS + 820 usecProblem 8a) 1 message/ 2 slotsb) 2 messages/slotc) 1 message/slota)i) 1 message/slotii) 2 messages/slotiii) 2 messages/slotb)i) 1 message/4 slotsii) slot 1: Message A→ B, message D→ Cslot 2: Ack B→ Aslot 3: Ack C→ D= 2 messages/ 3 slotsiii)slot 1: Message C→ Dslot 2: Ack D→C, message A→ BRepeatslot 3: Ack B→ A= 2 messages/3 slotsProblem 10a)10 Mbps if it only transmits to node A. This solution is not fair since only A is gettingserved. By “fair” it m eans that each of the four nodes should be allotted equal number of slots.b)For the fairness requirement such that each node receives an equal amount of dataduring each downstream sub-frame, let n1, n2, n3, and n4 respectively represent the number of slots that A, B, C and D get. Now,data transmitted to A in 1 slot = 10t Mbits(assuming the duration of each slot to be t)Hence,Total amount of data transmitted to A (in n1 slots) = 10t n1Similarly total amounts of data transmitted to B, C, and D equal to 5t n2, 2.5t n3, and t n4 respectively.Now, to fulfill the given fairness requirement, we have the following condition:10t n1 = 5t n2 = 2.5t n3 = t n4Hence,n2 = 2 n1n3 = 4 n1n4 = 10 n1Now, the total number of slots is N. Hence,n1+ n2+ n3+ n4 = Ni.e. n1+ 2 n1 + 4 n1 + 10 n1 = Ni.e. n1 = N/17Hence,n2 = 2N/17n3 = 4N/17n4 = 10N/17The average transmission rate is given by:(10t n1+5t n2+ 2.5t n3+t n4)/tN= (10N/17 + 5 * 2N/17 + 2.5 * 4N/17 + 1 * 10N/17)/N= 40/17 = 2.35 Mbpsc)Let node A receives twice as much data as nodes B, C, and D during the sub-frame.Hence,10tn1 = 2 * 5tn2 = 2 * 2.5tn3 = 2 * tn4i.e. n2 = n1n3 = 2n1n4 = 5n1Again,n1 + n2 + n3 + n4 = Ni.e. n 1+ n1 + 2n1 + 5n1 = Ni.e. n1 = N/9Now, average transmission rate is given by:(10t n1+5t n2+ 2.5t n3+t n4)/tN= 25/9 = 2.78 MbpsSimilarly, considering nodes B, C, or D receive twice as much data as any other nodes, different values for the average transmission rate can be calculated.Problem 11a)No. All the routers might not be able to route the datagram immediately. This isbecause the Distance Vector algorithm (as well as the inter-AS routing protocols like BGP) is decentralized and takes some time to terminate. So, during the time when the algorithm is still running as a result of advertisements from the new foreign network, some of the routers may not be able to route datagrams destined to the mobile node.b)Yes. This might happen when one of the nodes has just left a foreign network andjoined a new foreign network. In this situation, the routing entries from the oldforeign network might not have been completely withdrawn when the entries from the new network are being propagated.c)The time it takes for a router to learn a path to the mobile node depends on thenumber of hops between the router and the edge router of the foreign network for the node.Problem 12If the correspondent is mobile, then any datagrams destined to the correspondent would have to pass through the correspondent’s home agent. The foreign agent in the network being visited would also need to be involved, since it is this foreign agent thatnotifies the correspondent’s home agent of the location of the correspondent. Datagrams received by the correspondent’s home agent would need to be encapsulated/tunneled between the correspondent’s home agent and for eign agent, (as in the case of the encapsulated diagram at the top of Figure 6.23.Problem 13Because datagrams must be first forward to the home agent, and from there to the mobile, the delays will generally be longer than via direct routing. Note that it is possible, however, that the direct delay from the correspondent to the mobile (i.e., if the datagram is not routed through the home agent) could actually be smaller than the sum of the delay from thecorrespondent to the home agent and from there to the mobile. It would depend on the delays on these various path segments. Note that indirect routing also adds a home agent processing (e.g., encapsulation) delay.Problem 14First, we note that chaining was discussed at the end of section 6.5. In the case of chaining using indirect routing through a home agent, the following events would happen: ?The mobile node arrives at A, A notifies the home agent that the mobile is now visiting A and that datagrams to the mobile should now be forwarded to thespecified care-of-address (COA) in A.The mobile node moves to B. The foreign agent at B must notify the foreign agent at A that the mobile is no longer resident in A but in fact is resident in Band has the specified COA in B. From then on, the foreign agent in A willforward datagrams it receives that are addressed to the mobile’s COA in A to t he mobile’s COA in B.The mobile node moves to C. The foreign agent at C must notify the foreign agent at B that the mobile is no longer resident in B but in fact is resident in C and has the specified COA in C. From then on, the foreign agent in B will forwarddatagrams it receives (from the foreign agent in A) that are addressed to themobile’s COA in B to the mobile’s COA in C.Note that when the mobile goes offline (i.e., has no address) or returns to its home network, the datagram-forwarding state maintained by the foreign agents in A, B and C must be removed. This teardown must also be done through signaling messages. Note that the home agent is not aware of the mobile’s mobility beyond A, and that the correspondent is not at all aware of the mobil e’s mobility.In the case that chaining is not used, the following events would happen: ?The mobile node arrives at A, A notifies the home agent that the mobile is now visiting A and that datagrams to the mobile should now be forwarded to thespecified care-of-address (COA) in A.The mobile node moves to B. The foreign agent at B must notify the foreign agent at A and the home agent that the mobile is no longer resident in A but infact is resident in B and has the specified COA in B. The foreign agent in A can remove its state about the mobile, since it is no longer in A. From then on, thehome agent will forward datagrams it receives that are addressed to the mobile’sCOA in B.The mobile node moves to C. The foreign agent at C must notify the foreign agent at B and the home agent that the mobile is no longer resident in B but in fact is resident in C and has the specified COA in C. The foreign agent in B canremove its state about the mobile, since it is no longer in B. From then on, thehome agent will forward datagrams it receives that are addressed to the mobile’sCOA in C.When the mobile goes offline or returns to its home network, the datagram-forwarding state maintained by the foreign agent in C must be removed. This teardown must also bedone through signaling messages. Note that the home agent is always aware of the mobile’s cu rrent foreign network. However, the correspondent is still blissfully unaware of the mobile’s mobility.Problem 15Two mobiles could certainly have the same care-of-address in the same visited network. Indeed, if the care-of-address is the address of the foreign agent, then this address would be the same. Once the foreign agent decapsulates the tunneled datagram and determines the address of the mobile, then separate addresses would need to be used to send the datagrams separately to their different destinations (mobiles) within the visited network.Problem 16If the MSRN is provided to the HLR, then the value of the MSRN must be updated in the HLR whenever the MSRN changes (e.g., when there is a handoff that requires the MSRN to change). The advantage of having the MSRN in the HLR is that the value can be provided quickly, without querying the VLR. By providing the address of the VLR Rather than the MSRN), there is no need to be refreshing the MSRN in the HLR.。
计算机网络自顶向下第六版课件
buffered video
client playout delay
Chapter 7 Multimedia Networking
A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers). They’re in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following: If you use these slides (e.g., in a class) that you mention their source (after all, we’d like people to use our book!) If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material. Thanks and enjoy! JFK/KWR All material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved Multmedia Networking 7-1
计算机网络-自顶向下方法与INTERNET特色
2、 Network service model
4.1 introduction
Network Service Architecture Model
Congestion Bandwidth Loss Order Timing feedback no
no yes yes yes no yes yes no no (inferred via loss) no congestion no congestion yes no
routing algorithms
5 School of Computer Science & Technology
1、 Key Network-Layer Functions
4.1 introduction
③ Connection setup
3rd important function in some network architectures:
end to end.
7 School of Computer Science & Technology
2、 Network service model
4.1 introduction
Q: What’s the service model of the channel connecting the transporting layer in the sending and receiving hosts?
Introduction
4.2 Virtual circuit and datagram networks
Datagram network provides networklayer connectionless service
最新[计算机网络:自顶向下方方法](中文版课件)第三章ppt课件
发送方:将应用报文划分为
段,传向网络层
接收方:将段重新装配为报 文,传向应用层
应用可供使用的运输协议 不止一个
因特网:TCP和UDP
应用层 运输层 网络层 数据链路层 物理层
网络层 数据链路层
物理层
网络层 数据链路层
物理层
网络层 数据链路层
物理层
网络层 数据链路层
物理层
其他UDP应用
DNS
UDP段的长 度,包括首
部,以字节 计
SNMP
经UDP的可靠传输 : 在 应用层增加可靠性
应用程序特定的差错 恢复!
32 bits
源端口# 长度
目的端口# 检查和
应用数据 (报文)
UDP 段格式
运输层 18
UDP检查和
目的: 在传输的段中检测“差错” (如比特翻转)
发送方:
注意 当数字作加法时,最高位进比特位的进位需要加到 结果中
例子: 两个16-bit整数相加
11110011001100110 11101010101010101
回卷
和 检查和
11011101110111011
11011101110111100 10100010001000011
运输层 20
第3章 要点
运输层 5
因特网运输层协议
可靠的、按序的交付 (TCP)
拥塞控制 流量控制 连接建立
不可靠、不按序交付: UDP
“尽力而为”IP的不提供不 必要服务的扩展
不可用的服务:
时延保证 带宽保证
应用层 运输层 网络层 数据链路层 物理层
网络层 数据链路层
物理层
网络层 数据链路层
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.5 多媒体分发: 内容分发网
络
多媒体联网
30
实时交互应用程序
PC到PC电话 即时讯息服务提供该业务 PC到phone
Dialpad
现在就去研究PC到PC 的因特网电话的详细 例子
Net2phone 既有Web摄像的视频会 议
多媒体联网
31
C
D
Internet
A
分组交换
多媒体联网
24
RTSP: 带外控制
FTP使用一个 “带外”控制信 RTSP报文也在带外发送: 道: RTSP控制报文使用与媒 体流不同的端口号 :带 文件传输通过一条TCP连接 外 控制信息(目录变化、文件 端口554 删除、文件更名等)经一条 媒体流被认为是“带 单独的TCP连接发送 内” “带外”和“带内”信道使 用不同的端口号
多媒体联网
29
第7章 要点
7.1 多媒体联网应用程序 7.2 流式存储音频和视频 7.3实时多媒体: 因特网电话 7.6 超越尽力而为 7.7 调度和监管机制
7.8 综合服务和区分服
研究 7.4 用于实时交互应用程序 的协议
务 7.9 RSVP
RTP, RTCP, SIP
多媒体, 服务质量: 概念
多媒体应用: 网络音频和视 频(“连续媒体”)
QoS
网络为应用提供运行应用
所需的性能水平
多媒体联网
2
第7章 目标
原则 多媒体应用分类 确定应用程序所需的网络服务 尽可能利用尽力而为服务 提供QoS的机制 协议和体系结构 用于尽力而为的特定协议 QoS的体系结构
例子: 因特网无线电谈话节目 实况体育事件 流式 重放缓存 重放能够滞后传输几十秒 仍有定时约束 交互性 不可能快进 倒带、暂停可能!
多媒体联网
9
交互性,实时多媒体
应用程序: IP电话,视频会议,分
布式交互
端到端时延要求:
音频: < 150 msec良好, < 400 msec OK
多媒体联网 27
RTSP操作
多媒体联网
28
RTSP交换例子
C: SETUP rtsp://audio. /twister/audio RTSP/1.0 Transport: rtp/udp; compression; port=3056; mode=PLAY S: RTSP/1.0 200 1 OK Session 4231 C: PLAY rtsp://audio. /twister/audio.en/lofi RTSP/1.0 Session: 4231 Range: npt=0C: PAUSE rtsp://audio. /twister/audio.en/lofi RTSP/1.0 Session: 4231 Range: npt=37 C: TEARDOWN rtsp://audio. /twister/audio.en/lofi RTSP/1.0 Session: 4231 S: 200 3 OK
多媒体联网
22
流式多媒体: 客户机速率
1.5 Mbps编码
28.8 Kbps编码
问题: 怎样处理不同的客户机接收速率能力? 28.8 Kbps拨号 100Mbps以太网 回答: 服务器存储, 传输视频的多个拷贝,以不 同速率编码
多媒体联网 23
流式媒体的用户控制: RTSP
HTTP 不能针对多媒体内容 没有用于快进的命令等 RTSP: RFC 2326 客户机-服务器应用层协议 为用户控制播放:倒带, 快进,暂停,恢复,重定 位等… What it doesn’t do: 不能定义音频/视频怎样为经 网络传输的流式而封装 不能约定流式媒体如何传 输;它能够经UDP或TCP传 输 不能定义媒体播放器怎样缓 存音频/视频
B
IP 电话网关 电路交换
IP 电话网关 电路交换
公用电话网
多媒体联网
32
IP 电话的原理
话音编码 装成分组 话音解码 分组缓存
Internet
多媒体联网
33
交互多媒体: 因特网电话
通过一个例子介绍因特网电话
讲话者的语音:交互的语涌, 静默期.
在语涌期间64 kbps
仅在语涌期产生分组
以8 Kbytes/sec速率的20 msec 块 : 160 字节数据
在每块上加上应用层首部 块+首部封装在UDP段中
在语涌期应用程序每20msec向套接字发送UDP段
多媒体联网
34
因特网电话: 分组丢失和时延
网络丢包: 由于网络拥塞的IP数据报丢失 (路由
器缓存溢出) 时延丢包: 在接收方,IP数据报到达太迟而无 法播放
时延: 网络中的处理、排队; 端系统(发送方,拒) 时 延 典型的最大可容忍时延: 400 ms
多媒体联网 18
来自流式服务器的流
该体系结构允许服务器和媒体播放器之间采用非HTTP 协议 也能用UDP代替TCP.
多媒体联网
19
流式 多媒体: 客户机缓存
恒定比特率 视频传输
客户机 接收视频
缓存的视频
客户机以恒定 比特率播放
可变的 网络时延
客户机播放时 延
时间
客户机侧缓存,播放时延补偿网络增加的时延,时延
区分服务观点: 对因特网基础设施几乎没有 改变,能够提供第一类和第 二类服务。
应用层
你的观点是什么?
多媒体联网 12
音频压缩简介
以恒定速率对模拟信号 例子:8,000样本/sec,
取样
电话: 8,000 样本/sec CD音乐: 44,100样本/sec
256 个量化值 --> 64,000 bps
多媒体联网
25
RTSP例子
情况:
元文件传送给Web浏览器 浏览器调用播放器 播放器向流式服务器建立一条控制连接和一条数据连接
多媒体联网
26
元文件例子
<title>Twister</title> <session> <group language=en lipsync> <switch> <track type=audio e="PCMU/8000/1" src = "rtsp://audio. /twister/audio.en/lofi"> <track type=audio e="DVI4/16000/2" pt="90 DVI4/8000/1" src="rtsp://audio. /twister/audio.en/hifi"> </switch> <track type="video/jpeg" src="rtsp:///twister/video"> </group> </session>
7.5 多媒体分发: 内容分发网
络
多媒体联网
4
多媒体网络应用
多媒体应用的分类: 1) 流式存储 音频和视频 2) 流式实况音频和视频 3)实时交互音频和视频 基本特性: 典型的时延敏感
端到端时延 时延抖动
但容忍丢包: 不经常的丢包
引起较小的干扰 与数据的特性相对,数据 不能丢失但容忍时延
?
?
?
?
?
?
?
?
今天的因特网多媒体应用 使用应用级技术来减缓 (至少可能)时延、丢包的影响
多媒体联网 11
因特网应当怎样演化才能更好地支持多媒体?
综合服务观点: 因特网有基本改变,因此应用 程序能够预约端到端带宽 需求在主机和路由器中有新 的、复杂软件 放任主义 无主演改变 当需要时更多的带宽 内容分布,应用层多播
13
视频压缩简介
视频是以恒速显示的图片
序列
如 24图片/sec
数字图片是像素数组 每个像素由比特表示
冗余 空间的 时间的
例子: MPEG 1 (CD-ROM) 1.5 Mbps MPEG2 (DVD) 3-6 Mbps MPEG4 (常用于因特网, < 1 Mbps) 研究: 分层(可扩展的) 视频
多媒体联网
3
第7章 要点
7.1 多媒体联网应用程序 7.2 流式存储音频和视频 7.3实时多媒体: 因特网电话 7.6 超越尽力而为 7.7 调度和监管机制
7.8 综合服务和区分服
研究 7.4 用于实时交互应用程序 的协议
务 7.9 RSVP
RTP, RTCP, SIP
接收方将它转换回模拟
量化每个样本, 即四舍五
信号:
入
某种质量降低
如 28=256 可能的量化值
每个量化值用比特来表
示
8比特表示256个值
速率例子 CD: 1.411 Mbps MP3: 96, 128, 160 kbps 因特网电话: 5.3 - 13 kbps
多媒体联网
通常发送速率= 编码速率 = 恒定速率 则供给速率 = 恒定速率 – 分组丢包 短播放时延 (2-5秒)以补偿网络时延抖动 差错恢复:时间允许的话
TCP
在TCP下以最大可能的速率
由于TCP拥塞控制,供给速率波动
较大的播放时延:平滑的TCP交付速率 HTTP/TCP通过防火墙传递更容易
时延抖动是在相同分组流 中分组时延的变动