Response-2000软件介绍(中英对比翻译)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Response-2000 is perhaps the most immediately useful of the four programs explained in this manual. It allows analysis of beams and columns subjected to arbitrary(任意)combinations of axial load, moment and shear. It also includes a method to integrate the sectional behaviour for simple prismatic beam-segments. The assumptions implicit in the program are that plane sections remain plane, and that there is no transverse clamping stress across the depth of the beam. For sections of a beam or column a reasonabledistance away from a support or point load, these are excellent assumptions. These are the same locations in beams that are usually the critical locations for brittle shear failures.
响应2000也许是本手册中的四个方案的最直接有用的解释。
它允许梁和柱进行的分析的轴向载荷,弯矩和剪力的任意组合。
它也包括一种方法来集成为简单的棱柱梁段的截面特性。
隐含在程序中的假设是平面截面保持平面,并且有横跨梁的深度没有横向的夹紧压力。
对于梁或柱的合理距离一个支持或负载点的部分,但是这些都是优秀的假设。
这些都是在梁,通常是脆性剪切破坏的关键位置相同的位置。
Unlike the other programs, Response-2000 doesn’t have a default cross section entered into it. This isn’t a real problem, however, as one can be made quickly. For this example, an 80 foot span prestressed concrete bridge girder and slab will be analysed.
不像其他程序,响应-2000没有默认的横截面进去的时候。
这是不是一个真正的问题,但
是作为一个可以迅速进行。
在这个例子中,一个80英尺跨度预应力混凝土桥梁梁和楼板进行分析。
First, as this example is presented with US customary units rather than the default SI metric, select it from the “Options | Preferences” dialog box. To select US units as a default each time the program begins, see section 5-11 of this manual.
对话框|首先,正如这个例子中,提出与美国常用单位,而不是默认的SI度量,从“首选项”
中选择它。
要选择美制单位为每个节目开始时间默认情况下,请参阅本手册第5-11 Secondly, go to the “Define | Quick Define” dialog box. This is a “wizard” that allows a section to be created quite quickly, usually within 30 seconds. Each of the four programs in this manual has such a wizard to make new files quickly.
其次,进入“定义|快速定义”对话框。
这是一个“向导”,它允许将相当快速地创建了一个部分,通常在30秒内。
每本手册中的四个项目都有这样一个向导,可以快速做出新的文件。
The first page of the dialog box asks for a title and material properties. After entering a title, say, “Test Section” with the reader’s initials for the “Analysis by” box, the material properties may be selected. For this example, the 5000 psi concrete, 60 ksi steel and 270 ksi strands
are fine, so select the “Next” button.
对话框的第一页要求一个标题和材料特性。
输入一个标题,说:“试验段”与读者的英文缩
写为“分析”框后,材料性能可能被选中。
在这个例子中,5000 psi的水泥,60 KSI钢和270 KSI链都很好,所以选择“下一步”按钮。
The second page of the wizard asks for the concrete cross section. At the top of the list are simple sections such as rectangles and circles. In the middle of the list are more exotic shapes such as columns with interlocking hoops, and hollow columns. At the bottom are the
“standard shapes” such as AASHTO girders. As this is what is needed here, scroll down near the bottom of the list and select “Standard Shapes AASHTO”. Press tab (or click with the mouse) to the right side to select the type of section. Pressing any key will pop up a selection box to select a section from the currently defined listings. Select the AASHTO Type IV girder and press “ok”. For the next input field, enter zero, as there will be no “haunch” on this section (i.e., no extra concrete between the top of the precast beam and the bottom of the slab.) Select a slab depth of 8 inches, and a slab width of 80 inches, and select Next to go to the next page of the wizard.
在向导的第二页要求的混凝土截面。
在列表的顶端是简单的部分,如矩形和圆。
在列表的中间有更奇特的形状,如与联锁箍和空心柱列。
在底部是“标准形状”,如AASHTO大梁。
由于这是在这里需要什么,向下滚动列表的底部附近,然后选择“标准形状AASHTO标准”。
按下T ab键(或单击鼠标)到右侧,选择部分类型。
按任意键后会弹出一个选择框来选择当前定义的列表的一节。
选择AASHTO标准IV型梁,然后按“确定”。
对于下一个输入字段中,输入为零,将不会对本节没有“后臀尖”(即预制梁和楼板的底部顶部之间没有多余的混凝土。
)选择的8英寸平板深度,80英寸,并选择下一步板坯宽度转到向导的下一个页面。
The third page allows selection of the longitudinal reinforcement for the section. The top half defines bars in the slab for this standard cross section case and the bottom defines non-prestressed steel in the bottom of the cross section. Leave the default of 20 #4 bars for the top, but remove the 3 #8 bars for the bottom by entering “0” for the number of bars in the bottom half of the screen. Press the Next button again to go to the last page of the quick menu.
第三页允许选择纵向钢筋的截面。
的上半部分定义了这个标准横截面的情况下在板栅和底定义的横截面的底部非预应力钢。
留下20#4杆的顶部的默认值,但输入“0”,在屏幕底部的半条数取出3#8杆的底部。
再次按下Next按钮进入快捷菜单的最后一页。
The last page allows selection of the stirrups as well as the strands. Select “open stirrup” from the list of stirrup types. The default bar type of #4 is reasonable.
Select a spacing of 16 inches. Switch the clear cover to 2 inches from the default value, which is actually 40 mm converted to inches. Finally, enter 30 for the number of strands. The prestrain listed as 6.5 represents a jacking stress of 70% of ultimate, and is therefore reasonable. Selec t the “Finish” button to complete the definition of the section.
最后一页允许选择箍筋和股线。
从马镫类型列表“开放镫”。
排名第4的默认酒吧类型是合理的。
选择16英寸的间距。
从默认值,这实际上是40毫米转换为英寸切换清除盖到2英寸。
最后,对股数输入30。
列为6.5的预应变表示的最终70%的一顶应力,因此是合理的。
选择“完成”按钮,完成部分的定义。
Automatic Cross Section
自动横截面
Response-2000 will automatically create the cross section as shown below similar to the one from Membrane-2000. As with the other programs, changing the geometry is achieved either through the use of the “define” menu or by double clicking on the drawing itself. For example, to change the stirrup spacing, double click on the text in the drawing where it says “#4 @ 16.00 in.” Like all the programs, this page is meant to include all the information needed to repeat the analysis or document it in the course of a design.
响应-2000会自动创建截面如下图所示类似的膜-2000一。
与其它方案,改变了几何形状或通过使用“定义”菜单或通过双击该图本身上实现。
例如,要改变箍筋间距,双击图形中的文本如果说“#4@16.00英寸”像所有的程序,这个页面是指包括所有重复分析或文档所需要的信息在设计的过程中。
Analysis without Shear
The default type of analysis for a new section is a simple flexural analysis with no axial load. To start it, select “Solve | Sectional Response” from the menu. The analysis should take perhaps two seconds to complete. The control plot will show up along with 9 plots as in Membrane-2000. In the case of Response-2000, the plots all represent the given variable plotted over the depth of the section for the load stage indicated by the control plot. Click on the “Auto Range” button on the top left of the screen below the menu to automate the scale of the plots, and click anywhere on the control plot. All the plots will automatically change depending on the new location on the control plot. Note that the loading is listed in the bottom bar of the program window. The crack diagram shows predicted crack widths in inches as well as an estimate of the pattern of cracking.
无剪力分析:
默认类型的新的一节分析是一个简单的弯曲分析与没有轴向负载。
若要启动它,请选择"解决|截面回应"从菜单。
分析应考虑或许两秒内完成。
情节的控制将会显示以及与膜2000年9 地块。
在响应-2000 年,所有的地块代表给定的变量为表示由控制剧情的加载阶段绘制在部分中的深度。
单击打开"自动范围"按钮在上面留下的屏幕下面的菜单,自动化规模的剧情,并在控制图上的任意位置单击。
所有的事都将根据情节的控件上的新位置自动变化。
注意在程序窗口的底部栏中列出了加载。
裂缝的图表显示预测的裂缝宽度英寸以及估计模式的开裂。
Analysis with Shear
A more involved analysis type, one that Response-2000 excels at, is the prediction of sectional behaviour including the effects of shear. For a beam like this, it may be decided to perform an analysis at a location ‘d’ from the end of the beam. At a uniformly applied
load of 3.0 kips/ft, the moment and shear at this location are about 435 kip.ft and 109 kips respectively. These loads are entered into the Response-2000 “Loads | Loads” menu option. This menu has a left and right side, where the left is for initial loads and the right is for any increment in load beyond that level. Leave the left values as zero and set the right side value for moment to 435 kip.ft and shear value to 109 kips. Note that the actual numbers here don’t matter, only the ratios and signs. After clicking the “ok” button, select “Solve | Sectional Response” to start the analysis.
有剪力分析:
更多地参与的分析类型,一种响应-2000年的过人之处,是预测的截面行为包括剪力的影响。
像这样的梁,它可能会决定执行在一个位置的分析了' 从梁的一端。
在3.0 小牛皮\/英尺统一应用加载、时刻和剪在此位置是约435 kip.ft 和109 分别小牛皮。
这些负载都将输入到响应-2000年"加载|加载"菜单选项。
此菜单有一个左和右侧,左侧为初始加载和权利在哪里是任何增量在负载超出这一水平。
离开左的值为零,并设置为435 kip.ft 和剪力值适用于109 时刻的右侧值小牛皮。
请注意,实际的人数不重要,只的比率和标志。
单击"确定"按钮后,选择"解决|截面的反应",开始分析。
The analysis should take about 10 seconds to reach the peak load, and then about 20 more seconds to determine the post-peak ductility for the section. The following 9-plot screen will show up. These plots represent the state of the beam at failure, as shown by the location of the crosshairs on the control plots. Each plot is drawn with respect to the depth of the section. For example, the top centre plot shows the longitudinal strain versus depth for the section showing the basic assumption that plane sections remain plane.
分析应考虑约10 秒到达峰值负载,然后约20 秒的时间确定为部分峰值后延性。
下面的情节9 屏幕就会显示。
这些阴谋表示状态的故障,在梁的准星对控制地块位置所示。
每个地块是汲取有深度的一节。
例如,顶部中心情节显示相对深度的部分中显示的基本假设那架飞机的纵向应变部分仍然是飞机。
Briefly, the cross section in the top left is drawn darker in regions where it is predicted not to have cracked. In this case, only the web of the beam is predicted to be cracked at the shown failure load. The top right shows the variation in transverse strain over the depth, with a maximum of 7 mm/m near the top of the web. The crack diagram shows the predicted angle and width of cracks in inches. The shear stress plot shows that the shear is not uniformly distributed over the depth of the section, though is fairly constant in the web at about 630 psi.
简单地说中左上角, 的交叉部分绘制较暗的区域不预测已经破解。
在这种情况下,只有梁的web 预计将被破解在显示的故障的负载。
右上角显示变化中横向应变过去的深度、7 毫米\/m 靠近顶部的网站最多。
裂缝图预测的角度和裂缝的宽度以英寸为单位。
剪应力图显示,剪切不均匀分布于节的深度,虽然是相当恒定的在网站上约630 psi。
The bottom left plot of the 9 plots shows the principal compressive stress values. The line at the left of the plot is the maximum allowed stress versus depth and the right line shows the applied stress. Note the shear has applied an additional diagonal compression in the web on top of the expected concrete stress profile from the prestressing force. The two lines on this plot are about to touch at the top of the web indicating that this section is about to fail by crushing of the web.
底部左的情节9 地块的显示的主压应力值。
在左边的情节线是最大允许应力和深度和右线显示应用的应力。
请注意,剪切已从预应力应用额外的对角压缩在web 上的预期混凝土应力配置文件中。
在这张图上的两行是web 的要触碰顶部的指示的网页,这部分是web 的要失败的破碎。
The two control plots show that the “V-Gxy” curve, that is, the shear-shear strain plot, is descending with increasing shear strain, whereas the lower moment curvature plot is unloading along its loading curve. This indicates that the section is predicted to fail in shear. The maximum predicted shear capacity of the section is 249.4 kips. By scaling this from the loading, it is predicted that the beam would fail in shear at this location if the applied load were to increase to a level of 7.0 kips/foot.
两个控制图形显示"V-Gxy"曲线,就剪剪应变情节,按降序排列与增加剪应变,而较低的时刻曲率图卸载沿其加载曲线。
这表明部分预计在剪切中的失败。
最大预测科的抗剪能力是249.4 小牛皮。
通过缩放这从装货,据预测梁会失败剪在此位置中,是否应用的负载要增加到7.0 小牛皮\/脚的水平。
Member Response
Response-2000 will calculate the full member behaviour for a prismatic section
as well. To get a prediction of the behaviour of this 80-foot beam, such an analysis will be performed with the beam subjected to a uniformly distributed load. First select the “Load | Full Member Properties” menu option. Select the “length subjected to shear” at the top as 480 inches. (The analysis is done from one end to the mid-span of the beam.) Also select in the top options a uniform distributed load rather than a constant shear analysis. This is the second option in the top list of three buttons. Click “ok” and select the “Solve | Member Response” option.
模块部分:
响应-2000年将计算为棱柱体节以及正式成员行为。
若要获取此80 脚梁的行为的预测,这种分析将执行与均布载荷作用下的梁。
首先选择"加载|充分的成员属性"菜单选项。
作为480 英寸顶部选择"受剪的长度"。
(分析是做从一端到梁的跨中。
此外在顶部的选项中选择一个统一分发负载,而不是一个恒定剪切分析。
这是在顶部列表中的三个按钮第二个选项。
单击"确定",然后选择"解决|成员响应"选项。
This analysis will calculate an entire Moment-Shear interaction diagram and determine the load-deflection properties and crack diagram for the entire 40 foot half
span of the beam. The analysis on an inexpensive 400 MHz Pentium II takes about 60 seconds to complete. As the analysis continues, the growing M-V interaction diagram will be shown on the control plots. Periodically, the 9 plots will also update showing the sectional behaviour at the location of the crosshairs on the control plots. The transition from flexural failures under positive moment at the right of the interaction diagram gives way to shear failures at the top of the interaction diagram and then back to flexural failures under negative moment at the left side. By clicking on the little squares on the plot, any of the integration points may be examined so see how the beam is behaving at that load combination.
这个分析将计算整个矩剪切交互图,并确定了载荷- 挠度性能和抗裂图对整个40英尺半跨度梁。
在一个便宜的400 MHz奔腾II的分析大约需要60秒才能完成。
随着分析的继续,越来越多的MV交互图将显示在控制图。
每隔一段时间,9地块也将更新以显示在控制图的十字准线的位置截面的行为。
从弯曲故障下的正弯矩在交互图中右边的过渡让位给负弯矩剪切破坏的交互图的顶部,然后返回到弯曲故障在左侧。
点击上图的小方块,任何积分点可以进行检查,以便了解如何光束的行为是在该荷载组合。
When the analysis is complete, the screen will change to the deflection page as shown below. The top diagram is the predicted crack pattern at failure for the entire 40 foot section of beam. The bearing support plate at the left bottom can be seen, and the right side represents the midspan of the beam. Estimated crack widths are shown in inches. In the top control plot at the left is the M-V interaction diagram as well as the applied loading for this beam shown in red. For a uniformly distributed load, such as this, the majority of the loading is a parabola, with the load cut down to zero near the support due to non-sectional load resistance methods. The explanation for the shape of this load diagram can be found in reference 2. It can be seen from the interaction diagram that the loading envelope is touching the strength envelope almost simultaneously at the right side bottom (flexure in positive moment at midspan), as well as at the top (shear near support). Indeed, the midspan cracks are predicted to be almost 1 inch wide, and there is substantial shear cracking (0.147 inch cracks) near the support
当分析完成后,屏幕将变为偏转页面,如下图所示。
在上图是在失败的预测裂纹图案梁的全部40脚部分。
轴承支承板的左侧底部可以看出,与右边表示光束的中跨设备。
估计裂缝宽度为英寸。
在顶部的对照区的左边是MV交互图以及应用加载在红色显示该光束。
为均匀分布的荷载,如,大部分的负载的是抛物线,与负载降低到零附近的支撑,由于非剖负载电阻的方法。
这种负荷曲线的形状解释,可参考2被发现。
它可以从交互图,该装载信封几乎同时接触的强度包络在右侧底部(在弯曲处跨正弯矩),以及在顶端(剪切支撑附近)可以看出。
事实上,跨中裂缝预测是近1英寸宽,且有大量的剪切裂缝(0.147英寸裂纹)附近的支撑
The bottom control plot shows the predicted load-deflection relationship for the beam (pushover analysis results for column analyses). The final behaviour is predicted tbe fairly ductile, with a 22.9 inch deflection at a failure load of 7.13 kips/foot. Assuming that the load capacity is acceptable, this would seem to be a fairly efficient design interms of shear versus
flexural capacity; more stirrups would not be needed, as the beam would fail in flexure first. A lower amount of stirrups would subject the beam to a potentially brittle shear failure, however. In a design like this, it may be wise to err on the conservative side of shear design, however, and include a little bit more shear reinforcement than what has been provided. Of course Response-2000 allows any such option to be quickly checked by changing the spacing of the stirrups, and quickly rerunning the analysis.
底部的控制图显示了光束预测负荷- 挠度关系(静力弹塑性分析结果列分析)。
最后的行为是预测TBE相当韧性,具有22.9英寸的偏转以7.13千磅/英尺失败的负荷。
假设负载能力是可以接受的,这似乎是一个相当有效的设计interms剪力与抗弯能力;更箍筋就没有必要,因为光束可以在弯曲失败第一。
然而箍筋较低的金额将受到光束,以一种潜在的脆性剪切破坏。
在这样的设计中,它可能是明智的,宁可剪切设计保守的一面,然而,有一点点抗剪钢筋比已经提供。
当然响应-2000,可以迅速通过改变箍筋间距,并迅速重新运行分析检查任何有关购股权。