螺纹连接强度计算

合集下载

螺纹联接的强度计算

螺纹联接的强度计算
推荐采用的F1为: 对于用密封要求的连接,F1=(1.5~1.8)F 对于一般连接,工作载荷稳定时,F1=(0.2~0.6)F
工作载荷不稳定时,F1=(0.6~1.0)F
F
Dp
D
12
各力定义:
1、预紧力F0(拧紧螺母后,作用在螺栓上的拉力和被联件 上压力)
2、工作拉力F(对螺栓联接施加的外载荷) 3、 残余预紧力F1 4、螺栓的总拉力F2
螺栓杆与孔壁的挤压强度条件:
p
F d0 Lmin
p
螺栓杆的剪切强度条件:
F
d02
4
Lmin——挤压面的最小高度, Lmin ≥1.25d0
d0 ——光杆直径
3
②当用普通螺栓联接时
因横向载荷是由预紧力在被联
接件间产生的摩擦力来抵抗的,所 以应满足:
F/2
F0
F0 f n F
F
F0
F f n
32
习 题: P101 5-4、5-9 、5-10
33
谢谢!
34
r
30
⑵从设计、装配、制 造上设法避免附加 应力的产生。
球面垫圈
腰环螺栓
切削加工支承面
被联接件变形太大 支承面不平
采用凸台或沉孔结构
31
4 采用合理的制造工艺方法
采用冷墩螺栓头部,滚压螺纹,使应力集中变小,金属流 线合理,冷作硬化硬表面留有残余应力。
滚压螺纹疲劳强度比切削提高30~40%,而且材料利用率 高,生产效率高,制造成本低。
F/2 F0 T1
4
预紧力F0(拉伸应力)+ 螺纹 摩擦力矩T1(扭转切应力)
F0 F/2
强度计算准则(与仅受预
紧力的螺栓联接相同)第四强 度理论:螺栓的计算应力为 :

螺纹连接强度的计算

螺纹连接强度的计算

螺纹的连接强度设计规范已知条件:螺纹各圈牙的受力不均匀系数:Kz= 旋合长度: L=23 旋合圈数: Z= 原始三角形高度:H=2P= 实际牙高:H1== 牙根宽:b== 间隙:B==螺纹材料: 45 屈服强度360MPa 抗拉强度 600Mpa n=5(交变载荷) 系统压力P= 活塞杆d=28 缸套D=65 推力F=PA=47270N 请校核螺纹的连接强度:1:螺纹的抗剪强度校验:[]τ故抗剪强度足够。

2:抗弯强度校核:(σw)(σw):许用弯曲应力为: *360(屈服极限)=144MPa[]()[]Mpa 960.18.0=-=στMPa Z b d Kz F s 4.84)33.1513.1376.1814.356.0/(472701=⨯⨯⨯⨯=⨯⨯⨯⨯=πτMPaZb b d Kz FH 224)33.1513.113.1376.1814.356.0/(472703113w =⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯=πσ故其抗弯强度不足:3: 螺纹面抗挤压校验(σp)[]MPa p 1803605.05.0=⨯⨯屈服强度为为σMPa H d Kz Fp 73.113)33.1581.0026.1914.356.0/(47270Z12=⨯⨯⨯⨯=⨯⨯⨯⨯=πσ故其抗挤压强度足够。

4: 螺纹抗拉强度效验 (σ)[][]20Mpa 1=σb/5=σσ钢来说为许用抗拉强度,对于dc 螺纹计算直径:dc=(d+d1-H/6)/2=(20+MPa dcF325.165)08.1908.1914.3/(472704π42=⨯⨯⨯==σ故其抗拉强度不足。

例1-1 钢制液压油缸如图10-21所示,油缸壁厚为10mm ,油压p =,D=160mm ,试计算上盖的螺栓联接和螺栓分布圆直径。

解 (1) 决定螺栓工作载荷暂取螺栓数z =8,则每个螺栓承受的平均轴向工作载荷为(2) 决定螺栓总拉伸载荷对于压力容器取残余预紧力=,由式(10-14)可得(3) 求螺栓直径 选取螺栓材料为45钢=355MPa(表9-1),装配时不要求严格控制预紧力,按表10-7暂取安全系数S=3,螺栓许用应力为MPa 。

螺纹连接强度计算

螺纹连接强度计算

对于M10~M68的普通螺纹,取d1、d2和ψ的平均值, 并取: tgρ’ = f ’ =0.15
得: τ ≈ 0.5 σ 当量应力: c 2 3 2 2 3(0.5 ) 2
1.3
1.3Fa 强度条件: 2 [ ] d1 / 4
长沙交通学院专用
二、紧螺栓联接
装配时须要拧紧,在工作状态下可能还需要补充拧紧。
Fa
螺栓受轴向拉力Fa和摩擦力矩T的双重作用。
Fa [ ] 拉应力: 2 d1 / 4
长沙交通学院专用
Fa
T1 Fa tg ( ' ) d1 2 切应力: 3 d1 / 16 d13 / 16 分母为抗剪截面系数 Fa 2d 2 tg ( ' ) 2 d1 d1 / 4
§10-6 螺栓联接的强度计算
螺栓联接 螺母的螺纹牙及其他各部尺寸是根据等强度 原则及使用经验规定的。采用标准件时,这些部分 都不需要进行强度计算。所以,螺栓联接的计算主 要是确定螺纹小径d1,然后按照标准选定螺纹公称 直径d及螺距P等。
滑扣 因经常拆装 一、松螺栓联接 装配时不须要拧紧 Fa [ ] 力除以面积 强度条件: d12 / 4 式中:d1----螺纹小径, mm

螺纹联接的强度计算

螺纹联接的强度计算

螺纹联接的强度计算螺纹联接的强度计算螺栓的受⼒形式主要是轴向受拉或横向受剪。

轴向受拉时有松螺栓联接与紧螺栓联接两种情况。

螺栓危险截⾯应是⼩径所在截⾯。

⼀、松螺栓联接的强度1、特点:在承受⼯作载荷前,螺栓不受⼒,在⼯作时则只承受轴向⼯作载荷F 作⽤。

此联接可能发⽣的失效形式为螺栓杆的拉断。

2、强度条件:或式中,d 1为螺纹⼩径(mm ),[σ]为松螺栓联接螺栓的许⽤拉应⼒(MP ),查下表。

3、实例:如起重吊钩。

⼆、紧螺栓联接的强度计算紧螺栓联接装配时已拧紧,未加载荷前已受预紧⼒。

只分析受横向⼯作载荷情况如右图:外载荷Fs 与螺栓轴线垂直。

联接靠被联接件接合⾯间的摩擦⼒传递外载荷,因此螺栓只受预紧⼒Q 0作⽤。

⼯作时防⽌被联接件相对滑动,螺栓预紧⼒Q 0为:式中,S 为安全系数,通常S=1.1~1.3;m 为接合⾯数,f 为接合⾯间的摩擦系数,f =0.1~0.16。

这种联接的螺栓在预紧⼒Q 0作⽤下,在其危险截⾯(⼩径)产⽣拉应⼒:在对螺栓施加预紧⼒Q 0时,拧紧时螺栓同进还受扭矩T,螺栓在T 作⽤下,在其危险截⾯(⼩径)处产⽣扭转切应⼒τ:对于M10~M60的普通螺纹,取d 1、d 2、λ的平均值,并取,则。

按第四强度理论,当量应⼒为故该螺栓联接的强度条件为:或螺纹联接按材料的⼒学性能分为⼗个等级。

螺母的性能等级⽤螺栓⼒学性能等级标记的第⼀部分数字标记。

当螺栓与螺母配套成组合件时,两者的⼒学性能应为同级。

螺栓联接的许⽤⼒和安全系数螺纹的结构、预紧与防松⼀、螺纹连接的结构设计1、联接接合⾯的⼏何形状通常设计成轴对称的简单⼏何形状,螺纹连接布置时应使其对称中⼼与联接接合⾯的形⼼重合,以使受⼒均匀。

2、分布在同⼀圆周上的螺纹联接数⽬应尽量取4、6、8、12、16、的偶数,以便于圆周上钻孔时分度和划线。

同⼀螺纹联接中的螺纹联接件的材料、直径和长度均取为相同,同⼀产品上采⽤的螺纹联接件的类型和尺⼨规格应越少越好。

各种螺纹计算公式

各种螺纹计算公式

各种螺纹计算公式螺纹是一种常见的连接元件,广泛应用于机械系统中。

螺纹的计算公式涉及到螺距、导程、牙型角等参数,下面将介绍几种常见的螺纹计算公式。

1.螺距计算公式:螺距是指同一主轴上两个相邻螺纹牙间的轴向距离。

螺距可以根据公式进行计算:螺距=π×直径其中,直径是指拧入/拧出螺纹的孔/杆直径。

2.导程计算公式:导程是指同一主轴上两个相邻螺纹牙的轴向距离。

导程可以通过螺距除以螺纹的节数得到:导程=螺距/节数其中,节数是指螺纹的总长度除以螺距。

3.牙型角计算公式:牙型角是指螺纹牙的斜面与轴线的夹角。

牙型角可以通过牙型参数计算得到:牙型角 = tan⁻¹(芯径 / 螺距)其中,芯径是指螺纹牙顶的径向距离。

4.螺纹公差计算公式:螺纹公差是指螺纹牙的尺寸偏差。

螺纹公差可以通过上下公差和等级计算得到:上公差=基本公差+等级标准公差下公差=基本公差其中,基本公差是指在特定等级下的公差,等级标准公差是根据国际或国内标准规定的值。

5.螺纹强度计算公式:螺纹强度是指螺纹的承载能力。

螺纹强度可以根据公式进行计算:螺纹强度=承载力/(螺距×螺纹牙有效长度)其中,承载力是指由于螺纹受力而能够承受的最大力,螺纹牙有效长度是指螺纹牙的实际承载长度。

以上是几种常见的螺纹计算公式,这些公式可以在设计、制造和使用螺纹连接时提供支持和指导,以确保螺纹的性能和可靠性。

在实际应用中,还需要根据具体的材料、工艺和应力条件进行综合考虑和分析,以避免螺纹的断裂和松动等问题的发生。

螺纹强度计算公式

螺纹强度计算公式

螺纹强度计算公式螺纹强度计算公式是指计算螺纹连接件的强度,以确保其安全使用的公式。

在机械制造和装配中,螺纹连接是一种常见的连接方式,用于连接螺纹孔和螺纹支柱。

螺纹连接的强度取决于许多因素,如螺纹类型、材料强度、尺寸和几何形状等。

螺纹连接的强度通常是按照最小截面的强度进行计算。

最小截面是指螺纹连接件的有效截面,包括螺纹节距处的截面和棱角处的截面。

螺纹强度计算公式一般包括以下几个关键因素:1. 螺纹形状:螺纹形状是螺纹连接件的主要特征之一,包括螺纹角度、螺纹节距、螺纹高度等。

不同形状的螺纹对螺纹连接件的强度产生不同的影响。

2. 材料强度:材料的强度是螺纹连接件的另一个重要因素。

通常情况下,螺纹连接件使用的材料应该具有足够的强度和硬度,以承受连接所需要的力和扭矩。

3. 螺纹尺寸:螺纹连接件的尺寸也是螺纹强度计算公式中的一个关键因素。

螺纹连接件的尺寸应该满足实际应用中的需求,同时也要考虑强度和刚度等因素。

根据以上几个关键因素,螺纹强度计算公式可以表示为:P=SfAs或P=T/J其中P表示螺纹连接件的最大允许载荷,Sf表示螺纹连接件疲劳极限强度,As表示螺纹连接件最小截面面积,T表示螺纹连接所承受的最大扭矩,J表示螺纹连接件的极径转动惯量。

以上两个公式分别适用于拉伸载荷和扭转载荷的情况。

在拉伸载荷情况下,螺纹连接件的最大允许载荷应该小于其疲劳极限强度乘以最小截面面积。

在扭转载荷情况下,螺纹连接件的最大扭矩应该小于其极径转动惯量除以螺纹连接件的极半径。

总之,螺纹强度计算公式是确保螺纹连接件安全使用的重要工具。

将各种关键因素综合考虑,可以准确地计算螺纹连接件的强度,并根据计算结果做出相应的设计和选择决策。

这样可以大大提高机械制造和装配的可靠性和安全性。

机械设计基础螺纹连接的强度计算

机械设计基础螺纹连接的强度计算


1.3F0
d12
[ ]
4
设计公式为
d1
4 1.3F0
[ ]
(2)受横向外载荷的紧螺栓联接
载荷与螺栓轴向垂直,靠被
联接件间的摩擦力传递。螺栓
内部危险截面上既有轴向预紧
力F0形成的拉应力σ,又有因螺 栓与螺纹牙面间的摩擦力矩T1
而形成的扭转剪应力τ。
螺栓预紧力
F0

Kf f
FR m
防偏载措施:
复习思考题
1.在常用的螺旋传动中,传动效率最高的螺纹是 ( )。
A .三角形螺纹 B. 梯形螺纹 C .锯齿形螺纹 D . 矩形螺纹
2.当两个被联接件之一太厚,不宜制成通孔,且 联接不需要经常拆卸时,往往采用( )。
A 螺栓联接 B 螺钉联接 C 双头螺柱联接 D 紧 定螺钉联接
3.两被联接件之一较厚,盲孔且经常拆卸时,常用()。 A.螺栓联接 B.双头螺柱联接 C.螺钉联接
A.螺纹上的应力集中 B.螺栓杆横截面上的扭转应力 C.载荷沿螺纹圈分布的不均匀性 D.螺纹毛刺的部分挤压
13.螺纹连接的基本形式有哪几种?各适用于何种场合?有 何特点? 14.为什么螺纹连接通常要采用防松设施?常用的防松方法 和装置有哪些? 15.常见的螺栓失效形式有哪几种?失效发生的部位通常在 何处?
(二)受剪切螺栓联接
螺栓受载前后不需预紧, 横向载荷靠源自栓杆与螺栓 孔壁之间的相互挤压传递。
➢挤压强度条件
p

FR
ds
[ p ]
➢剪切强度条件


FR
m ds2
/4
[]
四、螺栓组联接的结构设计和受力分析
工程中螺栓成组使用,单个使用极少。因此,必须研 究栓组设计和受力分析,它是单个螺栓计算基础和前提 条件。

机械设计第五章螺纹连接的强度计算

机械设计第五章螺纹连接的强度计算

❖ 例2:凸缘联轴器的螺栓组连接。已知在D0=150mm 的圆周上均匀分布8个M12的普通螺栓,螺栓的性能 级别为4.6级,材料为Q235钢。凸缘联轴器传递的扭 矩T=1000Nm,材料为钢。装配时要求控制预紧力。 (f=0.3,Ks=1.2)
D0
❖ 校核该螺栓组连接的强度。
机械设计第五章螺纹连接的强度计算
仅受预紧力?
机械设计第五章螺纹连接的强度计算
1、仅受预紧力的紧螺栓连接
预紧力引起的拉应力
F0
1 4
d12
扭紧力矩引起的切应力
T1
F0tg
d2 2
0.5
Wt
1 16
d13
对于M10~ M64普通螺 纹的钢制螺
栓适用
机械设计第五章螺纹连接的强度计算
1、仅受预紧力的紧螺栓连接
根据第四强度理论
ca 2 3 2 2 3(0.5 )2 1.3
第六节 螺纹连接的强度计算
❖ 螺纹连接的失效形式及设计准则 ❖ 螺纹连接强度计算的内容 ❖ 松连接的强度计算 ❖ 紧连接的强度计算
▪ 普通螺栓连接 ▪ 铰制孔用螺栓连接
机械设计第五章螺纹连接的强度计算
机械设计第五章螺纹连接的强度计算
一 、螺栓连接的失效形式和设计准则
1、受拉普通螺栓连接 螺栓承受轴向载荷,失效形式:拉断、塑性变形 计算准则:保证螺栓杆螺纹部分的静强 度或疲劳拉伸强度。
1、仅受预紧力的紧螺栓连接
❖普通螺栓连接承受横向载荷时,靠被连接件接合面间 的摩擦力承受外载荷,此摩擦力由螺栓装配时的预紧 力产生。
F
F0
F
F0
F/2
F0
F
F0
F/2
机械设计第五章螺纹连接的强度计算

螺纹强度计算

螺纹强度计算

螺纹强度计算
1 螺纹强度计算
螺纹强度的计算是机械设计过程中的一个重要环节,它是指螺纹
联接件能够抵抗的最大拉力。

螺纹联接件的强度是日常工作中最重要
的因素之一,是决定单位的使用质量的关键因素。

1 螺纹强度计算原理
螺纹强度计算是一个复杂的过程,基本上涉及到四个主要方面:
材料强度、螺纹直径和螺纹形状、螺纹深度以及受力条件。

1.1 材料强度
材料是螺纹强度计算的前提,材料的强度一般由材料化学成分决定,特指材料含有碳、硅、锰、磷等金属成分,螺纹强度是由材料的
拉断强度决定的,而不是抗拉强度。

1.2 螺纹直径和螺纹形状
在螺纹强度计算中,外螺纹的直径和螺纹形状决定了外螺纹在拉
力中的分布,即螺纹内分布的工作情况。

根据一定的数学模型,了解
其螺纹内的强度变化规律和最大的拉力是螺纹强度计算的重要依据。

1.3 螺纹深度
螺纹深度对螺纹强度计算来说也非常重要,由于深度受到厚度限制,最大拉力也会随着深度的变化而变化。

所以在确定螺纹深度之前,应该明确确定螺纹强度的要求。

1.4 受力条件
受力条件影响螺纹的强度,受力条件分为静力和动力,通常以静力为准。

最大拉力分布受载荷类型、载荷位置和载荷方向的影响,因此,在确定最大拉力前,要确定工件制作过程中的受力条件。

总之,螺纹强度计算是机械设计过程中一项极其重要的任务,它涉及到材料强度、螺纹直径、螺纹形状、螺纹深度以及受力条件,在完成螺纹强度计算之前,应该确定好螺纹的工作要求,以便更好的分析结果。

机械设计螺纹连接的强度计算

机械设计螺纹连接的强度计算

机械设计螺纹连接的强度计算1. 引言螺纹连接是一种常见的机械连接方式,广泛应用于各种工程领域中。

在机械设计中,准确计算螺纹连接的强度是至关重要的,以确保连接的稳定性和可靠性。

本文将介绍螺纹连接的强度计算方法。

2. 螺纹连接的基本原理螺纹连接是通过螺纹的相互摩擦力和压力来传递力量的。

在螺纹连接中,螺纹的轴向力将产生一个剪切力,并且螺纹的几何特征将决定其承载能力。

主要的螺纹连接参数包括螺纹规格、螺母和螺纹之间的接触面积、螺纹材料和预紧力等。

3. 螺纹连接的强度计算方法螺纹连接的强度可以通过以下几种方法进行计算:3.1 标准表格法标准表格法是最简单和常用的计算螺纹连接强度的方法之一。

该方法基于统计数据和经验公式,通过查表找到相应的螺纹规格和材料对应的承载力,并结合预紧力进行计算。

3.2 理论计算法理论计算法是通过数学模型和理论分析进行螺纹连接强度计算的方法。

该方法首先确定螺纹连接的载荷和边界条件,然后利用螺纹材料的力学性质和几何形状进行力学计算,最后得出连接的强度和可靠性。

3.3 有限元分析法有限元分析法是一种基于数值计算和计算机模拟的计算方法。

该方法将螺纹连接模型分割成许多小的单元,通过求解有限元方程组来计算连接的应力分布和变形情况。

然后,根据应力和变形的结果,进行强度评估和优化设计。

3.4 实验测试法实验测试法是通过构建实际螺纹连接样品,进行加载实验来获得连接的强度数据。

该方法可以直接从实验数据中得出连接的承载能力和可靠性,但是需要耗费较多的时间和资源。

4. 选择合适的计算方法在实际应用中,选择合适的计算方法需要考虑多个因素,包括设计要求、时间和资源限制、计算准确度等。

对于一般的机械设计而言,标准表格法和理论计算法往往是较为常用和合适的方法。

而对于复杂的结构和严格的设计要求,有限元分析法和实验测试法可以提供更准确和可靠的结果。

5. 结论在机械设计中,准确计算螺纹连接的强度是确保连接稳定性和可靠性的重要一步。

螺纹联接的强度计算ppt课件.ppt

螺纹联接的强度计算ppt课件.ppt

联接概述
铆接
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
联接概述
焊接
焊焊接接的的齿减轮速结箱构体
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
直径与螺距、粗牙普通螺纹基本尺寸
mm
P/8
Dd D2 d2 D1 d1
P P/8
60˚
H=0.866P d2=d-0.6495P D、d ----内、外螺纹大径
D2、d2----内、外螺纹中径 D1、d1----内、外螺纹小径
d1=d-1.0825P
P/8
P/230˚
90˚
P/4
H/4
P----螺距
P 60˚
§5-1 螺 纹
P
P
粗牙
d
细牙 d
细牙 d
粗牙螺纹应用最广
细牙螺纹的优点:小径大、强度高、升角小、自锁性好, 缺点:不耐磨易滑扣。 应用:薄壁零件、受动载荷的联接和微调机构。
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
§5-2 螺纹联接的类型与标准联接件
孔与螺杆 之间留有
间隙
普通螺栓联接
相同:均为通孔,装拆较薄件 注意制图、结构的关系
螺杆与 孔壁接

铰制孔用螺栓联接
有配合, 成本高:螺杆精度、用铰刀铰孔
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目

螺纹连接强度计算

螺纹连接强度计算

磨损失效
总结词
磨损失效是指螺纹连接在长期使用过程中,由于摩擦和磨损导致连接性能下降的现象。
详细描述
磨损失效通常是由于螺栓或螺柱与螺母之间的摩擦引起的,随着使用时间的增加,连接表面的磨损会 逐渐加重,导致连接松动或卡滞。为了防止磨损失效,应选择耐磨性好的材料、进行有效的润滑和定 期维护,及时更换磨损严重的连接件。
在化工管道中,螺纹连接被广泛用于连接管 道和阀门,确保流体介质的安全传输。
航空航天应用实例
飞机结构中的螺栓连接
在飞机制造中,螺纹连接被用于固定和连接飞机结构 中的各个部件,确保飞机的安全性和稳定性。
航天器中的紧固件
在航天器中,螺纹连接作为重要的紧固件,用于固定 和连接各个部件,确保航天器的可靠性和安全性。
紧定螺钉连接
通过紧定螺钉将两个零件固定 在一起。
螺旋副
用于传递旋转运动或扭矩,如 蜗轮蜗杆传动。
螺纹连接的材料
金属材料
钢铁、铜、铝等。
非金属材料
塑料、尼龙、陶瓷等。
螺纹连接的预紧和拧紧
预紧
在装配过程中,通过拧紧螺母或螺栓, 使连接件之间产生ห้องสมุดไป่ตู้定的预紧力。
拧紧
在装配过程中,通过旋转螺母或螺栓, 使连接件之间产生摩擦力,以固定或 传递扭矩。
总结词
表面处理对螺纹连接的强度和稳定性也 有重要影响,适当的表面处理可以显著 提高连接的抗腐蚀和耐磨性能。
VS
详细描述
常见的表面处理方法包括镀锌、镀铬、喷 塑等。这些处理方法可以改变螺纹表面的 物理和化学性质,提高其耐腐蚀和耐磨性 能。此外,表面处理还可以增加螺纹间的 摩擦力,从而提高连接的稳定性。
螺纹连接强度计算
目录 CONTENT

螺纹联接的强度计算

螺纹联接的强度计算

螺纹联接的强度计算螺纹联接是一种常用的机械联接方式,广泛应用于各种设备和结构中。

螺纹联接的强度计算是保证螺纹联接安全可靠的重要一环。

下面我将从以下几个方面详细介绍螺纹联接的强度计算。

一、螺纹联接的受力分析:螺纹联接主要受到拉力和剪力的作用,因此在强度计算中,我们需要考虑拉力和剪力产生的影响。

1.拉力:拉力是在螺纹联接中最主要的受力方式。

当联接受到拉力时,螺纹间会产生预紧力,该预紧力可以通过牛顿定律计算。

预紧力会加大螺纹联接的接触应力,并提高联接的强度。

2.剪力:在一些情况下,螺纹联接还会受到剪力的作用,尤其是在动力传递系统和高速旋转机械中。

剪力会导致螺纹断裂,因此在强度计算中需要考虑剪力的影响。

二、螺纹联接的强度计算方法:对于螺纹联接的强度计算,我们可以采用以下两种主要的方法。

1. 经验公式法:基于大量实验数据和实践经验的总结,可以建立起一些经验公式,用于计算螺纹联接的强度。

常用的经验公式有Tresca准则和Von Mises准则。

2.材料力学方法:通过应力和应变的分析,可以采用材料力学的方法来计算螺纹联接的强度。

常见的方法有拉伸强度法、剪切强度法和受约束弹性法等。

不同的计算方法有其适用的条件和限制。

在具体计算时,需要根据实际情况选择适合的计算方法,并考虑螺纹联接的几何尺寸、材料性质、加载方式等因素。

三、螺纹联接的强度计算参数:在进行螺纹联接强度计算时,需要考虑以下几个关键参数。

1.螺纹参数:包括螺纹的规格、高度、宽度、垂直角度等。

这些参数决定了螺纹联接的形状和尺寸,对联接的强度产生重要影响。

2.材料参数:包括螺纹材料的强度、韧性、疲劳寿命等。

这些参数决定了螺纹的承载能力和使用寿命。

3.预紧力:预紧力是指螺纹联接时所加的紧固力。

预紧力的大小直接影响螺纹联接的强度。

预紧力过小会导致松动,过大则会导致断裂。

4.细节参数:包括联接面的光洁度、润滑条件等。

这些细节参数对于螺纹联接的强度也有一定的影响。

四、螺纹联接的强度评估:确定了螺纹联接的强度计算方法和参数后,我们可以进行强度评估。

螺栓连接的强度计算

螺栓连接的强度计算

强度条件验算公式:
设计公式:
分析:由上式可知,当f=0.2,i=1,KS=1则QP=5R,说明这种联接螺栓直径大,且在冲击振动变载下工作极不可靠
为增加可靠性,减小直径,简化结构,提高承载能力
可采用如下减载装置: 减载销 减载套筒 减载键
2、铰制孔螺栓联接——防滑动
特点:螺杆与孔间紧密配合,无间隙,由光杆直接承受挤压和剪切来传递外载荷R进行工作
1、防松目的
01
开槽螺母与开口销,圆螺母与止动垫圈,弹簧垫片,轴用带翅垫片,止动垫片,串联钢丝等
2)机械防松:
自锁螺母——螺母一端做成非圆形收口或开峰后径面收口,螺母拧紧后收口涨开,利用收口的弹力使旋合螺纹间压紧
弹簧垫圈
01
02
开槽螺母
与开口销
永久防松:端铆、冲点、点焊
化学防松——粘合 圆螺母 与止动垫圈 串联钢丝
扳手拧紧力矩——T=FH·L,
拧紧时螺母:T=T1+T2 T——拧紧力矩 T1——螺纹摩擦阻力矩 T2——螺母端环形面与被联接件间的摩擦力矩
FH—作用于手柄上的力,L——力臂
一般 K=0.1~0.3
——拧紧力矩系数
由于直径过小的螺栓,容易在拧紧时过载拉断,所以对于重要的联接不宜小于M10~M14
材料 螺栓级别: 点后数字为 螺母级别:
螺母、螺栓强度级别:
1)根据机械性能,把栓母分级并以数字表示,此乃强度级别
带点数字表示 , 点前数字为 注意:选择对螺母的强度级别应低于螺栓材料的强度级别,螺母的硬度稍低于螺栓的硬度(均低于20~40HB)
2)所依据机械性能为抗拉强度极限σBmin和屈服极限σSmin
作图,为了更明确以简化计算(受力变形图) 设:材料变形在弹性极限内,力与变形成正比

螺纹连接强度的计算

螺纹连接强度的计算

螺纹的连接强度设计规范已知条件:旋合长度: L=23旋合圈数: Z=15.33原始三角形高度:H=1.732/2P=1.3实际牙高:H1=0.54P=0.81牙根宽:b=0.75P=1.13间隙:B=0.08p=0.12螺纹材料: 45 屈服强度360MPa 抗拉强度 600Mpa n=5(交变载荷)系统压力P=17.5Mpa 活塞杆d=28 缸套D=65推力F=PA=47270N请校核螺纹的连接强度:1:螺纹的抗剪强度校验:[]τ故抗剪强度足够。

2:抗弯强度校核:(σw)(σw):许用弯曲应力为: 0.4*360(屈服极限)=144MPa故其抗弯强度不足:3: 螺纹面抗挤压校验(σp)[]MPa p 1803605.05.0=⨯⨯屈服强度为为σMPa H d Kz Fp 73.113)33.1581.0026.1914.356.0/(47270Z 12=⨯⨯⨯⨯=⨯⨯⨯⨯=πσ故其抗挤压强度足够。

[]()[]Mpa960.18.0=-=στMPa Zb d Kz F s 4.84)33.1513.1376.1814.356.0/(472701=⨯⨯⨯⨯=⨯⨯⨯⨯=πτMPa Zb b d Kz FH 224)33.1513.113.1376.1814.356.0/(472703113w =⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯=πσ4: 螺纹抗拉强度效验 (σ)[][]20Mpa 1=σb/5=σσ钢来说为许用抗拉强度,对于dc 螺纹计算直径: dc=( d+d1-H/6)/2=(20+18.376-1.3/6)/2=19.08mmMPa dc F 325.165)08.1908.1914.3/(472704π42=⨯⨯⨯==σ 故其抗拉强度不足。

例1-1 钢制液压油缸如图10-21所示,油缸壁厚为10mm ,油压p =1.6MPa ,D=160mm ,试计算上盖的螺栓联接和螺栓分布圆直径。

解 (1) 决定螺栓工作载荷暂取螺栓数z =8,则每个螺栓承受的平均轴向工作载荷为(2) 决定螺栓总拉伸载荷对于压力容器取残余预紧力=1.8,由式(10-14)可得(3) 求螺栓直径选取螺栓材料为45钢=355MPa(表9-1),装配时不要求严格控制预紧力,按表10-7暂取安全系数S=3,螺栓许用应力为MPa 。

螺纹连接强度计算

螺纹连接强度计算

螺纹连接强度计算螺纹连接是一种常用的机械连接方式,用于连接螺栓和螺母。

在实际应用中,螺纹连接的强度是一个重要的设计指标,需要进行计算和验证。

螺纹连接的强度计算主要涉及以下方面:拉伸强度、剪切强度、挤压强度、疲劳强度。

1.拉伸强度计算:螺纹连接在受拉载荷时,主要承受拉应力作用。

计算拉伸强度时,需要考虑螺纹区域和螺栓截面的受拉承载能力。

从抗拉强度和拉伸面积两方面进行。

拉伸强度=抗拉强度x拉伸面积拉伸面积=(π/4)x(d2-d3)xl其中,d2为螺纹有效直径,d3为螺纹小径,l为螺栓长度。

2.剪切强度计算:螺纹连接在受剪载荷时,主要承受剪应力作用。

计算剪切强度时,需要考虑螺纹区域和螺栓截面的受剪承载能力。

剪切强度=抗剪强度x剪切面积剪切面积=(π/4)x(d2-d3)xl3.挤压强度计算:螺纹连接在受压载荷时,主要承受挤压应力作用。

计算挤压强度时,需要考虑螺栓所受的挤压承载能力。

挤压强度=挤压应力x挤压面积挤压面积=πxd1xl其中,d1为螺纹内径。

4.疲劳强度计算:螺纹连接在受循环载荷时,会产生疲劳破坏。

计算疲劳强度时,需要通过疲劳试验或经验公式来获得。

以上计算公式只是螺纹连接强度计算的基本方法,具体的计算过程需要根据实际情况来确定。

在进行计算时,还需要考虑材料的强度和工作环境的影响等因素。

此外,还需要注意螺纹连接的预紧力,以保证连接的密封性和抗松动能力。

预紧力的大小应根据应用要求进行确定,在设计和使用过程中需要注意预紧力的控制和维护。

综上所述,螺纹连接强度计算是一个复杂的过程,需要综合考虑多个因素。

在实际应用中,应根据具体要求和材料性能,结合上述计算方法进行强度计算和验证,以确保螺纹连接的安全可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新产品最新动态技术文章企业目录资料下载视频/样本反馈/论坛
技术应用 | 基础知识 | 外刊文摘 | 业内专家 | 文章点评投稿发表科技文章
螺纹联接设计:单个螺栓联接的强度计算
newmaker
螺纹联接根据载荷性质不同,其失效形式也不同:受静载荷螺栓的失效
多为螺纹部分的塑性变形或螺栓被拉断;受变载荷螺栓的失效多为螺栓
的疲劳断裂;对于受横向载荷的铰制孔用螺栓联接,其失效形式主要为螺栓杆剪断,栓杆或被联接件孔接触表面挤压破坏;如果螺纹精度低或联接时常装拆,很可能发生滑扣现象。

螺栓与螺母的螺纹牙及其他各部分尺寸是根据等强度原则及使用经验规定的。

采用标准件时,这些部分都不需要进行强度计算。

所以,螺栓联接的计算主要是确定螺纹小径d1,然后按照标准选定螺纹公称直径(大径)d,以及螺母和垫圈等联接零件的尺寸。

1. 受拉松螺栓联接强度计算
图15.3
松螺栓联接装配时不需要把螺母拧紧,在承受工作载荷前,除有关零件的自重(自重一般很小,强度计算时可略去。

)外,联接并不受力。

图1所示吊钩尾部的联接是其应用实例。

当螺栓承受轴向工作载荷(N)时,其强度条件为

式中:d1--螺纹小径,mm;
σ1--松联接螺栓的许用拉应力,Mpa。

2. 受拉紧螺栓联接的强度计算
根据所受拉力不同,紧螺栓联接可分为只受预紧力、受预紧力和静工作拉力及受预紧力和变工作拉力三类。

①只受预紧力的紧螺栓联接
图为靠摩擦传递横向力F的受拉螺栓联接,拧紧螺母后,这时螺栓杆除受预紧力F`引起的拉应力σ=4F`/πd12外,还受到螺纹力矩T1引起的扭转剪应力:
对于M10~M68的普通螺纹,取d1、d2和λ的平均值,并取ρ`=arctan0.15,得τ≈0.5σ。

由于螺栓材料是塑性材料,按照第四强度理论,当量应力σe为
故螺栓螺纹部分的强度条件为:

式中[σ]为静载紧联接螺栓的许用拉应力,其值由表1查得。

②受预紧力和工作载荷的紧螺栓联接。

图15.5
图15.5所示压力容器的螺栓联接是受预紧力和轴向工作载荷的典型实例。

这种联接拧紧后螺栓受预紧力F`,工作时还受到工作载荷F。

一般情况下,螺栓的总拉力F0并不等于F与F`之和。

现分析如下:
螺栓和被联接件受载前后的情况见图15.6。

图a为螺母刚好拧到与被联接件接触,此时螺栓与被联接件均未受力,因而也不产生变形。

图为螺母已拧紧,但尚未承受工作拉力的情况,这时,螺栓受预紧力F`的作用。

以c1和c2分别表示螺栓和被联接件的刚度,在预紧力F`的作用下,螺栓产生伸长变形δ1=F`/c1,被联接件产生压缩变形δ2=F`/c2。

图为螺栓受工作拉力F后的情况。

这时,螺栓拉力增大到F0,拉力增量为F0-F`,伸长增量为△δ1;而被联接件随之部分放松,其受压力减小到F"(称之为剩余预紧力),压缩减量为△δ2 。

根据螺栓的静力平衡条件得
F0=F"+F(1)
图15.7
即螺栓所受的总拉力F0应等于剩余预紧力F"与工作拉力F之和。

如图15.7所示,图a为螺栓和被联接的受力和变形关系图,将两关系图合并得图b。

图为螺栓受工作载荷时的情况,根据螺栓与被联接件变形协调条件有△δ1 =△δ2 ,以
和δ2=(F`-F")/c2代入得
F"=F`-Fc2/(c1+c2)(15-12)
F`=F"+Fc2/(c1+c2)(15-13)
F0=F`+Fc1/(c1+c2)(15-14)
式中c1/(c1+c2)称为螺栓的相对刚度系数。

螺栓的相对刚度系数的大小与螺栓及被联接件的材料、尺寸和结构有关,其值在0~1之间变化,一般可按表选取。

表螺栓的相对刚度系数
紧螺栓联接应能保证被联接件的接合面不出现缝隙(图2d为螺栓工作载荷过大,联接出现缝隙的情况,这是不容许的。

),因此剩余预紧力F"应大于零。

当工作载荷F没有变化时,可取F"=(0.2~0.6)F,当F有变化时,F"=(0.6~1.0)F;对于有紧密性要求的联接(如压力容器的螺栓联接),F"=(1.5~1.8)F。

设计时,通常在求出F后,即可根据联接的工作要求选择F",然后由式(15-11)求F0以计算螺栓的强度。

联接应该是在受工作载荷前拧紧的,螺纹力矩为F`tan(λ+ρ`)d2/2;但考虑到出现特殊情况时可能在工作载荷下补充拧紧,则螺纹力矩为F0tan(λ+ρ`)d2/2,相应的螺栓切应力τ和拉应力σ分别为
σ=4F0/πd21
因此,为安全起见,参照式(15-9)的推导,得螺纹部分的强度条件为
5.2F0/πd21≤[σ](15-15)
式(15-15)用于静载荷计算。

静载时的许用应力见表15.6。

如图15.8可知,当工作载荷在0与F之间变化时,螺栓的拉力在F`与F0之间变化,螺栓的拉力变幅为:
由于变载零件的疲劳强度应力幅是主要因素,故应满足强度条件
式中σa--螺栓变载时的应力幅;
[σa]--螺栓变载时的许用应力幅,见表15.6。

图15.8
3. 受剪螺栓联接
图15.9所示为铰制孔用螺栓联接,工作时螺杆在联接接合面处受剪切,并与被联接件孔壁互相挤压。

联接损坏的可能形式有:螺栓被剪断,栓杆或孔壁被压溃等。

在计算时,这种联接的预紧力和摩擦力可忽略不计。

设螺栓所受的剪力为Fs,则栓杆的抗剪切强度条件为
4F S/πd2m≤[τ](15-17)
栓杆与被联接件孔壁的抗挤压强度条件为
F S≤dh[σp] (15-18)
式中d--螺栓抗剪面直径;
m--螺栓抗剪面数目;
h--栓杆与孔壁挤压面最小高度;
[τ]--螺栓的许用切应力,见表15.7;
[σp]--栓杆或孔壁材料中强度较弱者的许用挤压应力,见表15.7。

图15.9
4. 螺栓的材料和许用应力
螺栓的常用材料为Q215、Q235、10、35和45钢,重要和特殊用途的螺纹联接件可采用15Cr、40Cr、30CrMnSi等力学性能较高的合金钢。

国家标准规定螺纹联接件按其力学性能进行分级(见表15.4)。

表15.5列出了螺纹联接件常用材料的抗拉伸力学性能。

螺纹联接的许用应力及安全系数见表15.6和表15.7。

(end)。

相关文档
最新文档