数学建模-机械生产资料

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械产品生产计划的优化设计

当今世界,瞬息万变。人们的生活节奏也越来越快,各种新产品层出不穷,已经进入了机械化时代。机械产品生产计划问题已经成为各大厂家关注的焦点。产品生产的原料配置以及销售计划急需优化。本文对一机械产品生产计划的利润进行了求解,并优化了产品生产方案,增大了产品的利润。

在合理的假设前提下,对机械产品生产计划进行分析,利用生产量、库存量、销售量之间的关系建立线性整数规划模型。运用lingo进行求解,得出最优的生产、库存、销售方案。

在原计划不变的条件下,即不改变机器设备定月检修的方案,对数据进行灵敏度分析,得出部分产品的销售价格可以上调;再固定各产品的销售价格,从设备的角度分析增加利润的,建立模型并求解,得出优化的机器设备检修方案。

把部分产品上调后的价格作为产品的价格销售方案,把调整后的设备检修表作为优化后的检修方案,建立优化线性整数规划模型。用lingo求得优化后的最大利润。

对机械产品生产逐步进行分析,从销售的价格、设备的检修等多角度寻求增加最大利润的方法。最终得出最优的生产计划方案。

关键字:机械产品生产生产量、库存量、销售量lingo求解线性整数规划模型设备检修

1.问题提出

机械加工厂生产7种产品(产品1到产品7)。该厂有以下设备:四台磨床、两台立式钻床、三台水平钻床、一台镗床和一台刨床。每种产品的利润(元/件,在这里,利润定义为销售价格与原料成本之差)以及生产单位产品需要的各种设备的工时(小时)如下表。表中的短划表示这种产品不需要相应的设备加工。

从一月份至六月份,每个月中需要检修的设备是(在检修的月份,被检修的设备全月不能用于生产):

每个月各种产品的市场销售量的上限是:

每种产品的最大库存量为100件,库存费用为每件每月0.5元,在一月初,所有产品都没有库存;而要求在六月底,每种产品都有50件库存。工厂每天开两班,每班8小时,为简单起见,假定每月都工作24天。

生产过程中,各种工序没有先后次序的要求。

问题1:制定六个月的生产、库存、销售计划,使六个月的总利润最大。

问题2:在不改变以上计划的前提下,哪几个月中哪些产品的售价可以提高以达到增加利润的目的。价格提高的幅度是多大?

问题3:哪些设备的能力应该增加?请列出购置新设备的优先顺序。

问题4:是否可以通过调整现有设备的检修计划来提高利润?提出一个新的设备检修计划,使原来计划检修的设备在这半年中都得到检修而使利润尽可能增加。

最优设备检修计划问题

对案例3中的生产计划问题。构造一个最优设备检修计划模型,使在这半年中各设备的检修台数满足案例3中的要求而使利润为最大。

2.模型假设与说明

(1).假设工厂工人每月工作24天;

(2).在进行部分产品价格上调时,机器设备的检修方案不变;

(3)在优化检修设备方案时,产品的价格是上涨后的价格。

3.符号说明

i: 表示产品;

j: 表示月份;

m: 表示机器设备;

Aij: 表示第i中产品在第j个月的产量;

Bij: 表示第i中产品在第j个月的库存量;

Cij: 表示第i中产品在第j个月的销售量;

Dmi: 生产i中产品需要的m种设备时间;

Emj: m中设备在第j月的使用时间;

Fij:第i中产品在第j月的销售上限;

Pi: 第i中产品每件的利润;

4.问题分析和模型建立

4.1 模型分析

4.1.1本题要求制定出六个月的生产、库存、销售计划并求出总利润,为了增加利润,将产品的售价提高,求出提高的价格幅度,增加设备的能力,并购置新设备,调整设备的检修方案以增加利润。利润=售价-成本价-产品的库存费用。此题目中没有给出产品的成本价,因此,我们在求最大利润是直接用产品的销售总价减去产品的库存费用。由于工厂每天开两班,每班8小时,假定每月工作24天,结合检修计划表,由此可以算出每种机器设备每月的使用时间(矩阵Emj ,求解如下),建立一个机器生产设备使用的约束条件,每种产品每个月的库存量小于等于100,并要求在第六个月底,每种产品都有50件库存,可以建立两个库存约束条件。产品在销售时,每月的产品销售量为当月的产量加上上月的库存量要小于销售上限。由于第一月无上月的库存量,故直接是产品生产产量小于销售上限。建立销售的约束条件。利用lingo 建立一个整形规划的数学模型。

4.1.2提高部分产品的销售价来提高总利润。利用(1)中的建立的模型球的的解,进行灵敏度分析来解答。将“General Solver ”选项卡中的“Dual Computation ”下拉项修改为“Prices & Ranges ”。然后,我们点“Solve ”运行程序,运行完之后,回到模型界面,点击“lingo ”菜单下的“range ”选项可以进行灵敏度分析。

4.1.3增加设备的能力来提高利润,通过看影子价格来求出答案。

4.1.4由于设备要定时的检修,在检修时设备无法使用,我们可以优化设备检修计划来增加利润。

4.1.5 利用(2)求出的增加部分产品的价格和(4)优化的机器设备的检修方案。重新建立模型。进行求解。 4.2 模型建立

在求解总利润时,建立目标函数7

6

7

6

1

1

1

1

z (*)0.5*ij i ij

i j i j C p B

=====-∑∑∑

把i p =10 6 3 4 1 9 3带入目标函数中得

6666

max (B )*10B )*6B )*3B )*1162263364461111

z A A A A j j j j j j j j =-+-+-+-∑∑∑∑====

66676

4B )*1B )*9B )*30.5*B 55666677611111

A A A j j j ij j j j i j +-+-+--∑∑∑∑∑=====

设备时间约束为

*m i i j

m j D A E <= (1)

库存约束为

相关文档
最新文档