湖北省武汉市江汉区2017-2018学年八年级下期中数学试卷(解析版)

合集下载

2017-2018学年湖北省武汉市江夏区八年级(下)期中数学试卷(解析版)

2017-2018学年湖北省武汉市江夏区八年级(下)期中数学试卷(解析版)

2017-2018学年湖北省武汉市江夏区八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.化简()A. B. C. 2 D. 42.如果线段a、b、c,满足a2=c2-b2,则这三条线段组成的三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定3.在平行四边形ABCD中,已知AB=5,BC=3,则它的周长为()A. 8B. 10C. 14D. 164.如图,在平面直角坐标系中有两点A(5,0),B(0,4),则它们之间的距离为()A.B.C.D.5.计算(+)=()A. B. C. D.6.已知菱形的两条对角线的长分别是6和8,则菱形的周长和面积分别是()A. 20,12B. 20,24C. 28,12D. 28,247.计算2×3=()A. B. C. D.8.如图,一架2.6m长的梯子AB斜靠在一竖直的墙AO上,此时AO=2.4m,若梯子的顶端A沿墙下滑0.5m,那么梯子底端B外移了(参考数据取1.4,取1.7,取1.8)()A.B.C.D.9.如图,用黑白两种颜色的平行四边形纸片,按黑色纸片数逐渐增加1的规律拼成下列图性,若第n个图案中有2020个白色纸片,则n的值为()A. 674B. 673C. 672D. 67110.如图,矩形ABCD中,AB=5,AD=4,M是边CD上一点,将△ADM沿直线AM对折,得△ANM,连BN,若DM=1,则△ABN的面积是()A.B.C.D.二、填空题(本大题共6小题,共18.0分)11.计算:6-2=______.12.命题“同旁内角互补,两直线平行”的逆命题是______.13.如图,在平行四边形ABCD中,AC=8cm,BD=14cm,则△DBC的周长比△ABC的周长多______cm.14.如图,△ACB和△ECD都是等腰直角三角形,△ACB的锐角顶点A在△ECD的斜边DE上,若AE=,AC=,则DE=______.15.已知:m+n=10,mn=9,则=______.16.已知:如图,在平行四边形ABCD中,AB=4,BC=9,∠BAD=120°,点O为平行四边形ABCD的对角线的交点,直线l为过点O的任意一条直线,则点C到直线l的最大距离为______.三、计算题(本大题共3小题,共24.0分)17.计算:(1)÷(2)(3-2)÷18.如图,在△ABC中,AB=AC=6,BC=4,AD为△ABC的高,求:(1)AD的长;(2)△ABC的面积.19.已知:x=2+1,y=-1求:(1)x2+2xy+y2的立方根;(2)x2+y2-2+1的平方根;(3)(4+2)y2+(2-1)x-8的值.四、解答题(本大题共5小题,共48.0分)20.已知:如图,AC,BD是平行四边形ABCD的对角线,且AC=BD,若AB=4,BD=8,求:平行四边形ABCD的周长.21.如图,在4×4正方形的网格中,线段AB,CD如图位置,每个小正方形的边长都是1.(1)求线段AB、CD的长度.(2)在图中画出线段EF,使EF=,并判断以AB,CD,EF三条线段组成的三角形的形状,请说明理由.(3)我们J把(2)中三条线段按照点E与点C重合,点F与点B重合,点D与点A重合,这样可以得△ABC,则点C到直线AB的距离为______(直接写结果).22.已知:四边形ABCD是边长为4的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点F.(1)如图(1),①求AC的长;②求证:AE=CF;(2)如图(2),若∠EOD=30°,连BE,CE,求△BEC的周长.23.(1)如图(1),在平行四边形ABCD中,DE⊥AB,BF⊥CD,垂足分别为E、F,求证:AE=CF(2)如图(2),在平行四边形ABCD中,AC、BD是两条对角线,请探究:AC2,AB2,BD2,BC2之间的数量关系,并证明你的结论.(3)如图(3),PQ是△PMN的中线,若PM=11,PN=13,MN=10,直接写出PQ 的长度______.24.如图所示,在平面直角坐标系中,A(a,0),B(b,0),D(0,d),以AB、AD为邻边作平行四边形ABCD,其中:=,a,d满足(a+2)2+=0(1)如图1,求点C的坐标及线段BC的长;(2)如图2,线段BC的中垂线交y轴于E点,F为AD的中点,连CE,BE,EF 及BF,求证:BF⊥EF;(3)如图3,点G在线段BD上,点H,M分别在线段OB,OD上,且BG=BH,DG=DM,过点H作NH⊥HG交GM的延长线于点N,若N(t,-t),求点G的坐标.答案和解析1.【答案】C【解析】解:=|-2|=2,故选:C.根据=|a|计算可得.本题主要考查二次根式的性质与化简,解题的关键是掌握二次根式的性质=|a|.2.【答案】B【解析】【分析】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.如果在一个三角形中,有两条边的平方和等于第三边的平方,那么这个三角形是直角三角形.【解答】解:∵a2=c2-b2,∴a2+b2=c2,∴这三条线段组成的三角形是直角三角形.故选B.3.【答案】D【解析】解:∵四边形ABCD是平行四边形,∴AB=CD=5,BC=AD=3,∴它的周长为:5×2+3×2=16,故选:D.根据平行四边形的性质可得AB=CD=5,BC=AD=3,进而可得周长.此题主要考查了平行四边形的性质,关键是掌握平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.4.【答案】A【解析】解:∵A(5,0)和B(0,4),∴OA=5,OB=4,∴AB=,即这两点之间的距离是.故选:A.先根据A、B两点的坐标求出OA及OB的长,再根据勾股定理即可得出结论.本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.5.【答案】D【解析】解:原式=×+×=+,故选:D.利用乘法分配律展开后,依据二次根式的乘法运算法则计算可得.本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.6.【答案】B【解析】解:如图,菱形ABCD中,AC=8,BD=6,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB==5,∴此菱形的周长是:5×4=20,面积是:×6×8=24.故菱形的周长是20,面积是24.故选:B.首先根据题意画出图形,然后由菱形的两条对角线长分别是6和8,可求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长与面积.此题考查了菱形的性质以及勾股定理.关键是熟练掌握菱形的面积等于对角线积的一半的知识点.7.【答案】C【解析】解:2×3=6=30,故选:C.根据二次根式的乘除运算法则计算可得.本题主要考查二次根式的乘除法,解题的关键是掌握二次根式的乘除运算法则.8.【答案】A【解析】解:∵Rt△OAB中,AB=2.6m,AO=2.4m,∴OB===1(m);同理,Rt△OCD中,∵CD=2.6m,OC=2.4-0.5=1.9(m),∴OD===≈1.8(m),∴BD=OD-OB=1.8-1=0.8(m).故选A.先根据勾股定理求出OB的长,再根据梯子的长度不变求出OD的长,根据BD=OD-OB即可得出结论.本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.9.【答案】B【解析】解:∵第1个图案中白色纸片有4=1+1×3张;第2个图案中白色纸片有7=1+2×3张;第3个图案中白色纸片有10=1+3×3张;…∴第n个图案中白色纸片有1+n×3=3n+1(张),根据题意得:3n+1=2020,解得:n=673,故选:B.将已知三个图案中白色纸片数拆分,得出规律:每增加一个黑色纸片时,相应增加3个白色纸片;据此可得第n个图案中白色纸片数,从而可得关于n的方程,解方程可得.本题考查了图形的变化问题,观察出后一个图形比前一个图形的白色纸片的块数多3块,从而总结出第n个图形的白色纸片的块数是解题的关键.10.【答案】D【解析】解:延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=4,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=42+x2,解得:x=7.5,∴NQ=7.5,AQ=8.5,∵AB=5,AQ=8.5,∴S△NAB=S△NAQ=×AN•NQ=××4×7.5=;故选:D.延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=4,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=7.5,AQ=8.5,即可求出△ABN的面积.本题考查了折叠的性质勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键.11.【答案】4【解析】解:6-2=4.故答案为:4.直接利用二次根式加减运算法则计算得出答案.此题主要考查了二次根式的加减运算,正确掌握运算法则是解题关键.12.【答案】两直线平行,同旁内角互补【解析】解:命题“同旁内角互补,两直线平行”的逆命题是:两直线平行,同旁内角互补,故答案为:两直线平行,同旁内角互补.把一个命题的条件和结论互换就得到它的逆命题.命题“同旁内角互补,两直线平行”的条件是同旁内角互补,结论是两直线平行,故其逆命题是两直线平行,同旁内角互补.本题考查了互逆命题的知识及命题的真假判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.13.【答案】6【解析】解:∵四边形ABCD是平行四边形,∴AB=DC,AC=2AO,BD=2OD,∵AO=4,OD=7,∴BD=14,AC=8,∴△DBC的周长-△ABC的周长=BD+BC+DC-AC-BC-AB=AC-BD=14-8=6,故答案为:6由平行四边形的性质可知:AC=2AO,BD=2OD,AB=DC,所以△DBC的周长和△ABC的周长的差即为BD-AC的值,问题得解此题考查了平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.14.【答案】【解析】解:连结BD,如图,∵△ACB与△ECD都是等腰直角三角形,∴∠ECD=∠ACB=90°,∠E=∠ADC=∠CAB=45°,EC=DC,AC=BC,∵∠ECD-∠ACD=∠ACB-∠ACD,∴∠ACE=∠BCD,在△AEC和△BDC中,,∴△AEC≌△BDC(SAS).∴AE=BD=,∠E=∠BDC=45°,∴∠BDA=∠BDC+∠ADC=90°,在Rt△ACB中.AB=AC=,由勾股定理得:AD===,∴DE=AE+AD=+;故答案为:+.连结BD,由等腰直角三角形的性质得出∠ECD=∠ACB=90°,∠E=∠ADC=∠CAB=45°,EC=DC,AC=BC,由SAS证明△AEC≌△BDC,得出AE=BD,证出∠BDA=∠BDC+∠ADC=90°,在Rt△ADB中.由勾股定理即可得出结论.本题考查了全等三角形的判定与性质、勾股定理、等腰直角三角形的性质等知识,证明三角形全等是解决问题的关键.15.【答案】±解:∵m+n=10,mn=9,∴()2====,∴=±.故答案是:.先求所求的代数式的完全平方形式,然后直接开平方即可求得的值.考查了二次根式的化简求值,需要掌握完全平方公式,属于基础计算题.16.【答案】【解析】解:连接AC,作CH⊥AD于H,在Rt△CHD中,∠D=60°,∴DH=CD=2,∴AH=7,CH=2,在Rt△AHC中,AC==,∵CE⊥l,∴CE≤CO=AC=.∴点C到直线l的最大距离为.在直线l绕O点旋转的过程中,体会什么时候CE最大,画出此时的图形,用勾股定理计算.考查了平行四边形的性质,解题关键是利用平行四边形的性质结合直角三角形的性质来解决有关的计算和证明.17.【答案】解:(1)原式==;(2)原式=3-2.(1)利用二次根式的除法法则运算;(2)利用二次根式的除法法则运算.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.【答案】解:(1)∵AB=AC,AD⊥BC,∴BD=CD=BC=2,∴AD==4;(2)S△ABC=×BC×AD=8.【解析】(1)根据等腰三角形的性质求出AD,根据勾股定理计算;(2)根据三角形的面积公式计算即可.本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.19.【答案】解:(1)∵x=2+1,y=-1,∴x2+2xy+y2=(x+y)2=(2+1+-1)2=27,27的立方根为3;(2)∵x=2+1,y=-1,∴x2+y2-2+1=(2+1)2+(-1)2-2+1=13+4+4-2-2+1=19,19平方根为±3;(3)∵x=2+1,y=-1,∴(4+2)y2+(2-1)x-8=(4+2)(-1)2+(2-1)(2+1)-8=(4+2)(4-2)+12-1-8=16-12+12-1-8=7.(1)根据完全平方公式得到x2+2xy+y2=(x+y)2,再代入计算,进一步根据立方根的定义求解即可;(2)先代入求出x2+y2-2+1的值,进一步求得平方根;(3)将x=2+1,y=-1代入(4+2)y2+(2-1)x-8,再根据完全平方公式和平方差公式求值即可.本题考查二次根式的化简求值、平方根,立方根,完全平方公式和平方差公式,解答本题的关键是明确它们各自的计算方法.20.【答案】解:∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD是矩形,∴AD==4,∴平行四边形ABCD的周长是8+8.【解析】先证明平行四边形ABCD是矩形,再根据勾股定理求得AD=4,进一步得到平行四边形ABCD的周长.考查了平行四边形的性质,关键是证明平行四边形ABCD是矩形,用勾股定理求得AD=4.21.【答案】【解析】解:(1)AB==,CD==2.(2)EF=,如图所示;∵CD2+EF2=AB2∴以AB,CD,EF三条线段组成的三角形是直角三角形;(3)设C到直线AB的距离为h.则有••2=••h,∴h=,∴C到直线AB的距离为.故答案为.(1)根据勾股定理计算即可解决问题;(2)利用数形结合的思想解决问题,根据勾股定理的逆定理判断即可;(3)利用面积法即可解决问题;本题考查作图-应用与设计,勾股定理以及逆定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.【答案】解:(1)①根据题意及菱形的性质,可求∠BAO=30°,BO=2,∴AO=2,∴AC=4;②∵四边形ABCD是菱形,∴AO=CO,AD∥BC,∴∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF;(2)依题意△CBD是等边△,BD=4,可得EF⊥BC,∵BO=2,OE=OF,BF=1,∴OF=,EF=2,BE=,EC=∴△BEC的周长为(4++)【解析】(1)根据菱形的对角线互相平分可得AO=CO,对边平行可得AD∥BC,再利用两直线平行,内错角相等可得∠OAE=∠OCF,然后利用“角边角”证明△AOE 和△COF全等;(2)根据菱形的对角线平分一组对角求出∠DAO=30°,然后求出∠AEF=90°,然后求出AO的长,再求出EF的长,然后在Rt△CEF中,利用勾股定理列式计本题考查了菱形的性质,全等三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理的应用,(2)求出△CEF是直角三角形是解题的关键,也是难点.23.【答案】2【解析】解:(1)∵平行四边形ABCD中,DE⊥AB,BF⊥CD,∴AD=CB,DE=BF,∠AED=∠CFB=90°,∴Rt△AED≌Rt△CFB,∴AE=CF;(2)如图,分别过A,D作AE⊥BC交CB延长线于E,DF⊥BC于F.根据勾股定理可得:AC2=AE2+(BE+BC)2①,AE2=AB2-BE2②,BD2=DF2+(BC-CF)2③,DF2=DC2-CF2④,∵四边形ABCD是平行四边形,∴AB=DC,又∵AE⊥BC,DF⊥BC,∴∠AEB=∠DFC=90°,AE=DF,∴Rt△AEB≌Rt△DFC,∴BE=CF,而AB=DC,把②代①,④代③,可得:AC2=AB2-BE2+(BE+BC)2BD2=DC2-CF2+(BC-CF)2两式相加,可得:AC2+BD2=2(AB2+BC2);(3)PQ=2.如图,延长PQ至R,使得QR=PQ,连接RM,RN,∵PQ是△PMN的中线,∴四边形NPMR是平行四边形,由(2)可得,MN2+PR2=2(NP2+MP2),又∵PM=11,PN=13,MN=10,∴102+(2PQ)2=2(132+112),解得PQ=2.故答案为:2.(1)利用平行四边形的性质,判定Rt△AED≌Rt△CFB,即可得到AE=CF;(2)分别过A,D作AE⊥BC交CB延长线于E,DF⊥BC于F.根据勾股定理可得:AC2=AE2+(BE+BC)2①,AE2=AB2-BE2②,BD2=DF2+(BC-CF)2③,DF2=DC2-CF2④,②代①,④代③,两式相加即可得到结论;(3)延长PQ至R,使得QR=PQ,连接RM,RN,依据四边形NPMR是平行四边形,利用结论MN2+PR2=2(NP2+MP2),即可得出PQ的长.本题属于四边形综合题,主要考查了平行四边形的性质,全等三角形的判定与性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造全等三角形,利用勾股定理得出关系式.24.【答案】解:(1)∵=,(a+2)2+=0,∴b=6,a=-2,d=8,∴A(-2,0),B(6,0),D(0,8),∴CD=AB=8,OD=8,∴C( 8,8),BC=AD=2;(2)证明:如图2,延长EF至Q,使FQ=EF,连AQ,BQ.由F为AD的中点,可得AF=DF,又∵∠AFQ=∠DFE,∴△DEF≌△AQF,∴DE=AQ,∠EDF=∠QAF,∴AB⊥AQ,∴∠BAQ=∠CDE=90°,又∵AB=DC,∴△BAQ≌△CDE,∴BQ=CE,∵CE=BE,∴BQ=BE,而F为EQ的中点,∴BF⊥EF;(3)在△BOD中,∵∠OBD+∠ODB=90°,又∵BG=BH,DG=DM,∴2∠DGM+2∠BGH=360°-90°=270°,∴∠DGM+∠BGH=135°,∴∠NGH=45°,而NH⊥HG,∴△GHN是等腰直角三角形.如图3,分别过点N,G作NR⊥AB于R,GS⊥AB于S,则∠NRH=∠HSG=90°,∴∠NHR=∠HGS,而NH=HG,∴△HRN≌△GSH,∴NR=HS,HR=GS.如图3,连ON,GO,∵N(t,-t),∴NR=OR,∴GS=OS,∴△GSO为等腰直角三角形,∵S△DOB=S△DOG+S△BOG∴•OB•OD=•OB•GS+•OD•OS,∴GS=OS=,∴G(,).【解析】(1)依据=,(a+2)2+=0,即可得出b=6,a=-2,d=8,进而得到C(8,8),BC=AD=2;(2)延长EF至Q,使FQ=EF,连AQ,BQ.判定△DEF≌△AQF,可得DE=AQ,∠EDF=∠QAF,判定△BAQ≌△CDE,可得BQ=CE,依据BQ=BE,F为EQ的中(3)先判定三角形GHN是等腰直角三角形.再分别过点N,G作NR⊥AB于R,GS⊥AB于S,则∠NRH=∠HSG=90°,判定△HRN≌△GSH,可得NR=HS,HR=GS.连ON,GO,判定△GSO为等腰直角三角形,依据S△DOB=S△DOG+S△BOG,即可得到•OB•OD=•OB•GS+•OD•OS,进而得出G(,).此题是四边形综合题,主要考查了全等三角形的性质和判定,等腰三角形的性质,等腰直角三角形的判定与性质的综合运用,解本题的关键是作辅助线构造全等三角形,利用全等三角形的对应边相等,对应角相等得出结论.。

2017-2018学年度第二学期期中调研考试八年级数学试题(有答案和解析)

2017-2018学年度第二学期期中调研考试八年级数学试题(有答案和解析)

2017-2018学年八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.化简式子√(−4)2结果正确的是()A. ±4B. 4C. −4D. ±22.下列式子为最简二次根式的是()A. √0.1aB. √52C. √a2+4D. √123.下列计算正确的是()A. √5−√3=√2B. (√5)−1=−√5C. √12÷√3=2D. 3√2−√2=34.如图,四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A. AB//DC,AD//BCB.AB//DC,AD=BCC. AO=CO,BO=DOD. AB=DC,AD=BC5.在直角坐标系中,点P(-2,3)到原点的距离是()A. √5B. √13C. 15√11D. 26.若直角三角形的两条直角边长分别为3cm、4cm,则斜边上的高为()A. 52cm B. 125cm C. 5cm D. 512cm7.如图,“赵爽弦图”是由四个全等的直角三角形拼成一个大的正方形,是我国古代数学的骄傲,巧妙地利用面积关系证明了勾股定理.已知小正方形的面积是1,直角三角形的两直角边分别为a、b且ab=6,则图中大正方形的边长为()A. 5B. √13C. 4D.38.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的边长分别是9、25、1、9,则最大正方形E的边长是()A. 12B. 44C. 2√11D. 无法确定9.如图,为了检验教室里的矩形门框是否合格,某班的四个学习小组用三角板和细绳分别测得如下结果,其中不能判定门框是否合格的是()A. AB=CD,AD=BC,AC=BDB. AC=BD,∠B=∠C=90∘C. AB=CD,∠B=∠C=90∘D. AB=CD,AC=BD10.如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A. 4cmB. 6cmC. 8cmD. 10cm二、填空题(本大题共4小题,共20.0分)11.式子√2a+1在实数范围内有意义,则实数a的取值范围是______.12.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=1BC.若AB=10,2则EF的长是______.13.如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是边BM、CM的中点,当AB:AD=______时,四边形MENF是正方形.14.如图,菱形ABCD的边长为2,∠DAB=60°,点E为BC边的中点,点P为对角线AC上一动点,则PB+PE的最小值为______.三、计算题(本大题共3小题,共18.0分)15.计算:√18+√8-√6×√2√316.已知a=2+√3,b=2−√3,求a2-2ab+b2的值.17.你见过像√4−2√3,√√48−√45…这样的根式吗?这一类根式叫做复合二次根式.有一些复合二次根式可以化简,如:√4−2√3=√3−2√3+1=√(√3)2−2√3+12=√(√3−1)2=√3−1,请用上述方法化简:√5−2√6.四、解答题(本大题共6小题,共52.0分)18.如图,已知点E、F在四边形ABCD的对角线BD所在的直线上,且BE=DF,AE∥CF,请再添加一个条件(不要在图中再增加其它线段和字母),能证明四边形ABCD是平行四边形,并证明你的想法.你所添加的条件:______;19.如图,某校科技创新兴趣小组用他们设计的机器人,在平坦的操场上进行走展示.输入指令后,机器人从出发点A先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米到达终止点B.求终止点B与原出发点A的距离AB.20.如图是一副秋千架,左图是从正面看,当秋千绳子自然下垂时,踏板离地面0.5m(踏板厚度忽略不计),右图是从侧面看,当秋千踏板荡起至点B位置时,点B 离地面垂直高度BC为1m,离秋千支柱AD的水平距离BE为1.5m(不考虑支柱的直径).求秋千支柱AD的高.21.如图,在由边长为1的小正方形组成的5×6的网格中,△ABC的三个顶点均在格点上,请按要求解决下列问题:(1)通过计算判断△ABC的形状;(2)在图中确定一个格点D,连接AD、CD,使四边形ABCD为平行四边形,并求出▱ABCD的面积.22.如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,连接DE,F在DE延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形;(2)若四边形ACEF是菱形,求∠B的度数.23.如图,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG.(1)求证:①DE=DG;②DE⊥DG(2)尺规作图:以线段DE,DG为边作出正方形DEFG(要求:只保留作图痕迹,不写作法和证明);(3)连接(2)中的KF,猜想并写出四边形CEFK是怎样的特殊四边形,并证明你的猜想:(4)当CECB =1n时,请直接写出S正方形ABCDS正方形DEFG的值.答案和解析1.【答案】B【解析】解:=|-4|=4,故选:B.根据二次根式的性质=|a|化简可得.本题主要考查二次根式的性质,解题的关键是掌握=|a|.2.【答案】C【解析】解:A、=,不是最简二次根式;B、=2,不是最简二次根式;C、,是最简二次根式;D、=不是最简二次根式;故选:C.根据二次根式的性质化简,判断即可.本题考查的是最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.3.【答案】C【解析】解:(A)原式=-,故A错误;(B)原式==,故B错误;(D)原式=2,故D错误;故选:C.根据二次根式的运算法则即可求出答案.本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.4.【答案】B【解析】【分析】此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定定理.利用平行四边形的判定方法:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;5)对角线互相平分的四边形是平行四边形进行分析即可.【解答】解:A.AB∥DC,AD∥BC可利用两组对边分别平行的四边形是平行四边形判定这个四边形是平行四边形,故此选项不合题意;B.AB∥DC,AD=BC不能判定这个四边形是平行四边形,故此选项符合题意;C.AO=CO,BO=DO可利用对角线互相平分的四边形是平行四边形判定这个四边形是平行四边形,故此选项不合题意;D.AB=DC,AD=BC可利用两组对边分别相等的四边形是平行四边形判定这个四边形是平行四边形,故此选项不合题意.故选B.5.【答案】B【解析】解:过P作PE⊥x轴,连接OP,∵P(-2,3),∴PE=3,OE=2,∴在Rt△OPE中,根据勾股定理得:OP2=PE2+OE2,∴OP==,则点P在原点的距离为.故选:B.在平面直角坐标系中找出P点,过P作PE垂直于x轴,连接OP,由P的坐标得出PE及OE的长,在直角三角形OPE中,由PE及OE的长,利用勾股定理求出OP的长,即为P到原点的距离.此题考查了勾股定理,以及坐标与图形的性质,勾股定理为:直角三角形中,两直角边的平方和等于斜边的平方,灵活运用勾股定理是解本题的关键.6.【答案】B【解析】解:根据勾股定理,斜边==5,设斜边上的高为h,则S△=×3×4=×5•h,整理得5h=12,解得h=cm.故选:B.先根据勾股定理求出斜边的长度,再根据三角形的面积列式进行计算即可求解.本题考查了勾股定理以及三角形的面积的利用,根据三角形的面积列式求出斜边上的高是常用的方法之一,需熟练掌握.7.【答案】B【解析】解:∵ab=6,∴直角三角形的面积是ab=3,∵小正方形的面积是1,∴大正方形的面积=1+4×3=13,∴大正方形的边长为,故选:B.根据ab的值求得直角三角形的面积,进而得出大正方形的面积.本题考查了勾股定理,还要注意图形的面积和a,b之间的关系.8.【答案】C【解析】解:正方形A、B、C、D的面积分别是9、25、1、9,由勾股定理得,正方形G的面积为:9+25=34,正方形H的面积为:1+9=10,则正方形E的面积为:34+10=44,最大正方形E的边长是;故选:C.根据勾股定理分别求出G、H的面积,根据勾股定理计算即可.本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.9.【答案】D【解析】解:A、AB=CD,AD=BC,AC=BD,可以得出门框是矩形,不合题意;B、AC=BD,∠B=∠C=90°,可以得出门框是矩形,不合题意;C、AB=CD,∠B=∠C=90°,可以得出门框是矩形,不合题意;D、AB=CD,AC=BD,不能得出门框是矩形,符合题意;故选:D.根据矩形的判定定理判断即可.本题考查了矩形的判定的应用,注意:矩形的判定定理有①有一个角是直角的平行四边形是矩形,②对角线相等的平行四边形是矩形,③有三个角是直角的四边形是矩形.10.【答案】D【解析】解:根据平行四边形的性质得:OB=OD,∵EO⊥BD,∴EO为BD的垂直平分线,根据线段的垂直平分线上的点到两个端点的距离相等得:BE=DE,∴△ABE的周长=AB+AE+DE=AB+AD=×20=10cm.故选:D.根据线段垂直平分线的性质可知BE=DE,再结合平行四边形的性质即可计算△ABE的周长.此题主要考查了平行四边形的性质及全等三角形的判定及性质,还利用了中垂线的判定及性质等,考查面积较广,有一定的综合性.11.【答案】a≥-12【解析】解:由题意得,2a+1≥0,解得,a≥-,故答案为:a≥-.根据二次根式有意义的条件列出不等式,解不等式即可.本题考查的是二次根式有意义的条件,二次根式中的被开方数是非负数.12.【答案】5【解析】解:如图,连接DC.DE是△ABC的中位线,∴DE∥BC,DE=,∵CF=BC,∴DE∥CF,DE=CF,∴CDEF是平行四边形,∴EF=DC.∵DC是Rt△ABC斜边上的中线,∴DC==5,∴EF=DC=5,故答案为:5.根据三角形中位线的性质,可得DE与BC的关系,根据平行四边形的判定与性质,可得DC与EF的关系,根据直角三角形的性质,可得DC与AB的关系,可得答案.本题考查了平行四边形的判定与性质,利用了平行四边形的判定与性质,直角三角形斜边上的中线等于斜边的一半.13.【答案】1:2【解析】解:当AB:AD=1:2时,四边形MENF是正方形,理由是:∵AB:AD=1:2,AM=DM,AB=CD,∴AB=AM=DM=DC,∵∠A=∠D=90°,∴∠ABM=∠AMB=∠DMC=∠DCM=45°,∴∠BMC=90°,∵四边形ABCD是矩形,∴∠ABC=∠DCB=90°,∴∠MBC=∠MCB=45°,∴BM=CM,∵N、E、F分别是BC、BM、CM的中点,∴BE=CF,ME=MF,NF∥BM,NE∥CM,∴四边形MENF是平行四边形,∵ME=MF,∠BMC=90°,∴四边形MENF是正方形,即当AB:AD=1:2时,四边形MENF是正方形,故答案为:1:2.首先得出四边形MENF是平行四边形,再求出∠BMC=90°和ME=MF,根据正方形的判定推出即可.本题考查了矩形的性质、正方形的判定、三角形的中位线的应用等知识,熟练应用正方形的判定方法是解题关键.14.【答案】√3【解析】解:连接BD,交AC于O,连接DE交AC于P,由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,∴PE+PB=PE+PD=DE,即DE就是PE+PB的最小值.∵四边形ABCD是菱形,∴∠DCB=∠DAB=60°,DC=BC=2,∴△DCB是等边三角形,∵BE=CE=1,∴DE⊥AB(等腰三角形三线合一的性质).在Rt△DCE中,DE==.即PB+PE的最小值为.故答案为.找出B点关于AC的对称点D,连接DE交AC于P,则DE就是PB+PE的最小值,求出即可.本题主要考查轴对称-最短路线问题,菱形的性质,勾股定理等知识点,确定P点的位置是解答本题的关键.15.【答案】解:原式=3√2+2√2−2=5√2−2.【解析】先利用二次根式的乘除法则运算,然后把各二次根式化简为最简二次根式后合并即可.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.16.【答案】解:∵a=2+√3,b=2−√3,∴a-b=2+√3-2+√3=2√3,∴a2-2ab+b2=(a-b)2=(2√3)2=12.【解析】根据已知先求出a-b的值,再把要求的式子化成完全平方的形式,然后代值计算即可.此题考查了分母有理化,用到的知识点是完全平方公式,求出a-b的值是解题的关键.17.【答案】解:√5−2√6=√3−2√6+2=√(√3)2−2√6+(√2)2=√(√3−√2)2=√3-√2.【解析】直接利用已知将原式变形化简即可.此题主要考查了二次根式的性质与化简,正确应用完全平方公式是解题关键.18.【答案】AE=CF【解析】解:答案不唯一,例如:添加AE=CF.证明如下:∵AE∥CF,∴∠E=∠F,又BE=DF,AE=CF,∴△ABE≌△CDF,∴AB=CD,∠ABE=∠CDF,∴∠ABD=∠CDB,∴AB∥CD,∴四边形ABCD是平行四边形.故答案为:AE=CF根据全等三角形的判定和性质得出AB=CD,∠ABE=∠CDF,根据平行四边形的判定推出即可.本题考查了平行四边形的性质和判定的应用,通过做此题培养了学生的推理能力,同时也培养了学生的分析问题和解决问题的能力.19.【答案】解:如图所示:过点A作AC⊥CB于C,则在Rt△ABC中,AC=40+40=80(米),BC=70-20+10=60(米),故终止点与原出发点的距离AB=√602+802=100(米),答:终止点B与原出发点A的距离AB为100m.【解析】直接构造直角三角形进而利用勾股定理得出答案.此题主要考查了勾股定理的应用,正确构造直角三角形是解题关键.20.【答案】解:设AD=xm,则由题意可得AB=(x-0.5)m,AE=(x-1)m,在Rt△ABE中,AE2+BE2=AB2,即(x-1)2+1.52=(x-0.5)2,解得x=3.即秋千支柱AD的高为3m.【解析】直接利用AE2+BE2=AB2,进而得出答案.此题主要考查了勾股定理的应用,正确得出关于x等式是解题关键.21.【答案】解:(1)由题意可得,AB=√12+22=√5,AC=√22+42=2√5,BC=√32+42=5,∵(√5)2+(2√5)2=25=52,即AB2+AC2=BC2,∴△ABC是直角三角形.(2)过点A作AD∥BC,过点C作CD∥AB,直线AD和CD的交点就是D的位置,格点D的位置如图,∴▱ABCD的面积为:AB×AC=√5×2√5=10.【解析】(1)分别计算三边长度,根据勾股定理的逆定理判断;(3)过点A作AD∥BC,过点C作CD∥AB,根据平行四边形的面积解答即可.此题考查直角三角形的判定和性质,关键是根据勾股定理的逆定理解答.22.【答案】(1)证明:∵∠ACB=90°,E是BA的中点,∴CE=AE=BE,∵AF=AE,∴AF=CE,在△BEC中,∵BE=CE且D是BC的中点,∴ED是等腰△BEC底边上的中线,∴ED也是等腰△BEC的顶角平分线,∴∠1=∠2,∵AF=AE,∴∠F=∠3,∵∠1=∠3,∴∠2=∠F,∴CE∥AF,又∵CE=AF,∴四边形ACEF是平行四边形;(2)解:∵四边形ACEF是菱形,∴AC=CE,由(1)知,AE=CE,∴AC=CE=AE,∴△AEC是等边三角形,∴∠CAE=60°,在Rt△ABC中,∠B=90°-∠CAE=90°-60°=30°.【解析】(1)根据直角三角形斜边上的中线等于斜边的一半可得CE=AE=BE,从而得到AF=CE,再根据等腰三角形三线合一的性质可得∠1=∠2,根据等边对等角可得然后∠F=∠3,然后求出∠2=∠F,再根据同位角相等,两直线平行求出CE∥AF,然后利用一组对边平行且相等的四边形是平行四边形证明;(2)根据菱形的四条边都相等可得AC=CE,然后求出AC=CE=AE,从而得到△AEC是等边三角形,再根据等边三角形的每一个角都是60°求出∠CAE=60°,然后根据直角三角形两锐角互余解答.本题考查了菱形的性质,平行四边形的判定,等边三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半,以及直角三角形两锐角互余的性质,熟记各性质与判定方法是解题的关键.23.【答案】(1)证明:∵四边形ABCD是正方形,∴DC=DA,∠DCE=∠DAG=90°.又∵CE=AG,∴△DCE≌△DAG,∴DE=DG,∠EDC=∠GDA,又∵∠ADE+∠EDC=90°,∴∠ADE+∠GDA=90°∴DE⊥DG.(2)解:如图.(3)解:四边形CEFK 为平行四边形.证明:设CK 、DE 相交于M 点∵四边形ABCD 和四边形DEFG 都是正方形,∴AB ∥CD ,AB =CD ,EF =DG ,EF ∥DG ,∵BK =AG ,∴KG =AB =CD ,∴四边形CKGD 是平行四边形,∴CK =DG =EF ,CK ∥DG ,∴∠KME =∠GDE =∠DEF =90°,∴∠KME +∠DEF =180°,∴CK ∥EF ,∴四边形CEFK 为平行四边形.(4)解:∵CE CB =1n ,∴设CE =x ,CB =nx ,∴CD =nx ,∴DE 2=CE 2+CD 2=n 2x 2+x 2=(n 2+1)x 2,∵BC 2=n 2x 2,∴S 正方形ABCD S 正方形DEFG =BC 2DE 2=n 2n 2+1.【解析】(1)由已知证明DE 、DG 所在的三角形全等,再通过等量代换证明DE ⊥DG ; (2)根据正方形的性质分别以点G 、E 为圆心以DG 为半径画弧交点F ,得到正方形DEFG ;(3)由已知首先证四边形CKGD 是平行四边形,然后证明四边形CEFK 为平行四边形;(4)由已知表示出的值.此题考查的知识点是正方形的性质、全等三角形的判定和性质、平行四边形的判定及作图,解题的关键是先由正方形的性质通过证三角形全等得出结论,此题较复杂.。

区17—18学年下学期八年级期中考试数学试题(附答案)

区17—18学年下学期八年级期中考试数学试题(附答案)

中学二片区2017-2018学年下期半期考试2019级数学试题(考试时间120分钟,总分120分)本试题卷共4页,考生作答时,须将答案答在答题卡上,在本试卷、草稿纸上答题无效.考试结束,将答题卡交回. 注意事项:1.答题前,考生在答题卷上务必将自己的姓名、班级、考号填写清楚,并贴好条形码.请认真核准条形码上的考号、姓名和科目.2.解答选择题时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.3.解答填空题、解答题时,请在答题卡上各题的答题区域内作答.一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对应题目上.(注意..:在试题卷上作答无........效.). 1.下列各式中,属于分式的是( ) A .πxy3B .y x b a --25C .212+xD .123x -2. 在平面直角坐标系中,点M (-2, 3)在 ( )A .第一象限B .第二象限C .第三象限D .第四象限 3.下列计算正确的是( ) A .22= 4 B .22= 4 C .22=14- D .22=144.下列各式约分正确的是( )A.326x x x = B.0=++y x y x C.xxy x y x 12=++ D.214222=y x xy5.王大爷饭后出去散步,从家中走 20 分钟到一个离家 900 米的公园,与朋友聊天10分钟后,然后用15分钟返回家里。

下面图形表示王大爷离家的时间与外出距离之间的关系是( )分)))分)ABCD6.如果分式22+-a a 的值为为零,则a 的值为( ) A. 2±B.2C. 2-D.07.如图,A 、B 两点在双曲线xy 4=的图象上,分别经过A 、B 两点向轴作垂线段,已知S 阴影=1,则S 1+S 2=( )A .3B .4C .5D .68.如图,直线112y x =-与x 轴交于点B ,双曲线(0)ky x x =>交于点A ,过点B 作x 轴的垂线,与双曲线ky x=交于点C ,且AB=AC ,则k 的值为( )A .2B .3C .4D .6(第7题图) (第8题图) (第16题图) 二、填空题:(每小题3分,共24分)请把答案直接填在答题卡对应题中横线上. (注意..: 在试题卷上作答无效.........) 9.当x__________时,分式1xx -有意义. 10.点P (3, -4)关于原点对称的点的坐标是_______.11.若函数9)3(2-++=a x a y 是正比例函数,则a=___________. 12.用科学记数法表示:0.000204=____________________. 13.若反比例函数xky =的图象经过点(-2,3),则k 的值为 . y=k x CB AyO x14.已知关于x 的方程25x x ---5mx-=0有增根,则m 的值为 . 15.符号“a b c d”称为二阶行列式,规定它的运算法则为:a bad bc c d=-,请你根据上述规定求出下列等式中x 的值.若2111111x x =--,那么=x . 16.如图,过x 轴正半轴上的任意一点p 作y 轴的平行线交反比例函数x y 2=和xy 4-=的图象于B A ,两点,C 是y 轴上任意一点,则△ABC 的面积为 . 三、解答题:本大题共8小题,共72分.解答应写出文字说明,证明过程或演算步骤. 17.计算下列各题(每小题5分,共10分)(注意..: 在试题卷上作答无效.........)20145(3)2π-⎛⎫⨯+-+- ⎪⎝⎭(2)1624432---x x18.解下列分式方程(每小题5分,本小题10分)(注意..: 在试题卷上作答无效.........) (1)1114=---x xx (2)2123442+-=-++-x x x x x19.(本小题7分)(注意..: 在试题卷上作答无效.........) 先化简,再求值:221369324a a a a a a a +--+-÷-+-,当3-=a 时,求代数式的值.20.列方程解应用题 (本小题7分)(注意..: 在试题卷上作答无效.........)子均邓公液酒厂接到生产480件邓公液酒的订单,为了尽快完成任务,该厂实际每天生产的件数比原来每天多50%,提前10天完成任务,原来每天生产多少件?21.(本小题8分)(注意.........)..: 在试题卷上作答无效“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?(2)小明在书店停留了多少分钟?(3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?(4)我们认为骑单车的速度超过300米/分钟就超越了安全限度.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全限度内吗?22.(本小题8分)(注意..: 在试题卷上作答无效.........)某超市欲购进一种商品,当购进这种商品至少为10kg,但不超过30kg时,成本y (元/kg)与进货量x (kg)的函数关系如图所示. (1)求y 关于x 的函数解析式,并写出x 的取值范围;(2)若该超市购进这种商品的成本为9.6元/kg ,则购进此商品多少千克?23.(本小题10分)(注意..: 在试题卷上作答无效.........) 如图,直线232-=x y 分别交x 轴、y 轴于A. B 两点,O 是原点。

2017-2018学年 八年级(下)期中数学试卷(有答案和解析) (2)

2017-2018学年 八年级(下)期中数学试卷(有答案和解析) (2)

2017-2018学年八年级(下)期中数学试卷一、选择题(本大题共10小题,共40.0分)1.如图,平行四边形ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则AB长的取值范围是()A. B. C.D.2.如图,△ABC中,AB=AC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则DE的长为()A. 10B. 6C. 8D. 53.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=3cm,则点D到AB的距离DE是()A. 5cmB. 4cmC. 3cmD. 2cm4.如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为()A.B. 4cmC.D.5.顺次连接菱形的各边中点所得到的四边形是()A. 平行四边形B. 菱形C. 矩形D. 正方形6.如图,矩形ABCD中,AB=12cm,BC=24cm,如果将该矩形沿对角线BD折叠,那么图中阴影部分的面积()cm2.A. 72B. 90C. 108D. 1447.下列说法中正确的是()A. 四边相等的四边形是菱形B. 一组对边相等,另一组对边平行的四边形是菱形C. 对角线互相垂直的四边形是菱形D. 对角线互相平分的四边形是菱形8.已知菱形的两条对角线长分别是6cm和8cm,则菱形的边长是()A. 12cmB. 10cmC. 7cmD. 5cm9.如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转角是()A. B. C. D.10.如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,则△DEB的周长是()A. 6cmB. 4cmC. 10cmD. 以上都不对二、填空题(本大题共8小题,共32.0分)11.Rt△ABC中,∠ABC=90°,D为AC的中点,AC=10,则BD=______.12.已知三点A、B、O.如果点A′与点A关于点O对称,点B′与点B关于点O对称,那么线段AB与A′B′的关系是______.13.在矩形纸片ABCD中,AB=16,AD=12,点P在边AB上,若将△DAP沿DP折叠,使点A恰好落在矩形对角线上的点A′处,则AP的长为______.14.如图,某公园有一块菱形草地ABCD,它的边及对角线AC是小路,若AC的长为16m,边AB的长为10m,妈妈站在AC的中点O处,亮亮沿着小路C→D→A→B→C跑步,在跑步过程中,亮亮与妈妈之间的最短距离为______m.15.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD=________.16.17.如图,在四边形ABCD中,E,F分别是AB,AD的中点,若EF=2,BC=5,CD=3,则点D到直线BC的距离为______.18.如图,▱ABCD中,∠C=110°,BE平分∠ABC,则∠AEB的度数等于______.19.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件______.三、解答题(本大题共8小题,共78.0分)20.如图,四边形ABCD是平行四边形,BE、DF分别是∠ABC、∠ADC的平分线,且与对角线AC分别相交于点E、F.求证:AE=CF.21.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.22.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,求EF的长度.23.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,CD=3.(1)求DE的长;(2)若AC=6,BC=8,求△ADB的面积.24.已知:如图,在正方形ABCD中,E是CD边上的一点,F为BC延长线上一点,且CE=CF.(1)求证:△BEC≌△DFC;(2)如果BC+DF=9,CF=3,求正方形ABCD的面积.25.如图,菱形ABCD中,对角线AC、BD交于点O,AC=24,BD=10,DE⊥AB于E.(1)求菱形ABCD的周长;(2)求菱形ABCD的面积;(3)求DE的长.26.如图,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是平行四边形,请你只用无刻度的直尺在图中画出∠AOB的平分线.(保留作图痕迹,不要求写作法)并请说明画出的线为什么平分∠AOB?27.把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG.(1)求证:△BHE≌△DGF;(2)若AB=6cm,BC=8cm,求线段FG的长.答案和解析1.【答案】A【解析】解:∵四边形ABCD是平行四边形,∴AO=AC,BO=BD,∵AC=8,BD=6,∴AO=4,BO=3,∴4-3<AB<4+3,解得:1<AB<7,故选:A.根据平行四边形对角线互相平分可得AO=4,BO=3,再根据三角形的三边关系可得4-3<AB<4+3,再解即可.此题主要考查了三角形的三边关系以及平行四边形的性质,关键是掌握平行四边形的对角线互相平分.2.【答案】D【解析】解:∵AB=AC=10,AD平分∠BAC,∴BD⊥DC,∵E为AC的中点,∴DE=AC=×10=5,故选:D.由等腰三角形的性质证得BD=DC,根据直角三角形斜边上的中线的性质即可求得结论.本题主要考查了等腰三角形的性质,三角形的中位线,熟练掌握三角形的中位线是解决问题的关键.3.【答案】C【解析】解:过D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,DE⊥AB,∴DE=CD,∵CD=3cm,∴DE=3cm.故选:C.过D作DE⊥AB于E,由已知条件,根据角平分线上的点到角的两边的距离相等解答.本题主要考查角平分线的性质;作出辅助线是正确解答本题的关键.4.【答案】D【解析】解:∵点D、E分别是边AB、AC的中点,∴DE=BC,∵DE=2cm,∴BC=4cm,∵AB=AC,四边形DEFG是正方形.∴△BDG≌△CEF,∴BG=CF=1,∴EC=,∴AC=2cm.故选:D.根据三角形的中位线定理可得出BC=4,由AB=AC,可证明BG=CF=1,由勾股定理求出CE,即可得出AC的长.本题考查了全等三角形的判定、勾股定理、等腰三角形的性质以及正方形的性质,是基础题,比较简单.5.【答案】C【解析】解:如图,连接AC、BD,相交于点O,∵四边形ABCD为菱形,E、F、H、G为菱形边上的中点,∴EH∥FG,EF∥HD,∴四边形EHGF为平行四边形.根据菱形的性质可得菱形的对角线互相垂直,故∠EFG=∠AOD=90°所以四边形EHGF为矩形.故选:C.本题画出辅助线,连接AC、BD,证明连接菱形的各边中点所得到的是平行四边形,再证平行四边形的一个角为直角即可.本题考查的是矩形的判定定理以及菱形的判定.考生应熟记书本上的内容,难度一般.6.【答案】B【解析】解:由折叠得到△BCD≌△BC′D,由矩形ABCD得到△ABD≌△CDB,∴△ABD≌△C′DB,∴∠C′BD=∠ADB,∴EB=DE,在△ABE和△C′DE中,,∴△ABE≌△C′DE(AAS),∴AE=C′E,设AE=C′E=xcm,则有ED=AD-AE=(24-x)cm,在Rt△ABE中,根据勾股定理得:AB2+AE2=BE2,即122+x2=(24-x)2,解得:x=9,∴AE=9cm,ED=15cm,则S△BED=ED•AB=×15×12=90(cm2).故选:B.由折叠得到△BCD≌△BC′D,由矩形ABCD得到△ABD≌△CDB,可得出△ABD≌△C′DB,利用全等三角形的对应角相等得到∠C′BD=∠ADB,利用等角对等边得到EB=ED,再由一对直角相等,一对对顶角相等,利用AAS得到△ABE≌△C′DE,利用全等三角形的对应边相等得到AE=C′E,设AE=C′E=xcm,则有ED=AD-AE=(24-x)cm,在直角三角形ABE中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出ED的长,三角形BED的面积以ED为底,AB为高,求出即可.此题考查了翻折变换(折叠问题),涉及的知识有:全等三角形的判定与性质,勾股定理,利用了方程的思想,熟练掌握翻折的性质是解本题的关键.7.【答案】A【解析】解:A、四边相等的四边形是菱形,说法正确;B、一组对边相等,另一组对边平行的四边形是菱形,说法错误;C、对角线互相垂直的四边形是菱形,说法错误;D、对角线互相平分的四边形是菱形,说法错误;故选:A.根据菱形的判定:一组邻边相等的平行四边形是菱形;四条边都相等的四边形是菱形.对角线互相垂直的平行四边形是菱形分别进行分析即可.此题主要考查了菱形的判定,关键是掌握菱形的判定定理.8.【答案】D【解析】解:如图:∵菱形ABCD中BD=8cm,AC=6cm,∴OD=BD=4cm,OA=AC=3cm,在直角三角形AOD中AD===5cm.故选:D.根据菱形的性质求得OD,OA的长,再根据勾股定理求得边长AD的长.此题主要考查学生对菱形的性质及勾股定理的理解及运用.9.【答案】C【解析】解:如图,连接AC、BD,AC与BD的交点即为旋转中心O.根据旋转的性质知,点C与点D对应,则∠DOC就是旋转角.∵四边形ABCD是正方形.∴∠DOC=90°.故选:C.首先作出旋转中心,根据多边形的性质即可求解.本题主要考查了旋转的性质,以及正多边形的性质,正确理解正多边形的性质以及旋转角(对应点与旋转中心所连线段的夹角等于旋转角)是解题的关键.10.【答案】A【解析】解:∵∠C=90°,∴DC⊥AC,又AD平分∠CAB交BC于D,DE⊥AB,∴CD=ED,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,又AC=BC,∴AC=AE=BC,又AB=6cm,∴△DEB的周长=DB+BE+ED=DB+CD+BE=BC+BE=AE+EB=AB=6cm.故选:A.由∠C=90°,根据垂直定义得到DC与AC垂直,又AD平分∠CAB交BC于D,DE⊥AB,利用角平分线定理得到DC=DE,再利用HL证明三角形ACD与三角形AED全等,根据全等三角形的对应边相等可得AC=AE,又AC=BC,可得BC=AE,然后由三角形BED的三边之和表示出三角形的周长,将其中的DE换为DC,由CD+DB=BC进行变形,再将BC换为AE,由AE+EB=AB,可得出三角形BDE的周长等于AB的长,由AB的长可得出周长.此题考查了角平分线定理,垂直的定义,直角三角形证明全等的方法-HL,利用了转化及等量代换的思想,熟练掌握角平分线定理是解本题的关键.11.【答案】5【解析】解:∵在Rt△ABC中,∠ABC=90°,点D为AC的中点,连接BD,∴线段BD是斜边AC上的中线,∴AC=2BD,又∵AC=10,∴BD=AC=5.故答案为:5.由已知条件推知BD是直角三角形Rt△ABC斜边AC上的中线,所以根据直角三角形斜边上的中线与斜边的数量关系填空即可.此题主要考查了直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.12.【答案】关于点O对称【解析】解:∵点A′与点A关于点O对称,点B′与点B关于点O对称,∴线段AB与A′B′关于点O对称.故答案为:关于点O对称.根据中心对称的概念可知线段AB、A′B′上的对应点都关于点O对称进行解答.本题考查了中心对称,是基础题,熟记概念是解题的关键.13.【答案】6或9【解析】解:①点A落在矩形对角线BD上,如图1所示.∵AB=16,AD=12,∴BD=20,根据折叠的性质,AD=A′D=12,AP=A′P,∠A=∠PA′D=90°,∴BA′=8,设AP=x,则BP=16-x,∵BP2=BA′2+PA′2,∴(16-x)2=x2+82,解得:x=6,∴AP=6;②点A落在矩形对角线AC上,如图2所示:由折叠的性质可知PD垂直平分AA′,∴∠BAC+∠A′AD=∠PDA+∠A′AD=90°.∴∠BAC=∠PDA.∴tan∠BAC=tan∠PDA.∴即=.∴AP=9.综上所述AP的长为6或9.故答案为:6或9.分两种情况探讨:点A落在矩形对角线BD上,点A落在矩形对角线AC上,在直角三角形中利用勾股定理列出方程,通过解方程可得答案.本题考查了折叠问题、勾股定理,矩形的性质以及三角形相似的判定与性质;依据翻折的性质找准相等的量是解题的关键.14.【答案】4.8【解析】解:如图,连接BD,∵在菱形ABCD中,AC=16cm,∴OC=AC=×16=8cm,且AC⊥BD,∴OB===6cm,设点O到AB边的距离为h,则S△AOB=×6×8=×10h,解得h=4.8,所以,亮亮与妈妈之间的最短距离为4.8m.故答案为:4.8.连接BD,根据菱形的对角线互相垂直平分求出OA,然后根据勾股定理列式求出OB,再根据三角形的面积求出点O到AB边距离,即可得解.本题主要考查了菱形的对角线互相垂直平分的性质,勾股定理的应用,三角形的面积,熟记性质是解题的关键.15.【答案】2【解析】解:∵∠C=90°,∠B=30°,∴∠CAB=60°,AD平分∠CAB,∴∠BAD=30°,∴BD=AD=2CD=2,故答案为2.根据角平分线性质求出∠BAD的度数,根据含30度角的直角三角形性质求出AD即可得BD.本题考查了对含30度角的直角三角形的性质和角平分线性质的应用,求出AD的长是解此题的关键.16.【答案】【解析】解:连接BD,∵AB,AD的中点,EF=2,∴BD=2EF=4,∵BC=5,CD=3,∴DB2+CD2=BC2,∴∠BDC=90°,设点D到BC的距离为h,∴S△BDC=,∴4×3=5h,∴h=,故答案为:.根据三角形的中位线性质求出BD,根据勾股定理的逆定理求出△BDC是直角三角形,根据面积公式求出即可.本题考查了三角形的中位线性质,勾股定理的逆定理,三角形的面积的应用,能求出△BDC是直角三角形是解此题的关键.17.【答案】35°【解析】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠ABC+∠C=180°,∠AEB=∠CBE,∵∠C=110°,∴∠ABC=180°-∠C=70°,∵BE平分∠ABC,∴∠CBE=∠ABC=35°,∴∠AEB=∠CBE=35°.故答案为:35°.由平行四边形ABCD中,∠C=110°,可求得∠ABC的度数,又由BE平分∠ABC,即可求得∠CBE的度数,然后由平行线的性质,求得答案.此题考查了平行四边形的性质,属于基础题,解答本题的关键是掌握平行四边形邻角互补的性质,难度一般.18.【答案】AB=AC【解析】解:还需添加条件AB=AC,∵AD⊥BC于D,∴∠ADB=∠ADC=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),故答案为:AB=AC.根据斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)可得需要添加条件AB=AC.此题主要考查了直角三角形全等的判定,关键是正确理解:斜边和一条直角边对应相等的两个直角三角形全等.19.【答案】证明:因为四边形ABCD是平行四边形,所以AB=CD,AB∥CD,∠ABC=∠ADC,所以∠BAC=∠DCF,又因为BE、DF分别是∠ABC、∠ADC的平分线,所以∠ABE=∠ABC,∠CDF=∠ADC,所以∠ABE=∠CDF,所以△ABE≌△CDF(ASA),所以AE=CF.【解析】根据平行四边形的性质得出AB=CD,AB∥CD,∠ABC=∠ADC,根据平行线的性质得出∠BAC=∠DCF,根据角平分线定义得出∠ABE=∠CDF,那么利用AAS证明△ABE≌△CDF,推出AE=CF.本题考查了平行四边形的性质,全等三角形的判定和性质,解答本题的关键寻找两条线段所在的三角形,然后证明两三角形全等.20.【答案】证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是矩形,∴OC=OD,∴四边形OCED是菱形.【解析】首先根据两对边互相平行的四边形是平行四边形证明四边形OCED是平行四边形,再根据矩形的性质可得OC=OD,即可利用一组邻边相等的平行四边形是菱形判定出结论.此题主要考查了菱形的判定,矩形的性质,关键是掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形.21.【答案】解:作EG⊥OA于G,如图所示:∵EF∥OB,∠AOE=∠BOE=15°∴∠OEF=∠COE=15°,EG=CE=2,∵∠AOE=15°,∴∠EFG=15°+15°=30°,∴EF=2EG=4.【解析】作EG⊥OA于F,根据角平分线的性质得到EG的长度,再根据平行线的性质得到∠OEF=∠COE=15°,然后利用三角形的外角和内角的关系求出∠EFG=30°,利用30°角所对的直角边是斜边的一半解题.本题考查了角平分线的性质、平行线的性质、含30°角的直角三角形的性质;熟练掌握角平分线的性质,证出∠EFG=30°是解决问题的关键.22.【答案】解:(1)∵Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,CD=3,∴DE=CD=3;(2)∵Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB==10.∵由(1)知,DE=3,∴S△ABD===15【解析】本题考查了角平分线的性质和勾股定理,熟练掌握这些性质是解决问题的关键.(1)直接根据角平分线的性质可得出结论;(2)先根据勾股定理求出AB的长,再由三角形的面积公式求解即可.23.【答案】证明:(1)∵四边形ABCD是正方形∴BC=CD,∠BCD=∠DCF=90°且CE=CF∴△BCE≌△DCF(2)∵BC+DF=9∴CD+DF=9在Rt△DCF中,DF2=DC2+CF2∴(9-CD)2=CD2+CF2∴CD=4∴S正方形ABCD=16【解析】(1)由题意可得BC=CD,∠BCD=∠DCF,且CE=CF可证结论(2)由BC+DF=9可得CD=9-DF,在Rt△DCF中,DF2=DC2+CF2,可得CD=4,即可求正方形ABCD的面积.本题考查了正方形的性质,全等三角形的判定,勾股定理,关键是通过勾股定理列出方程.24.【答案】解:(1)解:∵菱形ABCD中,BD=10,AC=24,∴OB=5,OA=12,在Rt△ABO中,AB==13,∴菱形ABCD的周长=4AB=52.(2)S菱形ABCD=•AC•BD=×24×10=120.(3)∵S菱形ABCD=•AC•BD=AB•DE,∴DE=.【解析】(1)由勾股定理即可求得AB的长,继而求得菱形ABCD的周长;(2)根据菱形的面积等于对角线乘积的一半,计算即可;=•AC•BD=AB•DE,计算即可;(3)根据S菱形ABCD本题考查菱形的性质、勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.【答案】解:(1)如图所示:(2)∵四边形AEBF是平行四边形,∴AH=BH,∵OA=OB,AH=BH,∴OH平分∠AOB.【解析】此题主要考查了平行四边形的性质以及等腰三角形的性质,关键是掌握平行四边形的对角线互相平分.(1)连接AB和EF,两对角线相交于点H,再作射线OH即可;(2)首先根据平行四边形的性质可得AH=BH,再根据等腰三角形的性质可得OH平分∠AOB.26.【答案】(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠C=90°,∠ABD=∠BDC,∵△BEH是△BAH翻折而成,∴∠ABH=∠EBH,∠A=∠HEB=90°,AB=BE,∵△DGF是△DGC翻折而成,∴∠FDG=∠CDG,∠C=∠DFG=90°,CD=DF,∴∠DBH=∠ABD,∠BDG=∠BDC,∴∠DBH=∠BDG,∴△BEH与△DFG中,∠HEB=∠DFG,BE=DF,∠DBH=∠BDG,∴△BEH≌△DFG,(2)解:∵四边形ABCD是矩形,AB=6cm,BC=8cm,∴AB=CD=6cm,AD=BC=8cm,∴BD===10,∵由(1)知,FD=CD,CG=FG,∴BF=10-6=4cm,设FG=x,则BG=8-x,在Rt△BGF中,BG2=BF2+FG2,即(8-x)2=42+x2,解得x=3,即FG=3cm.【解析】(1)先根据矩形的性质得出∠ABD=∠BDC,再由图形折叠的性质得出∠ABH=∠EBH,∠FDG=∠CDG,∠A=∠HEB=90°,∠C=∠DFG=90°,进而可得出△BEH≌△DFG;(2)先根据勾股定理得出BD的长,进而得出BF的长,由图形翻折变换的性质得出CG=FG,设FG=x,则BG=8-x,再利用勾股定理即可求出x的值.本题考查的是图形翻折变换的性质及矩形的性质,全等三角形的判定,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.。

2017-2018学年人教版八年级(下)期中数学试卷(有答案和解析)

2017-2018学年人教版八年级(下)期中数学试卷(有答案和解析)

2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分40分,每小题4分)1.如果y=+2,那么(﹣x)y的值为()A.1B.﹣1C.±1D.02.下列各式属于最简二次根式的是()A.B.C.D.3.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=24.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个5.如图,AB=AC,则数轴上点C所表示的数为()A.+1B.﹣1C.﹣+1D.﹣﹣16.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,237.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形8.菱形的两条对角线长分别为6,8,则它的周长是()A.5B.10C.20D.249.如图,将长16cm,宽8cm的矩形纸片ABCD折叠,使点A与点C重合,则折痕EF的长为()cm.A .6B .4C .10D .210.如图,A ,B 两地被池塘隔开,小明通过下列方法测出了A 、B 间的距离:先在AB 外选一点C ,然后测出AC ,BC 的中点M ,N ,并测量出MN 的长为6m ,由此他就知道了A 、B 间的距离.有关他这次探究活动的描述错误的是( )A .AB =12m B .MN ∥ABC .△CMN ∽△CABD .CM :MA =1:2二.填空题(共6小题,满分24分,每小题4分)11.计算:×=12.已知▱ABCD 的周长为28,自顶点A 作AE ⊥DC 于点E ,AF ⊥BC 于点F .若AE =3,AF =4,则CE ﹣CF = .13.如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16cm 2,S △BQC =25cm 2,则图中阴影部分的面积为 cm 2.14.若最简二次根式与能合并成一项,则a = .15.如图,若菱形ABCD 的顶点A ,B 的坐标分别为(3,0),(﹣2,0),点D 在y 轴上,则点C 的坐标是 .16.若x=﹣1,则x3+x2﹣3x+2019的值为.三.解答题(共9小题,满分86分)17.计算:(1)﹣+(2)(﹣)(+)+(﹣1)218.如图,△ABC中,CD⊥AB于D,若AD=2BD,AC=3,BC=2,求BD的长.19.如图,平行四边形ABCD的对角线AC,BD相交于点O,E,F分别是OA,OC的中点,连接BE、DF.求证:BE∥DF.20.如图,在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=,求(1)AD的长;(2)△ABC是直角三角形吗?为什么?21.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?22.如图,矩形ABCD,延长BC到G,连接GD.作∠BGD的平分线交AB于E.若EG=DG,AD =AE.(1)求证:GE=2BE;(2)若EG=4,求梯形ABGD的面积.23.如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.24.如图,在Rt△ABC中,∠B=90°,AC=100cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(0<t≤25).过点D作DF⊥BC于点F,连接DE,EF.(1)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(2)当t为何值时,△DEF为直角三角形?请说明理由.25.(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.如果y=+2,那么(﹣x)y的值为()A.1B.﹣1C.±1D.0【分析】直接利用二次根式的性质得出x,y的值,进而得出答案.【解答】解:∵y=+2,∴1﹣x≥0,x﹣1≥0,解得:x=1,故y=2,则(﹣1)2=1.故选:A.【点评】此题主要考查了二次根式有意义的条件,正确得出x的值是解题关键.2.下列各式属于最简二次根式的是()A.B.C.D.【分析】最简二次根式满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,由此结合选项可得出答案.【解答】解:A、含有能开方的因式,不是最简二次根式,故本选项错误;B、符合最简二次根式的定义,故本选项正确;C、含有能开方的因式,不是最简二次根式,故本选项错误;D、被开方数含分母,故本选项错误;故选:B.【点评】此题考查了最简二次根式的知识,解答本题的关键是熟练掌握最简二次根式满足的两个条件,属于基础题,难度一般.3.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=2【分析】利用二次根式的加减法对A、B进行判断;利用二次根式的除法法则对C进行判断;利用二次根式的乘法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=2,所以B选项错误;C、原式=,所以C选项错误;D、原式==2,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选:C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.如图,AB=AC,则数轴上点C所表示的数为()A.+1B.﹣1C.﹣+1D.﹣﹣1【分析】根据勾股定理列式求出AB的长,即为AC的长,再根据数轴上的点的表示解答.【解答】解:由勾股定理得,AB==,∴AC=,∵点A表示的数是﹣1,∴点C表示的数是﹣1.故选:B.【点评】本题考查了勾股定理,实数与数轴,是基础题,熟记定理并求出AB的长是解题的关键.6.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,23【分析】根据勾股定理逆定理:a2+b2=c2,将各个选项逐一代数计算即可得出答案.【解答】解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.【点评】此题主要考查学生对勾股定理的逆定理的理解和掌握,要求学生熟练掌握这个逆定理.7.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故本选项错误;B、根据对角线互相垂直的平行四边形是菱形知:当AC⊥BD时,四边形ABCD是菱形,故本选项错误;C、根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD是矩形,故本选项错误;D、根据对角线相等的平行四边形是矩形可知:当AC=BD时,它是矩形,不是正方形,故本选项正确;综上所述,符合题意是D选项;故选:D.【点评】本题考查正方形的判定、菱形的判定、矩形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.菱形的两条对角线长分别为6,8,则它的周长是()A.5B.10C.20D.24【分析】根据菱形的性质即可求出答案.【解答】解:由于菱形的两条对角线的长为6和8,∴菱形的边长为:=5,∴菱形的周长为:4×5=20,故选:C.【点评】本题考查菱形的性质,解题的关键是熟练运用菱形的性质,本题属于基础题型.9.如图,将长16cm,宽8cm的矩形纸片ABCD折叠,使点A与点C重合,则折痕EF的长为()cm.A.6B.4C.10D.2【分析】连接AC,则EF垂直平分AC,推出△AOE∽△ABC,根据勾股定理,可以求出AC的长度,根据相似三角形对应边的比等于相似比求出OE,即可得出EF的长.【解答】解:连接AC,与EF交于O点,∵E点在AB上,F在CD上,A、C点重合,EF是折痕,∴AO=CO,EF⊥AC,∵AB=16,BC=8,∴AC=,∴AO=,∵∠EAO=∠CAB,∠AOE=∠B=90°,∴△AOE∽△ABC,∴OE:BC=AO:BA,即∴OE=,∴EF=2OE=.故选:B.【点评】本题主要考查了矩形的性质、勾股定理、相似三角形的判定和性质、折叠的性质;熟练掌握矩形的性质和折叠的性质,证明三角形相似是解决问题的关键.10.如图,A,B两地被池塘隔开,小明通过下列方法测出了A、B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为6m,由此他就知道了A、B间的距离.有关他这次探究活动的描述错误的是()A.AB=12m B.MN∥AB C.△CMN∽△CAB D.CM:MA=1:2【分析】由已知条件得出MN是△ABC的中位线,CM=MA,由三角形中位线定理得出MN∥AB,MN=AB,AB=2MN=12m,得出△CMN∽△CAB;即可得出结论.【解答】解:∵M、N分别是AC、BC的中点,∴MN是△ABC的中位线,CM=AM,∴MN∥AB,MN=AB,AB=2MN=12m,CM:MA=1:1,∴△CMN∽△CAB;故A,B,C正确,故选:D.【点评】本题考查了三角形中位线定理;熟练掌握三角形中位线定理,并能进行推理计算是解决问题的关键.二.填空题(共6小题,满分24分,每小题4分)11.计算:×=12【分析】直接利用二次根式乘法运算法则计算得出答案.【解答】解:×=×2=12.故答案为:12.【点评】此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.12.已知▱ABCD的周长为28,自顶点A作AE⊥DC于点E,AF⊥BC于点F.若AE=3,AF=4,则CE﹣CF=14﹣7或2﹣(答对前者得2分,答对后者得1分).【分析】首先可证得△ADE∽△ABF,又由四边形ABCD是平行四边形,即可求得AB与AD的长,然后根据勾股定理即可求得DE与BF的长,继而求得答案.【解答】解:如图1:∵AE⊥DC,AF⊥BC,∴∠AED=∠AFB=90°,∵四边形ABCD是平行四边形,∴∠ADC=∠CBA,AB=CD,AD=BC,∴△ADE∽△ABF,∴,∵AD+CD+BC+AB=28,即AD+AB=14,∴AD=6,AB=8,∴DE=3,BF=4,∴EC=CD﹣DE=8﹣3,CF=BF﹣BC=4﹣6,∴CE﹣CF=(8﹣3)﹣(4﹣6)=14﹣7;如图2:∵AE⊥DC,AF⊥BC,∴∠AED=∠AFB=90°,∵四边形ABCD是平行四边形,∴∠ADC=∠CBA,AB=CD,AD=BC,∴∠ADE =∠ABF ,∴△ADE ∽△ABF ,∴,∵AD +CD +BC +AB =28,即AD +AB =14,∴AD =6,AB =8,∴DE =3,BF =4,∴EC =CD +DE =8+3,CF =BC +BF =6+4,∴CE ﹣CF =(8+3)﹣(6+4)=2﹣.∴CE ﹣CF =14﹣7或2﹣.【点评】本题主要考查的是平行四边形的性质.解题时,还借用了勾股定理这一知识点. 13.如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16cm 2,S △BQC =25cm 2,则图中阴影部分的面积为 41 cm 2.【分析】连接E 、F 两点,由三角形的面积公式我们可以推出S △EFC =S △BCQ ,S △EFD =S △ADF ,所以S △EFG =S △BCQ ,S △EFP =S △ADP ,因此可以推出阴影部分的面积就是S △APD +S △BQC .【解答】解:连接E 、F 两点,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴△EFC 的FC 边上的高与△BCF 的FC 边上的高相等,∴S △EFC =S △BCF ,∴S △EFQ =S △BCQ ,同理:S △EFD =S △ADF ,∴S △EFP =S △ADP ,∵S △APD =16cm 2,S △BQC =25cm 2,∴S 四边形EPFQ =41cm 2,故答案为:41.【点评】本题主要考查了平行四边形的性质,题目综合性较强,主要考查了平行四边形的性质,解答此题关键是作出辅助线,找出同底等高的三角形.14.若最简二次根式与能合并成一项,则a = 1 .【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a 的方程,根据解方程,可得答案.【解答】解:=2,由最简二次根式与能合并成一项,得a +1=2.解得a =1.故答案为:1.【点评】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.15.如图,若菱形ABCD 的顶点A ,B 的坐标分别为(3,0),(﹣2,0),点D 在y 轴上,则点C 的坐标是 (﹣5,4) .【分析】利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,∴AB=5,∴AD=5,∴由勾股定理知:OD===4,∴点C的坐标是:(﹣5,4).故答案为:(﹣5,4).【点评】此题主要考查了菱形的性质以及坐标与图形的性质,得出DO的长是解题关键.16.若x=﹣1,则x3+x2﹣3x+2019的值为2018.【分析】先根据x的值计算出x2的值,再代入原式=x•x2+x2﹣3x+2019,根据二次根式的混合运算顺序和运算法则计算可得.【解答】解:∵x=﹣1,∴x2=(﹣1)2=2﹣2+1=3﹣2,则原式=x•x2+x2﹣3x+2019=(﹣1)×(3﹣2)+3﹣2﹣3(﹣1)+2019=3﹣4﹣3+2+3﹣2﹣3+3+2019=2018,故答案为:2018.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.三.解答题(共9小题,满分86分)17.计算:(1)﹣+(2)(﹣)(+)+(﹣1)2【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先利用平方差公式和完全平方公式计算,再计算加减可得.【解答】解:(1)原式=4﹣3+=;(2)原式=5﹣2+4﹣2=7﹣2.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.18.如图,△ABC中,CD⊥AB于D,若AD=2BD,AC=3,BC=2,求BD的长.【分析】设BD=x,根据勾股定理列出方程,解方程即可.【解答】解:设BD=x,则AD=2x,由勾股定理得,CD2=AC2﹣AD2,CD2=BC2﹣BD2,∴AC2﹣AD2=BC2﹣BD2,即32﹣(2x)2=22﹣x2,解得,x=,即BD的长为.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.19.如图,平行四边形ABCD的对角线AC,BD相交于点O,E,F分别是OA,OC的中点,连接BE、DF.求证:BE∥DF.【分析】根据平行四边形的性质对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE是平行四边形,从而得出BE∥DF.【解答】证明:连接BF、DE,如图所示:∵四边形ABCD是平行四边形∴OA=OC,OB=OD∵E、F分别是OA、OC的中点∴OE=OA,OF=OC∴OE=OF∴四边形BFDE是平行四边形∴BE∥DF【点评】本题考查了平行四边形的基本性质和判定定理的运用.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.20.如图,在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=,求(1)AD的长;(2)△ABC是直角三角形吗?为什么?【分析】(1)由CD垂直于AB,得到三角形BCD与三角形ACD都为直角三角形,由BC与DB,利用勾股定理求出CD的长,再利用勾股定理求出AD的长即可;(2)三角形ABC为直角三角形,理由为:由BD+AD求出AB的长,利用勾股定理的逆定理得到三角形ABC为直角三角形.【解答】解:(1)∵CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BCD中,BC=3,DB=,根据勾股定理得:CD==,在Rt△ACD中,AC=4,CD=,根据勾股定理得:AD==;(2)△ABC为直角三角形,理由为:∵AB=BD+AD=+=5,∴AC2+BC2=AB2,∴△ABC为直角三角形.【点评】此题考查了勾股定理,以及勾股定理的逆定理,熟练掌握勾股定理及勾股定理的逆定理是解本题的关键.21.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?【分析】根据小球滚动的速度与机器人行走的速度相等,运动时间相等得出BC=CA.设AC为x,则OC=9﹣x,根据勾股定理即可得出结论.【解答】解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等,∴BC=CA.设AC为x,则OC=9﹣x,由勾股定理得:OB2+OC2=BC2,又∵OA=9,OB=3,∴32+(9﹣x)2=x2,解方程得出x=5.∴机器人行走的路程BC是5cm.【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.22.如图,矩形ABCD,延长BC到G,连接GD.作∠BGD的平分线交AB于E.若EG=DG,AD =AE.(1)求证:GE=2BE;(2)若EG=4,求梯形ABGD的面积.【分析】(1)连接DE,根据矩形的性质可得△ADE是等腰直角三角形,所以,∠AED=45°,设∠BGE=x,根据角平分线的定义可得∠DGE=x,根据直角三角形两锐角互余求出∠BEG,根据等腰三角形两底角相等求出∠DEG,然后根据平角等于180°列式求解即可得到x=30°,再根据30°所对的直角边等于斜边的一半证明;(2)先求出∠CGD=60°,然后解直角三角形求出CD的长度,根据矩形的对边相等求出AB的长度,在Rt△BGE中,求出BE、BG的长度,然后求出AE,即可得到AD,然后利用梯形的面积公式列式计算即可得解.【解答】(1)证明:如图,连接DE,∵AD=AE,∴△ADE是等腰直角三角形,∴∠AED=45°,设∠BGE=x,∵GE是∠BGD的平分线,∴∠BGE=∠DGE=x,在Rt△BGE中,∠BEG=90°﹣x,∵EG=DG,∴∠DEG=(180°﹣x),又∵∠AED+∠DEG+∠BEG=180°,∴45°+(180°﹣x)+90°﹣x=180°,解得x=30°,即∠BGE=30°,∴GE=2BE;(2)解:∵GE是∠BGD的平分线,∴∠CGD=∠BGE+∠DGE=30°+30°=60°,∴CD=DG sin60°=4×=2,在Rt△BGE中,BE=EG=×4=2,BG=EG cos30°=4×=2,∴AD=AE=AB﹣BE=2﹣2,梯形ABGD的面积=(AD+BG)CD=(2﹣2+2)×2=(4﹣2)=12﹣2.【点评】本题考查了矩形的性质,解直角三角形,直角三角形30°角所对的直角边等于斜边的一半的性质,题目设计巧妙,难度较大,利用∠BGE的度数恰好30°求解是解题的关键.23.如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【分析】利用数形结合的思想解决问题即可;【解答】解:符合条件的图形如图所示:【点评】本题考查作图﹣应用与设计,三角形的面积,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.如图,在Rt△ABC中,∠B=90°,AC=100cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(0<t≤25).过点D作DF⊥BC于点F,连接DE,EF.(1)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(2)当t为何值时,△DEF为直角三角形?请说明理由.【分析】(1)可以证明四边形AEFD为平行四边形,如果四边形AEFD能够成为菱形,则必有邻边相等,则AE=AD,列方程求出即可;(2)当△DEF为直角三角形时,有三种情况:①当∠EDF=90°时,如图3,②当∠DEF=90°时,如图4,③当∠DFE=90°不成立;分别找一等量关系列方程可以求出t的值.【解答】(1)解:四边形AEFD能够成为菱形,理由是:由题意得:AE=2t,CD=4t,∵DF⊥BC,∴∠CFD=90°,∴∠C=30°,∴DF=CD=×4t=2t,∴AE=DF;∵DF⊥BC,∴∠CFD=∠B=90°,∴DF∥AE,∴四边形AEFD是平行四边形.当AE=AD,四边形AEFD是菱形,∵AC=100,CD=4t,∴AD=100﹣4t,∴2t=100﹣4t,t=,∴当t=时,四边形AEFD能够成为菱形;(3)分三种情况:①当∠EDF=90°时,如图3,则四边形DFBE为矩形,∴DF=BE=2t,∵AB=AC=50,AE=2t,∴2t=50﹣2t,t=,②当∠DEF=90°时,如图4,∵四边形AEFD为平行四边形,∴EF∥AD,∴∠ADE=∠DEF=90°,在Rt△ADE中,∠A=60°,AE=2t,∴AD=t,则100=t+4t,t=20,③当∠DFE=90°不成立;综上所述:当t为s或20s时,△DEF为直角三角形.【点评】本题是四边形的综合题,考查了平行四边形、菱形、矩形的性质和判定,也是运动型问题,难度不大,是常出题型;首先要表示出两个动点在时间t时的路程,弄清动点的运动路径,再根据其运动所形成的特殊图形列式计算;同时,所构成的直角三角形因为直角顶点不确定,所以要分情况进行讨论.25.(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.【分析】(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.(2)IH=FH.只要证明△IJF是等边三角形即可.(3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.【解答】(1)①证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中,,∴△DOE≌△BOF,∴EO=OF,∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,OB=OD,∴EB=ED,∴四边形EBFD是菱形.②∵BE平分∠ABD,∴∠ABE=∠EBD,∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=2∠ADB,∵∠ABD+∠ADB=90°,∴∠ADB=30°,∠ABD=60°,∴∠ABE=∠EBO=∠OBF=30°,∴∠EBF=60°.(2)结论:IH=FH.理由:如图2中,延长BE到M,使得EM=EJ,连接MJ.∵四边形EBFD是菱形,∠B=60°,∴EB=BF=ED,DE∥BF,∴∠JDH=∠FGH,在△DHJ和△GHF中,,∴△DHJ≌△GHF,∴DJ=FG,JH=HF,∴EJ=BG=EM=BI,∴BE=IM=BF,∵∠MEJ=∠B=60°,∴△MEJ是等边三角形,∴MJ=EM=NI,∠M=∠B=60°在△BIF和△MJI中,,∴△BIF≌△MJI,∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,∴IH⊥JF,∵∠BFI+∠BIF=120°,∴∠MIJ+∠BIF=120°,∴∠JIF=60°,∴△JIF是等边三角形,在Rt△IHF中,∵∠IHF=90°,∠IFH=60°,∴∠FIH=30°,∴IH=FH.(3)结论:EG2=AG2+CE2.理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,∵∠FAD+∠DEF=90°,∴AFED四点共圆,∴∠EDF=∠DAE=45°,∠ADC=90°,∴∠ADF+∠EDC=45°,∵∠ADF=∠CDM,∴∠CDM+∠CDE=45°=∠EDG,在△DEM和△DEG中,,∴△DEG≌△DEM,∴GE=EM,∵∠DCM=∠DAG=∠ACD=45°,AG=CM,∴∠ECM=90°∴EC2+CM2=EM2,∵EG=EM,AG=CM,∴GE2=AG2+CE2.【点评】本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.。

2017-2018学年人教版八年级(下)期中数学试卷(有答案和解析)(2)

2017-2018学年人教版八年级(下)期中数学试卷(有答案和解析)(2)

2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分40分,每小题4分)1.在式子,,,,(x≤0)中,一定是二次根式的有()A.1个B.2个C.3个D.4个2.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线BD的长等于()A.6米B.6米C.3米D.3米3.下列计算错误的是()A.+=B.×=C.÷=3D.(2)2=84.下列判断错误的是()A.有两个直角的四边形是矩形B.有一个直角的平行四边形是矩形C.对角线相等的平行四边形是矩形D.对角线互相垂直平分的四边形是菱形5.下列二次根式中,是最简二次根式的是()A.B.C.D.6.如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是()A.19°B.18°C.20°D.21°7.下列说法中的错误的是()A.一组邻边相等的矩形是正方形B.一组邻边相等的平行四边形是菱形C.一组对边相等且有一个角是直角的四边形是矩形D.一组对边平行且相等的四边形是平行四边形8.下列四组数中不是勾股数的是()A.3,4,5B.2,3,4C.5,12,13D.8,15.179.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.3B.4C.15D.7.210.下列命题中的假命题是()A.过直线外一点有且只有一条直线与这条直线平行B.平行于同一直线的两条直线平行C.直线y=2x﹣1与直线y=2x+3一定互相平行D.如果两个角的两边分别平行,那么这两个角相等二.填空题(共6小题,满分24分,每小题4分)11.若式子有意义,则x的取值范围是.12.如图,P是▱ABCD的边AD上一点,E、F分别是PB、PC的中点,若▱ABCD的面积为16cm2,则△PEF的面积(阴影部分)是cm2.13.已知在△ABC中,∠C=90°,AC=3,BC=4,分别以AC、BC、AB为直径作半圆,如图所示,则阴影部分的面积是.14.计算(+2)(﹣2)的结果是.15.如图,BD与CD分别平分∠ABC、∠ACB的外角∠EBC、∠FCB,若∠A=80°,则∠BDC =.16.如图所示,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C、D,若OE=4,∠AOB=60°,则DE=.三.解答题(共9小题,满分86分)17.化简:.18.若a,b,c为△ABC的三边长,且a,b,c满足等式|a﹣3|+(4﹣b)2+=0,△ABC是直角三角形吗?请说明理由.19.在△ABC中,以AB、AC为边向三角形外分别作等边△ABF、等边△ACD,以BC为边在同侧作等边△BCE,求证:四边形ADEF是平行四边形.20.如图,四边形ABCD中,∠A=60°,∠B=∠D=90°,AD=8,AB=7,试求BC和CD的长.21.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=,DB=2,求BE的长.22.先化简,再求值:()÷,其中x=﹣1.23.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.24.已知如图1,在△ABC中,∠ACB=90°,BC=AC,点D在AB上,DE⊥AB交BC于E,点F 是AE的中点(1)写出线段FD与线段FC的关系并证明;(2)如图2,将△BDE绕点B逆时针旋转α(0°<α<90°),其它条件不变,线段FD与线段FC的关系是否变化,写出你的结论并证明;(3)将△BDE绕点B逆时针旋转一周,如果BC=4,BE=2,直接写出线段BF的范围.25.如图①,四边形ABCD与四边形CEFG都是矩形,点E,G分别在边CD,CB上,点F在AC 上,AB=3,BC=4(1)求的值;(2)把矩形CEFG绕点C顺时针旋转到图②的位置,P为AF,BG的交点,连接CP(Ⅰ)求的值;(Ⅱ)判断CP与AF的位置关系,并说明理由.2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.在式子,,,,(x≤0)中,一定是二次根式的有()A.1个B.2个C.3个D.4个【分析】依据二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式求解可得.【解答】解:在所列式子中一定是二次根式的是,(x≤0)这2个,故选:B.【点评】本题考查了二次根式的定义.理解被开方数是非负数,给出一个式子能准确的判断其是否为二次根式,并能根据二次根式的定义确定被开方数中的字母取值范围.2.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线BD的长等于()A.6米B.6米C.3米D.3米【分析】由四边形ABCD是菱形,∠BAD=60°,易得△ABD是等边三角形,继而求得答案.【解答】解:∵四边形ABCD是菱形,且周长为24米,∴AB=AD=6米,∵∠BAD=60°,∴△ABD是等边三角形,∴BD=AB=6米.故选:B.【点评】此题考查了菱形的性质以及等边三角形的判定与性质.注意证得△ABD是等边三角形是解此题的关键.3.下列计算错误的是()A.+=B.×=C.÷=3D.(2)2=8【分析】根据二次根式的运算法则逐一计算即可得出答案.【解答】解:A、、不是同类二次根式,不能合并,此选项错误;B、×==,此选项正确;C、÷===3,此选项正确;D、(2)2=8,此选项正确;故选:A.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.4.下列判断错误的是()A.有两个直角的四边形是矩形B.有一个直角的平行四边形是矩形C.对角线相等的平行四边形是矩形D.对角线互相垂直平分的四边形是菱形【分析】直接利用矩形与菱形的判定定理判定,即可求得答案.注意掌握排除法在选择题中的应用.【解答】解:A、有三个直角的四边形是矩形;故本选项错误;B、有一个直角的平行四边形是矩形;故本选项正确;C、对角线相等的平行四边形是矩形;故本选项正确;D、对角线互相垂直平分的四边形是菱形;故本选项正确.故选:A.【点评】此题考查了矩形的判定与菱形的判定.注意熟记矩形与菱形的判定定理是解此题的关键.5.下列二次根式中,是最简二次根式的是()A.B.C.D.【分析】直接利用最简二次根式的定义分析得出答案.【解答】解:A、是最简二次根式,正确;B、不是最简二次根式,错误;C、不是最简二次根式,错误;D、不是最简二次根式,错误;故选:A.【点评】此题主要考查了最简二次根式,正确把握定义是解题关键.6.如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是()A.19°B.18°C.20°D.21°【分析】连接AC,由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=38°,可得∠E度数.【解答】解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=38°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=38°,即∠E=19°.故选:A.【点评】本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.7.下列说法中的错误的是()A.一组邻边相等的矩形是正方形B.一组邻边相等的平行四边形是菱形C.一组对边相等且有一个角是直角的四边形是矩形D.一组对边平行且相等的四边形是平行四边形【分析】根据正方形的判定、菱形的判定、矩形的判定以及平行四边形的判定方法逐项分析即可.【解答】解:A、一组邻边相等的矩形是正方形,此说法正确,不符合题目的要求;B、一组邻边相等的平行四边形是菱形,此说法正确,不符合题目的要求;C、一组对边相等且有一个角是直角的四边形不一定是矩形,此说法错误,符合题目的要求;D、一组对边平行且相等的四边形是平行四边形,此说法正确,不符合题目的要求;故选:C.【点评】此题是一道几何结论开放题,全面地考查了矩形的判定定理,可以大大激发学生的思考兴趣,拓展学生的思维空间,培养学生求异、求变的创新精神.8.下列四组数中不是勾股数的是()A.3,4,5B.2,3,4C.5,12,13D.8,15.17【分析】求是否为勾股数,这里给出三个数,利用勾股定理,只要验证两小数的平方和等于最大数的平方即可.【解答】解:A、32+42=52,是勾股数的一组;B、22+32≠42,不是勾股数的一组;C、52+122=132,是勾股数的一组;D、82+152=172,是勾股数的一组.故选:B.【点评】考查了勾股数,理解勾股数的定义,并能够熟练运用.9.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.3B.4C.15D.7.2【分析】首先根据勾股定理求出斜边AB的长,再根据三角形的面积为定值即可求出则点C到AB 的距离.【解答】解:在Rt△ABC中,∠C=90°,则有AC2+BC2=AB2,∵BC=12,AC=9,∴AB==15,∵S=AC•BC=AB•h,△ABC∴h==7.2,故选:D.【点评】本题考查了勾股定理在直角三角形中的应用,解本题的关键是正确的运用勾股定理,确定AB为斜边.10.下列命题中的假命题是()A.过直线外一点有且只有一条直线与这条直线平行B.平行于同一直线的两条直线平行C.直线y=2x﹣1与直线y=2x+3一定互相平行D.如果两个角的两边分别平行,那么这两个角相等【分析】根据平行公理即可判断A、根据两直线平行的判定可以判定B、C;根据平行线的性质即可判定D;【解答】解:A、过直线外一点有且只有一条直线与这条直线平行,正确.B、平行于同一直线的两条直线平行,正确;C、直线y=2x﹣1与直线y=2x+3一定互相平行,正确;D、如果两个角的两边分别平行,那么这两个角相等,错误;应该是如果两个角的两边分别平行,那么这两个角相等或互补;故选:D.【点评】本题考查命题与定理,解题的关键是熟练掌握基本概念,属于中考常考题型.二.填空题(共6小题,满分24分,每小题4分)11.若式子有意义,则x的取值范围是1≤x≤2.【分析】直接根据二次根式的意义建立不等式组即可得出结论.【解答】解:根据二次根式的意义,得,∴1≤x≤2,故答案为1≤x≤2.【点评】此题主要考查了二次根式的意义,解不等式组,建立不等式组是解本题的关键.12.如图,P是▱ABCD的边AD上一点,E、F分别是PB、PC的中点,若▱ABCD的面积为16cm2,则△PEF的面积(阴影部分)是2cm2.【分析】先根据S▱ABCD=16cm2知S=S▱ABCD=8,再证△PEF∽△PBC得=()△PBC2,即=,据此可得答案.【解答】解:∵▱ABCD 的面积为16cm 2,∴S △PBC =S ▱ABCD =8,∵E 、F 分别是PB 、PC 的中点,∴EF ∥BC ,且EF =BC ,∴△PEF ∽△PBC , ∴=()2,即=,∴S △PEF =2,故答案为:2.【点评】本题主要考查平行四边形的性质,解题的关键是掌握平行四边形的性质与相似三角形的判定与性质.13.已知在△ABC 中,∠C =90°,AC =3,BC =4,分别以AC 、BC 、AB 为直径作半圆,如图所示,则阴影部分的面积是 6 .【分析】先利用勾股定理列式求出AB ,再根据阴影部分面积等于以AC 、BC 为直径的两个半圆的面积加上直角三角形ABC 的面积减去以AB 为直径的半圆的面积,列式计算即可得解.【解答】解:∵在Rt △ABC 中,∠ACB =90°,∴AC 2+BC 2=AB 2,∵BC =4,AC =3,∴AB =.S 阴影=直径为AC 的半圆的面积+直径为BC 的半圆的面积+S △ABC ﹣直径为AB 的半圆的面积 =π()2+π()2+AC ×BC ﹣π()2 =π(AC )2+π(BC )2﹣π(AB )2+AC ×BC=π(AC 2+BC 2﹣AB 2)+AC ×BC=AC×BC=×3×4=6.故答案为:6【点评】本题考查了勾股定理,半圆的面积,熟记定理并观察图形表示出阴影部分的面积是解题的关键.14.计算(+2)(﹣2)的结果是﹣1.【分析】利用平方差公式计算,再根据二次根式的性质计算可得.【解答】解:原式=()2﹣22=3﹣4=﹣1,故答案为:﹣1.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.15.如图,BD与CD分别平分∠ABC、∠ACB的外角∠EBC、∠FCB,若∠A=80°,则∠BDC=50°.【分析】先根据BD、CD分别是∠CBE、∠BCF的平分线可知∠DBC=∠EBC,∠BCD=∠BCF,再由∠CBE、∠BCF是△ABC的两个外角得出∠CBE+∠BCF=180°+∠A=260°,故∠DBC+∠BCD=(∠EBC+∠BCF)=130°,根据三角形内角和定理求出即可.【解答】证明:BD、CD分别是∠CBE、∠BCF的平分线∴∠DBC=∠EBC,∠BCD=∠BCF,∵∠CBE、∠BCF是△ABC的两个外角∴∠CBE+∠BCF=360°﹣(180°﹣∠A)=180°+∠A=260°,∴∠DBC+∠BCD=(∠EBC+∠BCF)=130°在△DBC中,∠BDC=180°﹣(∠DBC+∠BCD)=180°﹣130°=50°,故答案为:50°.【点评】本题考查的是三角形内角和定理及三角形外角的性质,熟知三角形的内角和等于180°是解答此题的关键.16.如图所示,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C、D,若OE=4,∠AOB=60°,则DE=2.【分析】利用角平分线的性质计算.【解答】解:∵OE平分∠AOB∴∠DOE=30°∴DE=OE=×4=2.【点评】本题主要考查平分线的性质和直角三角形的性质.三.解答题(共9小题,满分86分)17.化简:.【分析】利用二次根式的乘法法则运算.【解答】解:原式=﹣﹣=6﹣6﹣=6﹣7.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.18.若a,b,c为△ABC的三边长,且a,b,c满足等式|a﹣3|+(4﹣b)2+=0,△ABC是直角三角形吗?请说明理由.【分析】由非负数的性质可求得a、b、c的值,再利用勾股定理的逆定理进行判断即可.【解答】解:△ABC是直角三角形.理由是:∵|a﹣3|+(4﹣b)2+=0,∴a﹣3=0,4﹣b=0,c﹣5=0,∴a=3,b=4,c=5,∴a2+b2=32+42=25,c2=52=25,∴a2+b2=c2,由勾股定理的逆定理可知,△ABC是直角三角形.【点评】本题主要考查勾股定理的逆定理,利用非负数的性质求得a、b、c的值是解题的关键.19.在△ABC中,以AB、AC为边向三角形外分别作等边△ABF、等边△ACD,以BC为边在同侧作等边△BCE,求证:四边形ADEF是平行四边形.【分析】根据等边三角形的性质及平行四边形的判定(两组对边分别相等的四边形是平行边形)来证明四边形ADEF是平行四边形.【解答】证明:四边形ADEF是平行四边形,∵等边三角形BCE和等边三角形ABF,∴BE=BC,BF=BA.又∵∠FBE=60°﹣∠ABE,∠ABC=60°﹣∠ABE,∴∠FBE=∠ABC,在△BFE和△BCA中,∴△BFE≌△BCA(SAS),∴DE=AC∵在等边三角形ACD中,AC=AD,∴FE=AD,同理FA=ED.∴四边形ADEF是平行四边形.【点评】本题主要考查平行四边形的判定和性质,全等三角形的判定和性质,等边三角形的性质,掌握平行四边形的判定和性质是解题的关键20.如图,四边形ABCD中,∠A=60°,∠B=∠D=90°,AD=8,AB=7,试求BC和CD的长.【分析】延长DC至E,构建直角△ADE,解直角△ADE求得DE,BE,根据BE解直角△CBE 可得BC,CE,可得CD=DE﹣CE,从而求解.【解答】解:如图,延长AB、DC相交于E,在Rt△ADE中,可求得AE2﹣DE2=AD2,且AE=2AD,计算得AE=16,DE=8,于是BE=AE﹣AB=9,在Rt△BEC中,可求得BC2+BE2=CE2,且CE=2BC,∴BC=3,CE=6,∴CD=DE﹣CE=2.【点评】本题考查了勾股定理的运用,含30°角所对的直角边是斜边的一半的性质,本题中构建直角△ADE求BE,是解题的关键.21.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=,DB=2,求BE的长.【分析】(1)根据全等三角形的判定即可求出答案.(2)根据勾股定理可求出BC的长度,然后利用(1)的结论可知BE=DE,设BE=x,利用勾股定理列出方程即可求出x值.【解答】解:(1)∵四边形ABCD为矩形,∴AB=CD,∠A=∠C=90°∵由翻折的性质可知∠F=∠A,BF=AB,∴BF=DC,∠F=∠C.在△DCE与△BEF中,∴△DCE≌△BFE.(2)在Rt△BDC中,由勾股定理得:BC==3.∵△DCE≌△BFE,∴BE=DE.设BE=DE=x,则EC=3﹣x.在Rt△CDE中,CE2+CD2=DE2,即(3﹣x)2+()2=x2.解得:x=2.∴BE=2.【点评】本题考查全等三角形的性质与判定,涉及全等三角形的性质与判定,矩形的性质,勾股定理,一元一次解法等知识,考查学生综合能力.22.先化简,再求值:()÷,其中x=﹣1.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=x+2,当x=﹣1时,原式=﹣1+2=1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.【分析】(1)直接利用三角形中位线定理得出DE BC,进而得出DE=FC;(2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长.【解答】(1)证明:∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE BC,∵延长BC至点F,使CF=BC,∴DE=FC;(2)解:∵DE FC,∴四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.【点评】此题主要考查了等边三角形的性质以及平行四边形的判定与性质和三角形中位线定理等知识,得出DE BC是解题关键.24.已知如图1,在△ABC中,∠ACB=90°,BC=AC,点D在AB上,DE⊥AB交BC于E,点F 是AE的中点(1)写出线段FD与线段FC的关系并证明;(2)如图2,将△BDE绕点B逆时针旋转α(0°<α<90°),其它条件不变,线段FD与线段FC的关系是否变化,写出你的结论并证明;(3)将△BDE绕点B逆时针旋转一周,如果BC=4,BE=2,直接写出线段BF的范围.【分析】(1)结论:FD=FC,DF⊥CF.理由直角三角形斜边中线定理即可证明;(2)如图2中,延长AC到M使得CM=CA,延长ED到N,使得DN=DE,连接BN、BM.EM、AN,延长ME交AN于H,交AB于O.想办法证明△ABN≌△MBE,推出AN=EM,再利用三角形中位线定理即可解决问题;(3)分别求出BF的最大值、最小值即可解决问题;【解答】解:(1)结论:FD=FC,DF⊥CF.理由:如图1中,∵∠ADE=∠ACE=90°,AF=FE,∴DF=AF=EF=CF,∴∠FAD=∠FDA,∠FAC=∠FCA,∴∠DFE=∠FDA+∠FAD=2∠FAD,∠EFC=∠FAC+∠FCA=2∠FAC,∵CA=CB,∠ACB=90°,∴∠BAC=45°,∴∠DFC=∠EFD+∠EFC=2(∠FAD+∠FAC)=90°,∴DF=FC,DF⊥FC.(2)结论不变.理由:如图2中,延长AC到M使得CM=CA,延长ED到N,使得DN=DE,连接BN、BM.EM、AN,延长ME交AN于H,交AB于O.∵BC⊥AM,AC=CM,∴BA=BM,同法BE=BN,∵∠ABM=∠EBN=90°,∴∠NBA=∠EBM,∴△ABN≌△MBE,∴AN=EM,∴∠BAN=∠BME,∵AF=FE,AC=CM,∴CF=EM,FC∥EM,同法FD=AN,FD∥AN,∴FD=FC,∵∠BME+∠BOM=90°,∠BOM=∠AOH,∴∠BAN+∠AOH=90°,∴∠AHO=90°,∴AN⊥MH,FD⊥FC.(3)如图3中,当点E落在AB上时,BF的长最大,最大值=3如图4中,当点E落在AB的延长线上时,BF的值最小,最小值=.综上所述,≤BF.【点评】本题考查等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、直角三角形斜边中线的性质、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.25.如图①,四边形ABCD与四边形CEFG都是矩形,点E,G分别在边CD,CB上,点F在AC 上,AB=3,BC=4(1)求的值;(2)把矩形CEFG绕点C顺时针旋转到图②的位置,P为AF,BG的交点,连接CP(Ⅰ)求的值;(Ⅱ)判断CP与AF的位置关系,并说明理由.【分析】(1)根据矩形的性质得到∠B=90°,根据勾股定理得到AC=5,根据相似三角形的性质即可得到结论;(2)(Ⅰ)连接CF,根据旋转的性质得到∠BCG=∠ACF,根据相似三角形的判定和性质定理得到结论;(Ⅱ)根据相似三角形的性质得到∠BGC=∠AFC,推出点C,F,G,P四点共圆,根据圆周角定理得到∠CPF=∠CGF=90°,于是得到结论.【解答】解:(1)∵四边形ABCD是矩形,∴∠B=90°,∵AB=3,BC=4,∴AC=5,∴=,∵四边形CEFG是矩形,∴∠FGC=90°,∴GF∥AB,∴△CGF∽△CBA,∴==,∵FG∥AB,∴==;(2)(Ⅰ)连接CF,∵把矩形CEFG绕点C顺时针旋转到图②的位置,∴∠BCG=∠ACF,∵==,∴△BCG∽△ACF,∴==;(Ⅱ)CP⊥AF,理由:∵△BCG∽△ACF,∴∠BGC=∠AFC,∴点C,F,G,P四点共圆,∴∠CPF=∠CGF=90°,∴CP⊥AF.【点评】本题考查了相似三角形的判定和性质,矩形的性质,平行线分线段成比例定理,旋转的性质,熟练掌握相似三角形的判定定理是解题的关键.。

2017—2018学年度第二学期八年级数学期中试卷(含答案)

2017—2018学年度第二学期八年级数学期中试卷(含答案)

2017—2018学年度第二学期期中教学质量评估测试八年级数学试卷题号一 二 三 总分 得分注意事项:全卷共120分,考试时间120分钟.一、选择题:(每小题3分,共30分)1.下列二次根式中,最简二次根式的是( )A .B .C .D . 2.下列计算正确的是( ).A.2(3)9=B .822÷=C .236⨯=D .2(2)2-=-3. 下列各组数中,能构成直角三角形的是( )A. 4,5,6B. 1,1,C. 6,8,11D. 5,12,23 4. 在Rt△ABC 中,△C =90°,△B =45°,c =10,则a 的长为( )A. B. C.5 D.5.在下列给出的条件中,能判定四边形ABCD 为平行四边形的是( ) A. AB=BC,CD=DA B. AB//CD,AD=BC C. AB//CD,C A ∠=∠ D.D C B A ∠=∠∠=∠, 6.正方形面积为36,则对角线的长为( ) A.B .6C .9D. 7.如图,一棵大树在一次强台风中距地面5m 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,这棵大树在折断前的高度为( )A. 10mB. 15mC. 18mD. 20m8.如图,在平行四边形ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分△BAD 交BC 边于点E ,则EC 等于( )A .1cmB .2cmC .3cmD .4cm9.如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若EF=3,则菱形ABCD 的周长是( )A .12B .16C .20D .2410.如图,在矩形ABCD 中,AB=8,BC=4,将矩形沿AC 折叠,点D 落在点D′处,则重叠部分△AFC 的面积为( )A .6B .8C .10D .12二、填空题:(每小题3分,共30分)11. 木工师傅要做一个长方形桌面,做好后量得长为80cm ,宽为60cm ,对角线为100cm ,则这个桌面 .(填“合格”或“不合格” ) 12.若式子 在实数范围内有意义,则 的取值范围是 .13.在数轴上表示实数a 的点如图所示,化简()2-a 5-a 2+的结果为______.14.计算()2252-的结果是________.15.一个直角三角形的两边长分别为4与5,则第三边长为________.16.平行四边形ABCD 中一条对角线分△A 为35°和45°,则△B= 度. 17. 如右图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则EF= cm . 18. 在△ABC 中,△C=90°,AC=12,BC=16,则AB 边上的中线CD 为 .19.在平面直角坐标系中,点A (﹣1,0)与点B (0,2)的距离是 . 20.对于任意不相等的两个数a ,b ,定义一种运算△如下:a△b = ,座号得 分 评卷人 题号1 2 3 4 5 6 7 8 9 10 答案得 分 评卷人学校 年级 姓名 学号密封线内不要答题八年级 数学 第1页 (共6页) 八年级 数学 第2页 (共6页)212510252612-+x x x 8.04529a b a b+-如3△2= =5.那么12△4= .三.解答题:(本大题共60分)21. (6分)(共2小题,每小题3分)(1) (2)22.(8分)若最简二次根式31025311x x y x y -+--+和是同类二次根式. (1)求x y 、的值; (5分) (2)求22y x +的值.(3分)23.(7分)有如图所示的一块地,已知AD=4米,CD=3米,090ADC ∠=,AB=13米,BC=12米.(1)试判断以点A 、点B 、点C 为顶点的三角形是什么三角形?并说明理由. ( 4分)(2)求这块地的面积.(3分)24. (8分)如图,四边形ABCD 中,AC ,BD 相交于点O ,O 是AC 的中点,AD △BC ,AC =8,BD =6.(1)求证:四边形ABCD 是平行四边形; (4分) (2)若AC △BD ,求平行四边形ABCD 的面积. (4分)25 . (8分)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,E 是CD 的中点,连接OE .过点C 作CF △BD 交线段OE 的延长线于点F ,连接DF . 求证:(1)△ODE △△FCE (4分)(2)四边形ODFC 是菱形 (4分)得 分 评卷人DACB八年级 数学 第3页 (共6页) 八年级 数学 第4页 (共6页)3232+-)227(328--+5232232⨯÷26.(8分)已知:如图,四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,顺次连接EF 、FG 、GH 、HE ,得到四边形EFGH (即四边形ABCD 的中点四边形). (1)四边形EFGH 的形状是 ,证明你的结论;(4分)(2)当四边形ABCD 的对角线满足 条件时,四边形EFGH 是矩形(不证明)(2分) (3)你学过的哪种特殊四边形的中点四边形是矩形? (不证明)(2分)27.(6分)某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口 小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?28.(9分)观察下列等式: △ △ + = △……回答下列问题:(1)仿照上列等式,写出第n 个等式: ; (2分) (2)利用你观察到的规律,化简:(3分)(3)计算: + + +……+(4分)八年级 数学 第5页 (共6页) 八年级 数学 第6页 (共6页)23321+211+231+34)34)(34(34341-=-+-=+231+1031+)23)(23(23-+-23-2017—2018学年度第二学期期中教学质量评估测试八年级数学参考答案一、选择题1.D 2.B 3. B 4.A 5.C 6. A 7.C 8.B 9.D 10. C 二、填空题11.合格 12.x ≥﹣2且x ≠1 13. 3 14. 15.3或41 16.100 17 . 2.5 18. 10 19. . 20.1.2三、解答题:(共60分)21(1)解: + 2 ﹣(﹣ ) =2 +2 ﹣3 + ------(2分) =3 ﹣ ------(3分) (2)解: ÷ ×== ------(2分)= -------(3分) 22.(1)x=4,y=3;(5分) (2)5 (3分) 解:(1)由题意得:3x-10=2 , ---------(2分)2x+y-5=x-3y+11 ----------(4分)解得x=4 y=3 --------(5分)(2)当x=4 , y=3时22y x += =5 -----(3分) 23.解(1)以点A 、点B 、点C 为顶点的三角形是直角三角形(4分)(2)这块地的面积24m 2. (3分) 解:(1)连接AC . -------(1分) 由勾股定理可知:AC=---(2分)又∵AC 2+BC 2=52+122=132=AB 2--------(3分) ∴△ABC 是直角三角形 --------(4分) (2)这块地的面积=△ABC 的面积-△ACD 的面积 ----(1分)=×5×12- ×3×4 --- (2分) =24(m 2). ----(3分)24. (1)证明:∵O 是AC 的中点,∴OA =OC. ------(1分) ∵AD ∥BC ,∴∠DAO =∠BCO. -------(2分) 又∵∠AOD =∠COB ,∴△AOD ≌△COB ,(ASA ) -----------------(3分) ∴OD =OB ,∴四边形ABCD 是平行四边形 --------------(4分) (2)∵四边形ABCD 是平行四边形,AC ⊥BD ,∴四边形ABCD 是菱形 ---------------(2分)∴ ABCD 的面积= AC •BD = ×8×6=24 ---------------(4分)25 .证明:(1)∵CF ∥BD ∴∠ODE=∠FCE----------------(1分)∵E 是CD 中点 ∴CE=DE , -------------------(2分) 在△ODE 和△FCE 中2222435AD CD +=+=12121222410.-1.232322528528332⨯⨯10110102234+32722332235∴△ODE ≌△FCE (ASA ) --------------(4分) (2)∵△ODE ≌△FCE ∴OD=FC , -------------(1分) 又∵CF ∥BD , ∴四边形ODFC 是平行四边形-----(2分)∵矩形ABCD ∴AC=BD OC= AC,OD= BD ∴ OC=OD ----------------(3分)∴四边形ODFC 是菱形. -----------------------(4分) 26(1)平行四边形;(4分)(2)互相垂直(2分)(3)菱形.(2分)(1)证明:连结BD . -------------------- (1分)∵E 、H 分别是AB 、AD 中点,∴EH ∥BD ,EH= BD , ----------------------(2分)同理FG ∥BD ,FG= BD , ---------------------(3分)∴EH ∥FG ,EH=FG ,∴四边形EFGH 是平行四边形 --------------------------(4分) 27. 解:根据题意,得PQ=16×1.5=24(海里) - -----------(1分)PR=12×1.5=18(海里) -----------(2分) QR=30(海里)∵242+182=302, 即PQ 2+PR 2=QR 2∴∠QPR=90°. ----------------(4分) 由“远洋号”沿东北方向航行可知∠QPS=45°,则∠SPR=45°(5分) 即“海天”号沿西北方向航行. -------(6分)28. (1)(2)2311- (3)解:(1)第n 个等式 (2分)(2)原式=1121123111211=-=-+. (3分)原式=2-1+3-2+4-3+……+10-9=10-1 ( 4分)12121212=-+++=++)1)(1(11n n n n n n 101nn -+1=-+++=++)1)(1(11n n n n n n nn -+1n n -+1n n -+1。

2017-2018学年湖北省武汉市江夏区八年级下期中数学试卷(含答案解析)-精选

2017-2018学年湖北省武汉市江夏区八年级下期中数学试卷(含答案解析)-精选

2017-2018学年湖北省武汉市江夏区八年级(下)期中数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑1.(3分)化简()A.﹣2 B.﹣4 C.2 D.42.(3分)如果线段a、b、c,满足a2=c2﹣b2,则这三条线段组成的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定3.(3分)在平行四边形ABCD中,已知AB=5,BC=3,则它的周长为()A.8 B.10 C.14 D.164.(3分)如图,在平面直角坐标系中有两点A(5,0),B(0,4),则它们之间的距离为()A.B.C.D.5.(3分)计算(+)=()A.+B.+C.+D.+6.(3分)已知菱形的两条对角线的长分别是6和8,则菱形的周长和面积分别是()A.20,12 B.20,24 C.28,12 D.28,247.(3分)计算2×3=()A.6B.6C.30D.308.(3分)如图,一架2.6m长的梯子AB斜靠在一竖直的墙AO上,此时AO=2.4m,若梯子的顶端A沿墙下滑0.5m,那么梯子底端B外移了(参考数据取1.4,取1.7,取1.8)()A.0.8m B.1.5m C.0.9m D.0.4m9.(3分)如图,用黑白两种颜色的平行四边形纸片,按黑色纸片数逐渐增加1的规律拼成下列图性,若第n个图案中有2020个白色纸片,则n的值为()A.674 B.673 C.672 D.67110.(3分)如图,矩形ABCD中,AB=5,AD=4,M是边CD上一点,将△ADM沿直线AM对折,得△ANM,连BN,若DM=1,则△ABN的面积是()A.B.C.D.二、填空题(共6小题,每小题3分,共18分)11.(3分)计算:6﹣2=.12.(3分)命题“同旁内角互补,两直线平行”的逆命题是.13.(3分)如图,在平行四边形ABCD中,AC=8cm,BD=14cm,则△DBC的周长比△ABC的周长多cm.14.(3分)如图,△ACB和△ECD都是等腰直角三角形,△ACB的锐角顶点A在△ECD 的斜边DE上,若AE=,AC=,则DE=.15.(3分)已知:m+n=10,mn=9,则=.16.(3分)已知:如图,在平行四边形ABCD中,AB=4,BC=9,∠BAD=120°,点O 为平行四边形ABCD的对角线的交点,直线l为过点O的任意一条直线,则点C到直线l的最大距离为.三、解答题(共8小题,共72分17.(8分)计算:(1)÷(2)(3﹣2)÷18.(8分)如图,在△ABC中,AB=AC=6,BC=4,AD为△ABC的高,求:(1)AD的长;(2)△ABC的面积.19.(8分)已知:如图,AC,BD是平行四边形ABCD的对角线,且AC=BD,若AB=4,BD=8,求:平行四边形ABCD的周长.20.(8分)如图,在4×4正方形的网格中,线段AB,CD如图位置,每个小正方形的边长都是1.(1)求线段AB、CD的长度.(2)在图中画出线段EF,使EF=,并判断以AB,CD,EF三条线段组成的三角形的形状,请说明理由.(3)我们J把(2)中三条线段按照点E与点C重合,点F与点B重合,点D与点A重合,这样可以得△ABC,则点C到直线AB的距离为(直接写结果).21.(8分)已知:x=2+1,y=﹣1求:(1)x2+2xy+y2的立方根;(2)x2+y2﹣2+1的平方根;(3)(4+2)y2+(2﹣1)x﹣8的值.22.(10分)已知:四边形ABCD是边长为4的菱形,∠BAD=60°,对角线AC与BD 交于点O,过点O的直线EF交AD于点E,交BC于点F.(1)如图(1),①求AC的长;②求证:AE=CF;(2)如图(2),若∠EOD=30°,连BE,CE,求△BEC的周长.23.(10分)(1)如图(1),在平行四边形ABCD中,DE⊥AB,BF⊥CD,垂足分别为E、F,求证:AE=CF(2)如图(2),在平行四边形ABCD中,AC、BD是两条对角线,请探究:AC2,AB2,BD2,BC2之间的数量关系,并证明你的结论.(3)如图(3),PQ是△PMN的中线,若PM=11,PN=13,MN=10,直接写出PQ的长度.24.(12分)如图所示,在平面直角坐标系中,A(a,0),B(b,0),D(0,d),以AB、AD为邻边作平行四边形ABCD,其中:=,a,d满足(a+2)2+=0(1)如图1,求点C的坐标及线段BC的长;(2)如图2,线段BC的中垂线交y轴于E点,F为AD的中点,连CE,BE,EF及BF,求证:BF⊥EF;(3)如图3,点G在线段BD上,点H,M分别在线段OB,OD上,且BG=BH,DG=DM,过点H作NH⊥HG交GM的延长线于点N,若N(t,﹣t),求点G的坐标.2017-2018学年湖北省武汉市江夏区八年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑1.(3分)化简()A.﹣2 B.﹣4 C.2 D.4【解答】解:=|﹣2|=2,故选:C.2.(3分)如果线段a、b、c,满足a2=c2﹣b2,则这三条线段组成的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定【解答】解:∵a2=c2﹣b2,∴a2+b2=c2,∴这三条线段组成的三角形是直角三角形.故选B.3.(3分)在平行四边形ABCD中,已知AB=5,BC=3,则它的周长为()A.8 B.10 C.14 D.16【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=5,BC=AD=3,∴它的周长为:5×2+3×2=16,故选:D.4.(3分)如图,在平面直角坐标系中有两点A(5,0),B(0,4),则它们之间的距离为()A.B.C.D.【解答】解:∵A(5,0)和B(0,4),∴OA=5,OB=4,∴AB=,即这两点之间的距离是.故选:A.5.(3分)计算(+)=()A.+B.+C.+D.+【解答】解:原式=×+×=+,故选:D.6.(3分)已知菱形的两条对角线的长分别是6和8,则菱形的周长和面积分别是()A.20,12 B.20,24 C.28,12 D.28,24【解答】解:如图,菱形ABCD中,AC=8,BD=6,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB==5,∴此菱形的周长是:5×4=20,面积是:×6×8=24.故菱形的周长是20,面积是24.故选:B.7.(3分)计算2×3=()A.6B.6C.30D.30【解答】解:2×3=6=30,故选:C.8.(3分)如图,一架2.6m长的梯子AB斜靠在一竖直的墙AO上,此时AO=2.4m,若梯子的顶端A沿墙下滑0.5m,那么梯子底端B外移了(参考数据取1.4,取1.7,取1.8)()A.0.8m B.1.5m C.0.9m D.0.4m【解答】解:∵Rt△OAB中,AB=2.6m,AO=2.4m,∴OB===1m;同理,Rt△OCD中,∵CD=2.6m,OC=2.4﹣0.5=1.9m,∴OD===≈1.8m,∴BD=OD﹣OB=1.8﹣1=0.8(m).故选:A.9.(3分)如图,用黑白两种颜色的平行四边形纸片,按黑色纸片数逐渐增加1的规律拼成下列图性,若第n个图案中有2020个白色纸片,则n的值为()A.674 B.673 C.672 D.671【解答】解:∵第1个图案中白色纸片有4=1+1×3张;第2个图案中白色纸片有7=1+2×3张;第3个图案中白色纸片有10=1+3×3张;…∴第n个图案中白色纸片有1+n×3=3n+1(张),根据题意得:3n+1=2020,解得:n=673,故选:B.10.(3分)如图,矩形ABCD中,AB=5,AD=4,M是边CD上一点,将△ADM沿直线AM对折,得△ANM,连BN,若DM=1,则△ABN的面积是()A.B.C.D.【解答】解:延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=4,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=42+x2,解得:x=7.5,∴NQ=7.5,AQ=8.5,∵AB=5,AQ=8.5,∴S△NAB=S△NAQ=×AN•NQ=××4×7.5=;故选:D.二、填空题(共6小题,每小题3分,共18分)11.(3分)计算:6﹣2=4.【解答】解:6﹣2=4.故答案为:4.12.(3分)命题“同旁内角互补,两直线平行”的逆命题是两直线平行,同旁内角互补.【解答】解:命题“同旁内角互补,两直线平行”的逆命题是:两直线平行,同旁内角互补,故答案为:两直线平行,同旁内角互补.13.(3分)如图,在平行四边形ABCD中,AC=8cm,BD=14cm,则△DBC的周长比△ABC的周长多 6 cm.【解答】解:∵四边形ABCD是平行四边形,∴AB=DC,AC=2AO,BD=2OD,∵AO=4,OD=7,∴BD=14,AC=8,∴△DBC的周长﹣△ABC的周长=BD+BC+DC﹣AC﹣BC﹣AB=AC﹣BD=14﹣8=6,故答案为:614.(3分)如图,△ACB和△ECD都是等腰直角三角形,△ACB的锐角顶点A在△ECD 的斜边DE上,若AE=,AC=,则DE=.【解答】解:连结BD,如图,∵△ACB与△ECD都是等腰直角三角形,∴∠ECD=∠ACB=90°,∠E=∠ADC=∠CAB=45°,EC=DC,AC=BC,∵∠ECD﹣∠ACD=∠ACB﹣∠ACD,∴∠ACE=∠BCD,在△AEC和△BDC中,,∴△AEC≌△BDC(SAS).∴AE=BD=,∠E=∠BDC=45°,∴∠BDA=∠BDC+∠ADC=90°,在Rt△ACB中.AB=AC=,由勾股定理得:AD===,∴DE=AE+AD=+;故答案为:+.15.(3分)已知:m+n=10,mn=9,则=±.【解答】解:∵m+n=10,mn=9,∴()2====,∴=±.故答案是:.16.(3分)已知:如图,在平行四边形ABCD中,AB=4,BC=9,∠BAD=120°,点O 为平行四边形ABCD的对角线的交点,直线l为过点O的任意一条直线,则点C到直线l的最大距离为.【解答】解:连接AC,作CH⊥AD于H,在Rt△CHD中,∠D=60°,∴DH=CD=2,∴AH=7,CH=2,在Rt△AHC中,AC==,∵CE⊥l,∴CE≤CO=AC=.∴点C到直线l的最大距离为.三、解答题(共8小题,共72分17.(8分)计算:(1)÷(2)(3﹣2)÷【解答】解:(1)原式==;(2)原式=3﹣2.18.(8分)如图,在△ABC中,AB=AC=6,BC=4,AD为△ABC的高,求:(1)AD的长;(2)△ABC的面积.【解答】解:(1)∵AB=AC,AD⊥BC,∴BD=CD=BC=2,∴AD==4;=×BC×AD=8.(2)S19.(8分)已知:如图,AC,BD是平行四边形ABCD的对角线,且AC=BD,若AB=4,BD=8,求:平行四边形ABCD的周长.【解答】解:∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD是矩形,∴AD==4,∴平行四边形ABCD的周长是8+8.20.(8分)如图,在4×4正方形的网格中,线段AB,CD如图位置,每个小正方形的边长都是1.(1)求线段AB、CD的长度.(2)在图中画出线段EF,使EF=,并判断以AB,CD,EF三条线段组成的三角形的形状,请说明理由.(3)我们J把(2)中三条线段按照点E与点C重合,点F与点B重合,点D与点A重合,这样可以得△ABC,则点C到直线AB的距离为(直接写结果).【解答】解:(1)AB==,CD==2.(2)EF=,如图所示;∵CD2+EF2=AB2∴以AB,CD,EF三条线段组成的三角形是直角三角形;(3)设C到直线AB的距离为h.则有••2=••h,∴h=,∴C到直线AB的距离为.故答案为.21.(8分)已知:x=2+1,y=﹣1求:(1)x2+2xy+y2的立方根;(2)x2+y2﹣2+1的平方根;(3)(4+2)y2+(2﹣1)x﹣8的值.【解答】解:(1)∵x=2+1,y=﹣1,∴x2+2xy+y2=(x+y)2=(2+1+﹣1)2=27,27的立方根为3;(2)∵x=2+1,y=﹣1,∴x2+y2﹣2+1=(2+1)2+(﹣1)2﹣2+1=13+4+4﹣2﹣2+1=18,18平方根为±3;(3)∵x=2+1,y=﹣1,∴(4+2)y2+(2﹣1)x﹣8=(4+2)(﹣1)2+(2﹣1)(2+1)﹣8=(4+2)(4﹣2)+12﹣1﹣8=16﹣12+12﹣1﹣8=7.22.(10分)已知:四边形ABCD是边长为4的菱形,∠BAD=60°,对角线AC与BD 交于点O,过点O的直线EF交AD于点E,交BC于点F.(1)如图(1),①求AC的长;②求证:AE=CF;(2)如图(2),若∠EOD=30°,连BE,CE,求△BEC的周长.【解答】解:(1)①根据题意及菱形的性质,可求∠BAO=30°,BO=2,∴AO=2,∴AC=4;②∵四边形ABCD是菱形,∴AO=CO,AD∥BC,∴∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF;(2)依题意△CBD是等边△,BD=4,可得EF⊥BC,∵BO=2,OE=OF,BF=1,∴OF=,EF=2,BE=,EC=∴△BEC的周长为(4++)23.(10分)(1)如图(1),在平行四边形ABCD中,DE⊥AB,BF⊥CD,垂足分别为E、F,求证:AE=CF(2)如图(2),在平行四边形ABCD中,AC、BD是两条对角线,请探究:AC2,AB2,BD2,BC2之间的数量关系,并证明你的结论.(3)如图(3),PQ是△PMN的中线,若PM=11,PN=13,MN=10,直接写出PQ的长度2.【解答】解:(1)∵平行四边形ABCD中,DE⊥AB,BF⊥CD,∴AD=CB,DE=BF,∠AED=∠CFB=90°,∴Rt△AED≌Rt△CFB,∴AE=CF;(2)如图,分别过A,D作AE⊥BC交CB延长线于E,DF⊥BC于F.根据勾股定理可得:AC2=AE2+(BE+BC)2①,AE2=AB2﹣BE2②,BD2=DF2+(BC﹣CF)2③,DF2=DC2﹣CF2④,∵四边形ABCD是平行四边形,∴AB=DC,又∵AE⊥BC,DF⊥BC,∴∠AEB=∠DFC=90°,AE=DF,∴Rt△AEB≌Rt△DFC,∴BE=CF,而AB=DC,把②代①,④代③,可得:AC2=AB2﹣BE2+(BE+BC)2BD2=DC2﹣CF2+(BC﹣CF)2两式相加,可得:AC2+BD2=2(AB2+BC2);(3)PQ=2.如图,延长PQ至R,使得QR=PQ,连接RM,RN,∵PQ是△PMN的中线,∴NQ=MQ,∴四边形NPMR是平行四边形,由(2)可得,MN2+PR2=2(NP2+MP2),又∵PM=11,PN=13,MN=10,∴102+(2PQ)2=2(132+112),解得PQ=2.故答案为:2.24.(12分)如图所示,在平面直角坐标系中,A(a,0),B(b,0),D(0,d),以AB、AD为邻边作平行四边形ABCD,其中:=,a,d满足(a+2)2+=0(1)如图1,求点C的坐标及线段BC的长;(2)如图2,线段BC的中垂线交y轴于E点,F为AD的中点,连CE,BE,EF及BF,求证:BF⊥EF;(3)如图3,点G在线段BD上,点H,M分别在线段OB,OD上,且BG=BH,DG=DM,过点H作NH⊥HG交GM的延长线于点N,若N(t,﹣t),求点G的坐标.【解答】解:(1)∵=,(a+2)2+=0,∴b=6,a=﹣2,d=8,∴A(﹣2,0),B(6,0),D(0,8),∴CD=AB=8,OD=8,∴C(8,8),BC=AD=2;(2)证明:如图2,延长EF至Q,使FQ=EF,连AQ,BQ.由F为AD的中点,可得AF=DF,又∵∠AFQ=∠DFE,∴△DEF≌△AQF,∴DE=AQ,∠EDF=∠QAF,∴DE∥AQ.又∵AB⊥DE,∴AB⊥AQ,∴∠BAQ=∠CDE=90°,又∵AB=DC,∴△BAQ≌△CDE,∴BQ=CE,∵CE=BE,∴BQ=BE,而F为EQ的中点,∴BF⊥EF;(3)在△BOD中,∵∠OBD+∠ODB=90°,又∵BG=BH,DG=DM,∴2∠DGM+2∠BGH=360°﹣90°=270°,∴∠DGM+∠BGH=135°,∴∠NGH=45°,而NH⊥HG,∴△GHN是等腰直角三角形.如图3,分别过点N,G作NR⊥AB于R,GS⊥AB于S,则∠NRH=∠HSG=90°,∴∠NHR=∠HGS,而NH=HG,∴△HRN≌△GSH,∴NR=HS,HR=GS.如图3,连ON,GO,∵N(t,﹣t),∴NR=OR,∴GS=OS,∴△GSO为等腰直角三角形,∵S△DOB=S△DOG+S△BOG∴•OB•OD=•OB•GS+•OD•OS,∴GS=OS=,∴G(,).。

2017-2018学年第二学期八年级期中测试数学试题卷、参考答案评分建议

2017-2018学年第二学期八年级期中测试数学试题卷、参考答案评分建议

17 S△ABC . 120
1 BM=5﹣2t, 2 17 1 17 由 S△PMD S△ABC ,即 12 t 5 2t , 120 2 2 2 ∴2t ﹣29t+43=0
①若点 M 在线段 CD 上,即 0 t
12.4 15.2
13.-4 16.3.
1 . 8 1 33 1 33 (2) x1 , x2 . 4 4
1 1 y 2 x 2 y x y x 18.(1)原式 2 2 2 2 , 2 y x y xy x
1 1 1 1 (1)已知 x 2 3 , y 2 3 ,求 的值. x y x y
(2)若 5 的整数部分为 a ,小数部分为 b ,写出 a , b 的值并计算
a 1 ab 的值. b
19.(本小题满分 8 分) 某校八年级对某班最近一次数学测验成绩(得分取整数)进行统计分析,将所有成绩由 低到高分成五组,并绘制成如图的频数分布直方图,请结合直方图提供的信息,回答下 列问题: (1)该班共有 ▲ 名同学参加这次测验; (2)这次测验成绩的中位数落在 ▲ 分数段内; (3)若该校一共有 800 名初三学生参加这次测验, 成绩 80 分以上(不含 80 分)为优秀,估计该校这 次数学测验的优秀人数是多少人?
第 2 页(共 3 页)
23.(1)∵AB=AC=13,AD⊥BC, ∴BD=CD=5cm,且∠ADB=90° , 2 2 2 ∴AD =AC ﹣CD ∴AD=12cm (2)AP=t, ∴PD=12﹣t, 在 Rt△PDC 中, PC 29 ,CD=5,根据勾股定理得,PC2=CD2+PD2, ∴29=52+(12﹣t)2 , ∴t=10 或 t=14(舍) (3)假设存在 t,使得 S△PMD ∵BC=10,AD=12, ∴ S△ABC

2017-2018学年人教版八年级(下)期中数学试卷(有答案和解析)(4)

2017-2018学年人教版八年级(下)期中数学试卷(有答案和解析)(4)

2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分40分,每小题4分)1.按下列各组数据能组成直角三角形的是()A.11,15,13B.1,4,5C.8,15,17D.4,5,62.要使式子有意义,则x的值可以是()A.2B.0C.1D.93.菱形和矩形一定都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分且相等D.对角线互相平分4.如图,矩形ABCD中,AB<BC,对角线AC、BD相交于点O,则图中的等腰三角形有()A.2个B.4个C.6个D.8个5.下列二次根式中,是最简二次根式的是()A.B.C.D.6.若函数y=(2m+1)x2+(1﹣2m)x(m为常数)是正比例函数,则m的值为()A.m>B.m=C.m<D.m=7.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.3B.4C.15D.7.28.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1 cm B.2 cm C.3 cm D.4 cm9.如图所示,要在离地面5米处引拉线固定电线杆,使拉线和地面成45°角.若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2米,L2=6.2米,L3=7.2米,L4=10米四种备用拉线材料中,拉线AC最好选用()A.L1B.L2C.L3D.L410.如图,OA和BA分别表示甲乙两名学生运动的一次函数的图象,图s和t分别表示路程和时间,根据图象判定快者比慢者的速度每秒快()A.2.5米B.2米C.1.5米D.1米二.填空题(共6小题,满分24分,每小题4分)11.一次函数y=(2m﹣1)x+(1﹣4m)的图象不经过第三象限,则m的取值范围.12.在,,,中,是最简二次根式的是.13.如图,一圆柱形容器(厚度忽略不计),已知底面半径为6m,高为16cm,现将一根长度为28cm 的玻璃棒一端插入容器中,则玻璃棒露在容器外的长度的最小值是cm.14.已知点(﹣4,y1),(2,y2)都在直线y=﹣(k2+1)x+2上,则y1,y2的大小关系是.15.如图是一组有规律的图案,第1个图案由6个基础图形组成,第2个图案由11个基础图形组成,…,第n(n是正整数)个图案中由个基础图形组成.(用含n的代数式表示)16.如图,菱形ABCD的边长为6,∠DAB=60°,点P是对角线AC上一动点,Q是AB的中点,则BP+PQ的最小值是.三.解答题(共9小题,满分86分)17.计算:(1)﹣+(2)(﹣)(+)+(﹣1)218.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.19.如图,反映了小明从家到超市的时间与距离之间关系的一幅图.(1)图中反映了哪两个变量之间的关系?超市离家多远?(2)小明到达超市用了多少时间?小明往返花了多少时间?(3)小明离家出发后20分钟到30分钟内可以在做什么?(4)小明从家到超市时的平均速度是多少?返回时的平均速度是多少?20.如图,在四边形ABCD中,AB=AD,BC=CD,E,F,G,H分别为AB,BC,CD,AD的中点,顺次连接E,G,F,H,求证:四边形EFGH是矩形.21.如图,把矩形ABCD沿对角线BD折叠使点C落在F处,BF交AD于点E.(1)求证:△BEA≌△DEF;(2)若AB=2,AD=4,求AE的长.22.已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的表达式;(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.23.如图1,在平行四边形ABCD中,E,F分别在边AD,AB上,连接CE,CF,且满足∠DCE=∠BCF,BF=DE,∠A=60°,连接EF.(1)若EF=2,求△AEF的面积;(2)如图2,取CE的中点P,连接DP,PF,DF,求证:DP⊥PF.24.如图,以△ABC的边AB、AC为边的等边三角ABD和等边三角形ACE,四边形ADFE是平行四边形.(1)当∠BAC满足什么条件时,四边形ADFE是矩形;(2)当∠BAC满足什么条件时,平行四边形ADFE不存在;(3)当△ABC分别满足什么条件时,平行四边形ADFE是菱形,正方形?25.如图,两个全等的含30°、60°角的三角板ADE和三角板ABC放置在一起,∠DEA=∠ACB =90°,∠DAE=∠ABC=30°,E、A、C三点在一条直线上,连接BD,取BD中点M,连接ME、MC,试判断△EMC的形状,并说明理由.2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.按下列各组数据能组成直角三角形的是()A.11,15,13B.1,4,5C.8,15,17D.4,5,6【分析】能不能组成直角三角形,需验证两小边的平方和是否等于最长边的平方.【解答】解:A、112+152≠132,故不能组成直角三角形;B、12+42≠52,故不能组成直角三角形;C、82+152=172,故不能组成直角三角形;D、42+52≠62,故不能组成直角三角形;故选:C.【点评】解答此题要用到勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.2.要使式子有意义,则x的值可以是()A.2B.0C.1D.9【分析】根据二次根式的性质意义,被开方数大于等于0,即可求得.【解答】解:依题意得:x﹣5≥0,解得:x≥5.观察选项,只有选项D符合题意.故选:D.【点评】此题主要考查了二次根式的定义,首先利用二次根式的定义求出字母的取值范围,然后利用x取整数的要求即可解决问题.3.菱形和矩形一定都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分且相等D.对角线互相平分【分析】根据矩形的对角线的性质(对角线互相平分且相等),菱形的对角线性质(对角线互相垂直平分)可解.【解答】解:菱形的对角线互相垂直且平分,矩形的对角线相等且平分.菱形和矩形一定都具有的性质是对角线互相平分.故选:D.【点评】此题主要考查矩形、菱形的对角线的性质.熟悉菱形和矩形的对角线的性质是解决本题的关键.4.如图,矩形ABCD中,AB<BC,对角线AC、BD相交于点O,则图中的等腰三角形有()A.2个B.4个C.6个D.8个【分析】本题需先根据矩形的性质得出OA=OB=OC=OD,从而得出图中等腰三角形中的个数,即可得出正确答案.【解答】解:∵矩形ABCD中,AB<BC,对角线AC、BD相交于点O,∴OA=OB=OC=OD,∴图中的等腰三角形有△AOB、△AOD、△COD、△BOC四个.故选:B.【点评】本题主要考查了等腰三角形的判定,在解题时要把等腰三角形的判定与矩形的性质相结合是本题的关键.5.下列二次根式中,是最简二次根式的是()A.B.C.D.【分析】直接利用最简二次根式的定义分析得出答案.【解答】解:A、是最简二次根式,正确;B、不是最简二次根式,错误;C、不是最简二次根式,错误;D、不是最简二次根式,错误;故选:A.【点评】此题主要考查了最简二次根式,正确把握定义是解题关键.6.若函数y=(2m+1)x2+(1﹣2m)x(m为常数)是正比例函数,则m的值为()A.m>B.m=C.m<D.m=【分析】根据正比例函数的定义,2m+1=0,1﹣2m≠0.从而求解.【解答】解:根据题意得:2m+1=0,解得:m=﹣.故选:D.【点评】主要考查正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.7.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.3B.4C.15D.7.2【分析】首先根据勾股定理求出斜边AB的长,再根据三角形的面积为定值即可求出则点C到AB 的距离.【解答】解:在Rt△ABC中,∠C=90°,则有AC2+BC2=AB2,∵BC=12,AC=9,∴AB==15,=AC•BC=AB•h,∵S△ABC∴h==7.2,故选:D.【点评】本题考查了勾股定理在直角三角形中的应用,解本题的关键是正确的运用勾股定理,确定AB为斜边.8.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1 cm B.2 cm C.3 cm D.4 cm【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,根据AD、AB的值,求出EC的长.【解答】解:∵AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=AB=3cm,∵BC=AD=5cm,∴EC=BC﹣BE=5﹣3=2cm,故选:B.【点评】本题主要考查了平行四边形的性质,等腰三角形的判定;在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.9.如图所示,要在离地面5米处引拉线固定电线杆,使拉线和地面成45°角.若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2米,L2=6.2米,L3=7.2米,L4=10米四种备用拉线材料中,拉线AC最好选用()A.L1B.L2C.L3D.L4【分析】先利用勾股定理计算出AC,然后进行无理数估算后进行判断.【解答】解:在Rt△ACD中,∵AD=5,CD=5,∴AC==5≈7.07,∴拉线AC最好选用L3.故选:C.【点评】本题考查了勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.10.如图,OA和BA分别表示甲乙两名学生运动的一次函数的图象,图s和t分别表示路程和时间,根据图象判定快者比慢者的速度每秒快()A.2.5米B.2米C.1.5米D.1米【分析】利用图象分别得出快、慢者行驶的路程和时间,进而求出速度差.【解答】解:如图所示:快者的速度为:64÷8=8(m/s),慢者的速度为:(64﹣12)÷8=6.5(m/s),故快者比慢者的速度每秒快:8﹣6.5=1.5(m/s).故选:C.【点评】此题主要考查了函数的图象,利用图象得出正确信息是解题关键.二.填空题(共6小题,满分24分,每小题4分)11.一次函数y=(2m﹣1)x+(1﹣4m)的图象不经过第三象限,则m的取值范围m≤.【分析】由于一次函数y=(2m﹣1)x+(1﹣4m)的图象不经过第三象限,则得到,解不等式组即可得到m的取值范围.【解答】解:∵一次函数y=(2m﹣1)x+(1﹣4m)的图象不经过第三象限,∴,∴m≤.则m的取值范围是m≤.故答案为:m≤.【点评】本题考查的知识点为:一次函数y=(2m﹣1)x+(1﹣4m)的图象不经过第三象限,说明x的系数小于0,常数项大于等于0.12.在,,,中,是最简二次根式的是.【分析】根据最简二次根式的定义(被开方数不含有能开的尽方的因式或因数,被开方数不含有分数),判断即可.【解答】解:在,=4,=,=3中,是最简二次根式的是,故答案为:【点评】本题考查了对最简二次根式的理解,能熟练地运用定义进行判断是解此题的关键.13.如图,一圆柱形容器(厚度忽略不计),已知底面半径为6m,高为16cm,现将一根长度为28cm 的玻璃棒一端插入容器中,则玻璃棒露在容器外的长度的最小值是8cm.【分析】先根据勾股定理求出玻璃棒在容器里面的长度的最大值,再根据线段的和差关系即可求解.【解答】解:6×2=12(cm),由勾股定理得=20(cm),则玻璃棒露在容器外的长度的最小值是28﹣20=8(cm).故答案为8.【点评】考查了勾股定理的应用,关键是运用勾股定理求得玻璃棒在容器里面的长度的最大值,此题比较常见,难度适中.14.已知点(﹣4,y1),(2,y2)都在直线y=﹣(k2+1)x+2上,则y1,y2的大小关系是y1>y2.【分析】先根据一次函数的解析式判断出一次函数的增减性,再根据﹣4<2即可得出结论.【解答】解:∵一次函数y=﹣(k2+1)x+2(k为常数)中,﹣(k2+1)<0,∴y随x的增大而减小,∵﹣4<2,∴y1>y2.故答案为:y1>y2.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15.如图是一组有规律的图案,第1个图案由6个基础图形组成,第2个图案由11个基础图形组成,…,第n(n是正整数)个图案中由(5n+1)个基础图形组成.(用含n的代数式表示)【分析】观察图形不难发现,后一个图形比前一个图形多5个基础图形,根据此规律写出第n个图案的基础图形个数即可.【解答】解:第1个图案由6个基础图形组成,第2个图案由11个基础图形组成,11=5×2+1,第3个图案由16个基础图形组成,16=5×3+1,…,第n个图案由5n+1个基础图形组成.故答案为:5n+1.【点评】本题是对图形变化规律的考查,观察图形得到后一个图形比前一个图形多5个基础图形是解题的关键.16.如图,菱形ABCD的边长为6,∠DAB=60°,点P是对角线AC上一动点,Q是AB的中点,则BP+PQ的最小值是.【分析】根据已知可得到当P点位于AB的中垂线时,BP+PQ有最小值.过点Q作PQ⊥AB,交AC与P,则PA=PB,根据已知可求得PQ,PA的会值,从而不难求得BP+PQ的最小值.【解答】解:如图,∵在菱形ABCD中,点B与点D关于对角线AC对称.∴连接DQ,DQ与AC的交点为P,连接BP,此时BP+PQ有最小值.∵∠DAB=60°∴∠BAC=30°∴PA=2PQ在Rt△APQ中,PA2=PQ2+32∴PQ=,PA=2∴BP+PQ=PA+PQ=3故答案为3.【点评】本题考查的是中垂线、菱形的性质、勾股定理和最值.根据题意得出:当P点位于AB 的中垂线时,BP+PQ有最小值是解本题的关键.三.解答题(共9小题,满分86分)17.计算:(1)﹣+(2)(﹣)(+)+(﹣1)2【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先利用平方差公式和完全平方公式计算,再计算加减可得.【解答】解:(1)原式=4﹣3+=;(2)原式=5﹣2+4﹣2=7﹣2.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.18.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.【分析】如图,本题需要判断点C到AB的距离是否小于250米,如果小于则有危险,大于则没有危险.因此过C作CD⊥AB于D,然后根据勾股定理在直角三角形ABC中即可求出AB的长度,然后利用三角形的公式即可求出CD,然后和250米比较大小即可判断需要暂时封锁.【解答】解:如图,过C作CD⊥AB于D,∵BC=400米,AC=300米,∠ACB=90°,∴根据勾股定理得AB=500米,∵AB•CD=BC•AC,∴CD=240米.∵240米<250米,故有危险,因此AB段公路需要暂时封锁.【点评】本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.19.如图,反映了小明从家到超市的时间与距离之间关系的一幅图.(1)图中反映了哪两个变量之间的关系?超市离家多远?(2)小明到达超市用了多少时间?小明往返花了多少时间?(3)小明离家出发后20分钟到30分钟内可以在做什么?(4)小明从家到超市时的平均速度是多少?返回时的平均速度是多少?【分析】(1)(2)(3)可由图象直接得出.(4)数与形相结合,理解时间与路程之间的关系.【解答】解:根据图形可知:(1)图中所反映的是时间与距离之间的关系;超市离家900米;(2)小明到达超市用了20分钟;返回用了15分钟,往返共用了35分钟;(3)小明离家出发后20分钟到30分钟可以在超市购物或休息;(4)小明到超市的平均速度是900÷20=45米/分钟;返回的平均速度是900÷15=60米/分钟.【点评】结合图形反映小明从离家到返回的全过程.20.如图,在四边形ABCD中,AB=AD,BC=CD,E,F,G,H分别为AB,BC,CD,AD的中点,顺次连接E,G,F,H,求证:四边形EFGH是矩形.【分析】根据连接AC、BD交于点O,根据三角形中位线定理、平行四边形的判定定理得到四边形EFGH是平行四边形,根据线段垂直平分线的性质、矩形的判定定理证明.【解答】证明:连接AC、BD交于点O,∵E,F分别为AB,BC的中点,∴EF∥AC,EF=AC,∵G,H分别为CD,AD的中点,∴HG∥AC,HG=AC,∴EF∥HG,EF=HG,∴四边形EFGH是平行四边形,∵AB=AD,BC=CD,∴AC是线段BD的垂直平分线,∵E,H分别为AB,AD的中点,∴EH∥BD,又EF∥AC,∴∠HEF=90°,∴四边形EFGH是矩形.【点评】本题中点四边形、矩形的判定、三角形中位线定理,掌握矩形的判定定理是解题的关键.21.如图,把矩形ABCD沿对角线BD折叠使点C落在F处,BF交AD于点E.(1)求证:△BEA≌△DEF;(2)若AB=2,AD=4,求AE的长.【分析】(1)根据矩形的性质得出AB=CD,∠A=∠C=90°,根据折叠得出DF=CD,∠F =∠C=90°,求出AB=FD,∠A=∠F,根据全等三角形的判定得出即可;(2)根据全等得出BE=DE,根据勾股定理得出关于AE的方程,求出方程的解即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠C=90°,∵把矩形ABCD沿对角线BD折叠使点C落在F处,BF交AD于点E,∴DF=CD,∠F=∠C=90°,∴AB=FD,∠A=∠F,在△BEA和△DEF中∴△BEA≌△DEF(AAS);(2)解:∵△BEA≌△DEF,∴BE=DE=AD﹣AE=4﹣AE,在Rt△BAE中,由勾股定理得:AB2+AE2=BE2,∴22+AE2=(4﹣AE)2,解得:AE=.【点评】本题考查了勾股定理,折叠的性质,矩形的性质的应用,能灵活运用定理进行推理是解此题的关键.22.已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的表达式;(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.【分析】(1)由点A的纵坐标、点A所在的象限结合△AOH的面积为3,可求出点A的坐标,再根据点A的坐标利用待定系数法,可求出正比例函数的表达式;(2)设点P的坐标为(a,0),根据△AOP的面积为5,即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:(1)∵点A在第四象限,点A的横坐标为3,且△AOH的面积为3.∴点A的纵坐标为﹣2,∴点A的坐标为(3,﹣2).将点A(3,﹣2)代入y=kx,﹣2=3k,解得:k=﹣,∴正比例函数的表达式为y=﹣x.(2)设点P的坐标为(a,0),=|a|×|﹣2|=5,则S△AOP解得:a=±5,∴在x轴上能找到一点P,使△AOP的面积为5,此时点P的坐标为(﹣5,0)或(5,0).【点评】本题考查了待定系数法求正比例函数解析式以及三角形的面积,解题的关键是:(1)根据三角形的面积找出点A的坐标;(2)利用三角形的面积找出关于a的含绝对值符号的一元一次方程.23.如图1,在平行四边形ABCD中,E,F分别在边AD,AB上,连接CE,CF,且满足∠DCE=∠BCF,BF=DE,∠A=60°,连接EF.(1)若EF=2,求△AEF的面积;(2)如图2,取CE的中点P,连接DP,PF,DF,求证:DP⊥PF.【分析】(1)先证明证明△CDE≌△CBF,得到CD=CB,可得▱ABCD是菱形,则AD=AB,由DE=BF得AE=AF,则△AEF是等边三角形,根据EF的长可得△AEF的面积;(2)延长DP交BC于N,连结FN,证明△CPN≌△EPD,得到AE=BN,证明△FBN≌△DEF,得到FN=FD,根据等腰三角形三线合一的性质可得结论.【解答】(1)解:∵四边形ABCD是平行四边形,∴∠D=∠B,∵BF=DE,∠DCE=∠BCF,∴△CDE≌△CBF(AAS),∴CD=CB,∴▱ABCD是菱形,∴AD=AB,∴AD﹣DE=AB﹣BF,即AE=AF,∵∠A=60°,∴△AEF是等边三角形,∵EF=2,=×22=;∴S△AEF(2)证明:如图2,延长DP交BC于N,连结FN,∵四边形ABCD是菱形,∴AD∥BC,∴∠EDP=∠PNC,∠DEP=∠PCN,∵点P是CE的中点,∴CP=EP.∴△CPN≌△EPD,∴DE=CN,PD=PN.又∵AD=BC.∴AD﹣DE=BC﹣CN,即AE=BN.∵△AEF是等边三角形,∴∠AEF=60°,EF=AE.∴∠DEF=120°,EF=BN.∵AD∥BC,∴∠A+∠ABC=180°,又∵∠A=60°,∴∠ABC=120°,∴∠ABC=∠DEF.又∵DE=BF,BN=EF.∴△FBN≌△DEF,∴DF=NF,∵PD=PN,∴PF⊥PD.【点评】本题考查的是菱形的性质和判定、平行四边形的性质、全等三角形的判定和性质以及等腰三角形的性质,正确作出辅助线,构造全等三角形和等腰三角形是解题的关键.24.如图,以△ABC的边AB、AC为边的等边三角ABD和等边三角形ACE,四边形ADFE是平行四边形.(1)当∠BAC满足什么条件时,四边形ADFE是矩形;(2)当∠BAC满足什么条件时,平行四边形ADFE不存在;(3)当△ABC分别满足什么条件时,平行四边形ADFE是菱形,正方形?【分析】(1)根据矩形的四角相等为90度求解;(2)根据D、A、E在同一条直线上时不能构成四边形求解;(3)分别根据菱形的四边相等和正方形的四边相等,四角相等的特性解题.【解答】解:(1)当∠BAC=150°时,四边形ADFE是矩形,∴∠DAE=360°﹣120°﹣150°=90°;∵四边形ADFE是平行四边形,∴四边形ADFE是矩形(有一个角是直角的平行四边形是矩形);(2)当∠BAC=60°时平行四边形ADFE不存在,∠DAE=180°﹣60°﹣60°﹣60°=0°;(3)当AB=AC且∠BAC不等于60°时平行四边形ADFE是菱形.综上可知:当AB=AC、∠BAC=150°时平行四边形ADFE是正方形.【点评】主要考查了特殊平行四边形的特殊性.其中矩形,菱形,正方形的一些特性要掌握.25.如图,两个全等的含30°、60°角的三角板ADE和三角板ABC放置在一起,∠DEA=∠ACB =90°,∠DAE=∠ABC=30°,E、A、C三点在一条直线上,连接BD,取BD中点M,连接ME、MC,试判断△EMC的形状,并说明理由.【分析】△EMC的形状是等腰直角三角形,求出∠DAB=90°,AD=AB,推出AM⊥BD,AM =BM=DM,求出∠MBC=∠MAE,BM=AM,证△BCM≌△AEM,推出EM=CM,∠3=∠2,求出∠1+∠3=90°即可.【解答】解:△EMC的形状是等腰直角三角形,理由是:连接AM,∵∠8=30°,∠9=60°,∴∠DAB=180°﹣30°﹣60°=90°,∵M为BD中点,AD=AB(已知两个全等的含30°、60°角的三角板ADE和三角板ABC放置在一起),∴AM⊥BD(等腰三角形底边的高也平分底边)AM=BM=DM(直角三角形斜边上中线等于斜边的一半)∴∠5=∠6=(180°﹣90°)=45°,∠4=∠BDA=45°,∵∠7=30°,∴∠MBC=45°+30°=75°,同理∠MAE=75°=∠MBC,在△BCM和△AEM中,∴△BCM≌△AEM(SAS),∴EM=CM,∠3=∠2,∵AM⊥BD,∴∠1+∠2=90°,∴∠1+∠3=90°,∴△EMC是等腰直角三角形.【点评】本题考查了等腰直角三角形,全等三角形的性质和判定,直角三角形斜边上中线等知识点的运用,主要考查学生综合运用性质进行推理的能力,题目比较典型,但是有一定的难度.。

湖北省武汉市江汉区2017-2018学年八年级上学期期中考试数学试卷(有答案)

湖北省武汉市江汉区2017-2018学年八年级上学期期中考试数学试卷(有答案)

湖北省武汉市江汉区2017-2018学年八年级上学期期中考试数学试卷(有答案)江汉区2017-2018学年度第一学期八年级数学期中考试试题第Ⅰ卷(本卷满分100分)一、选择题(共10小题,每小题3分,共30分)1.下列图形中,不是轴对称图形的是__________。

2.点P(-3,2)关于y轴对称的点的坐标是__________。

3.___所示,一位同学书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是__________。

4.如图,B,C,D三点共线,∠B=50°,∠ACD=110°,则∠A的度数为__________。

5.下列所作出的△ABC的高,正确的图形是__________。

6.已知三角形的两边长分别为7和2,则周长可能是__________。

7.在下列条件中,能判定△ABC和△A′B′C′全等的是()__________。

8.如图,有三个村庄分别用点A、点B、点C表示,要修一个集市,使集市到三个村庄的距离相等,则集市的修建位置应选在__________。

9.下列命题:①面积相等的两个三角形全等;②三角形三条高所在的直线交于一点;③等腰三角形两底角的平分线相等;④等腰三角形边上的高、中线和对角的平分线互相重合。

其中真命题有()个__________。

10.如图,OA=OC,OB=OD,OA⊥OB,OC⊥OD,下列结论:①△AOD≌△COB;②CD=AB;③∠CDA=∠ABC。

其中正确的结论是__________。

二、填空题(共6小题,每小题3分,共18分)1.直角三角形斜边长为__________,一条直角边长为6,求另一条直角边长。

2.在△ABC中,∠A=45°,AB=3,AC=4,BC=__________。

3.在矩形ABCD中,AB=6,BC=8,对角线AC的长为__________。

2017-2018学年八年级(下)期中数学试卷(有答案和解析) (2)

2017-2018学年八年级(下)期中数学试卷(有答案和解析) (2)

2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分40分,每小题4分)1.下列各式属于最简二次根式的是()A.B.C.D.2.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=23.若方程(n﹣1)x2+x﹣1=0是关于x的一元二次方程,则()A.n≠1B.n≥0C.n≥0且n≠1D.n为任意实数4.方程x2=4x的根是()A.x=4B.x=0C.x1=0,x2=4D.x1=0,x2=﹣45.一个三角形的三边分别是3、4、5,则它的面积是()A.6B.12C.7.5D.106.若关于x的一元二次方程mx2﹣x=有实数根,则实数m的取值范围是()A.m≥﹣1B.m≥﹣1且m≠0C.m>﹣1且m≠0D.m≠07.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年年收入300美元,预计2018年年收入将达到1500美元,设2016年到2018年该地区居民年人均收入平均增长率为x,可列方程为()A.300(1+x)2=1500B.300(1+2x)=1500C.300(1+x2)=1500D.300+2x=15008.能使等式成立的x的取值范围是()A.x≠2B.x≥0C.x>2D.x≥29.用配方法解方程x2﹣10x﹣1=0,正确的变形是()A.(x﹣5)2=1B.(x+5)2=26C.(x﹣5)2=26D.(x﹣5)2=2410.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,CD⊥AB于D,则CD的长是()A.6B.C.D.二.填空题(共4小题,满分20分,每小题5分)11.不超过(﹣1.7)2的最大整数是.12.代数式中x的取值范围是.13.若关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0的一个根为0,则m值是.14.如图,点D、E分别在等边△ABC的边AB、BC上,将△BDE沿直线DE翻折,使点B落在B1处,DB1、EB1分别交边AC于点F、G.若∠ADF=80°,则∠CEG=.三.解答题(共2小题,满分16分,每小题8分)15.计算:(1)﹣+(2)(﹣)(+)+(﹣1)216.解方程:x2﹣4x+1=0.四.解答题(共2小题,满分16分,每小题8分)17.已知关于x的二次方程x2+mx+n2+1=0.(1)若n=1,且此方程有一个根为﹣1,求m的值;(2)若m=2,判断此方程根的情况.18.若直角三角形的两直角边长为a、b,且满足+|b﹣4|=0,求该直角三角形的斜边长.五.解答题(共2小题,满分20分,每小题10分)19.小明准备用一段长30米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为a米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米.(1)请用a表示第三条边长.(2)问第一条边长可以为7米吗?为什么?请说明理由.(3)求出a的取值范围.(4)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说出你的围法;若不能,请说明理由.20.“饺子“又名“交子”或者“娇耳”,是新旧交替之意,它是重庆人民的年夜饭必吃的一道美食.今年除夕,小侨跟着妈妈一起包饺子准备年夜饭,体验浓浓的团圆气氛.已知小侨家共10人,平均每人吃10个饺子,计划用10分钟将饺子包完.(1)若妈妈每分钟包饺子的速度是小侨速度的2倍少2个,那么小侨每分钟至少要包多少个饺子?(2)小侨以(1)问中的最低速度,和妈妈同时开始包饺子,妈妈包饺子的速度在(1)问的最低速度基础上提升了a%,在包饺子的过程中小侨外出耽误了分钟,返家后,小侨与妈妈一起包完剩下的饺子,所用时间比原计划少了a%,求a的值.六.解答题(共1小题,满分12分,每小题12分)21.如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的长.七.解答题(共1小题,满分12分,每小题12分)22.一架长2.5米的梯子AB如图所示斜靠在一面墙上,这时梯足B离墙底C(∠C=90°)的距离BC为0.7米.(1)求此时梯顶A距地面的高度AC;(2)如果梯顶A下滑0.9米,那么梯足B在水平方向,向右滑动了多少米?八.解答题(共1小题,满分14分,每小题14分)23.(14分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.下列各式属于最简二次根式的是()A.B.C.D.【分析】最简二次根式满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,由此结合选项可得出答案.【解答】解:A、含有能开方的因式,不是最简二次根式,故本选项错误;B、符合最简二次根式的定义,故本选项正确;C、含有能开方的因式,不是最简二次根式,故本选项错误;D、被开方数含分母,故本选项错误;故选:B.【点评】此题考查了最简二次根式的知识,解答本题的关键是熟练掌握最简二次根式满足的两个条件,属于基础题,难度一般.2.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=2【分析】利用二次根式的加减法对A、B进行判断;利用二次根式的除法法则对C进行判断;利用二次根式的乘法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=2,所以B选项错误;C、原式=,所以C选项错误;D、原式==2,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.若方程(n﹣1)x2+x﹣1=0是关于x的一元二次方程,则()A.n≠1B.n≥0C.n≥0且n≠1D.n为任意实数【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),把方程化为一般形式,根据二次项系数不等于0,即可求得n的取值范围.【解答】解:∵方程(n﹣1)x2+x﹣1=0是关于x的一元二次方程,∴n≥0且n﹣1≠0,即n≥0且n≠1.故选:C.【点评】本题考查了一元二次方程的定义.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c 是常数且a≠0),特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.4.方程x2=4x的根是()A.x=4B.x=0C.x1=0,x2=4D.x1=0,x2=﹣4【分析】原式利用因式分解法求出解即可.【解答】解:方程整理得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4,故选:C.【点评】此题考查了一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.5.一个三角形的三边分别是3、4、5,则它的面积是()A.6B.12C.7.5D.10【分析】由于32+42=52,易证此三角形是直角三角形,从而易求此三角形的面积.【解答】解:∵32+42=52,∴此三角形是直角三角形,=×3×4=6.∴S△故选:A.【点评】本题考查了勾股定理的逆定理.解题的关键是先证明此三角形是直角三角形.6.若关于x的一元二次方程mx2﹣x=有实数根,则实数m的取值范围是()A.m≥﹣1B.m≥﹣1且m≠0C.m>﹣1且m≠0D.m≠0【分析】将原方程变形为一般式,根据二次项系数非零及根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:原方程可变形为mx2﹣x﹣=0.∵关于x的一元二次方程mx2﹣x=有实数根,∴,解得:m≥﹣1且m≠0.故选:B.【点评】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零及根的判别式△≥0,列出关于m的一元一次不等式是解题的关键.7.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年年收入300美元,预计2018年年收入将达到1500美元,设2016年到2018年该地区居民年人均收入平均增长率为x,可列方程为()A.300(1+x)2=1500B.300(1+2x)=1500C.300(1+x2)=1500D.300+2x=1500【分析】2018年年收入=2016年年收入×(1+年平均增长率)2,把相关数值代入即可.【解答】解:设2016年到2018年该地区居民年人均收入平均增长率为x,可列方程为:300(1+x)2=1500.故选:A.【点评】此题主要考查了根据实际问题列一元二次方程;得到2018年收入的等量关系是解决本题的关键.8.能使等式成立的x的取值范围是()A.x≠2B.x≥0C.x>2D.x≥2【分析】本题需注意的是,被开方数为非负数,且分式的分母不能为0,列不等式组求出x的取值范围.【解答】解:由题意可得,,解之得x>2.故选:C.【点评】二次根式的被开方数是非负数,分母不为0,是本题确定取值范围的主要依据.9.用配方法解方程x2﹣10x﹣1=0,正确的变形是()A.(x﹣5)2=1B.(x+5)2=26C.(x﹣5)2=26D.(x﹣5)2=24【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:x2﹣10x﹣1=0,移项,得x2﹣10x=1,方程两边同时加上25,得x2﹣10x+25=26,∴(x﹣5)2=26.故选:C.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.10.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,CD⊥AB于D,则CD的长是()A.6B.C.D.【分析】根据勾股定理求出BC,根据三角形的面积公式计算.【解答】解:∵∠ACB=90°,AC=8,AB=10,∴BC==6,△ABC的面积=×AB×CD=×AC×BC,即×10×CD=×8×6,解得,CD=,故选:C.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.二.填空题(共4小题,满分20分,每小题5分)11.不超过(﹣1.7)2的最大整数是2.【分析】先根据有理数的平方求出(﹣1.7)2的值,再找出符合条件的最大整数即可.【解答】解:∵(﹣1.7)2=2.89,∴不超过2.89的最大整数为2.故答案为:2.【点评】本题考查的是有理数的乘方及有理数的大小比较,比较简单.12.代数式中x的取值范围是x>1.【分析】根据二次根式和分式有意义的条件解答.【解答】解:依题意得:x﹣1>0,解得x>1.故答案是:x>1.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数,分式分母不能为零.13.若关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0的一个根为0,则m值是﹣2.【分析】根据一元二次方程解的定义,将x=0代入关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0,然后解关于m的一元二次方程即可.【解答】解:根据题意,得x=0满足关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0,∴m2﹣4=0,解得,m=±2;又∵二次项系数m﹣2≠0,即m≠2,∴m=﹣2;故答案为:﹣2.【点评】本题考查了一元二次方程的解的定义.解答该题时,注意一元二次方程的定义中的“一元二次方程的二次项系数不为0”这一条件.14.如图,点D、E分别在等边△ABC的边AB、BC上,将△BDE沿直线DE翻折,使点B落在B1处,DB1、EB1分别交边AC于点F、G.若∠ADF=80°,则∠CEG=40°.【分析】由对顶角相等可得∠CGE=∠FGB1,由两角对应相等可得△ADF∽△B1GF,那么∠CGE 等于∠ADF的度数,进而利用三角形内角和得出答案.【解答】解:由翻折可得∠B1=∠B=60°,∴∠A=∠B1=60°,∵∠AFD=∠GFB1,∴△ADF∽△B1GF,∴∠ADF=∠B1GF,∵∠CGE=∠FGB1,∴∠CGE=∠ADF=80°.∴∠CEG=180°﹣80°﹣60°=40°,故答案为:40°【点评】本题考查了翻折变换问题;得到∠CGE等于∠ADF的度数的关系是解决本题的关键.三.解答题(共2小题,满分16分,每小题8分)15.计算:(1)﹣+(2)(﹣)(+)+(﹣1)2【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先利用平方差公式和完全平方公式计算,再计算加减可得.【解答】解:(1)原式=4﹣3+=;(2)原式=5﹣2+4﹣2=7﹣2.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.16.解方程:x2﹣4x+1=0.【分析】根据配方法可以解答此方程.【解答】解:x2﹣4x+1=0x2﹣4x+4=3(x﹣2)2=3x﹣2=∴x1=2+,x2=2﹣;【点评】本题考查解一元二次方程﹣配方法,解答本题的关键是会用配方法解方程的方法.四.解答题(共2小题,满分16分,每小题8分)17.已知关于x的二次方程x2+mx+n2+1=0.(1)若n=1,且此方程有一个根为﹣1,求m的值;(2)若m=2,判断此方程根的情况.【分析】(1)将x=﹣1,n=1代入原方程,可求出m的值;(2)代入m=2,根据方程的系数结合根的判别式,可得出△=﹣4n2,分n=0及n≠0两种情况找出此方程根的情况.【解答】解:(1)将x=﹣1,n=1代入原方程,得:(﹣1)2﹣m+12+1=0,解得:m=3.(2)当m=2时,原方程为x2+2x+n2+1=0,∴△=22﹣4×1×(n2+1)=﹣4n2.当n=0时,△=﹣4n2=0,此时原方程有两个相等的实数根;当n≠0时,△=﹣4n2<0,此时原方程无解.【点评】本题考查了根的判别式以及一元二次方程的解,解题的关键是:(1)代入x,n的值求出m的值;(2)分n=0及n≠0两种情况找出方程解的情况.18.若直角三角形的两直角边长为a、b,且满足+|b﹣4|=0,求该直角三角形的斜边长.【分析】先根据已知条件、算术平方根的性质和绝对值的性质求出a、b,再由勾股定理即可得出结果.【解答】解:∵+|b﹣4|=0,∴+|b﹣4|=0,∴|a﹣3|+|b﹣4|=0,∴a﹣3=0,b﹣4=0,∴a=3,b=4,∴直角三角形的斜边长===5.【点评】本题考查了勾股定理、绝对值的性质以及算术平方根的性质;熟练掌握勾股定理的运用,根据题意求出a、b是解决问题的关键.五.解答题(共2小题,满分20分,每小题10分)19.小明准备用一段长30米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为a米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米.(1)请用a表示第三条边长.(2)问第一条边长可以为7米吗?为什么?请说明理由.(3)求出a的取值范围.(4)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说出你的围法;若不能,请说明理由.【分析】(1)本题需先表示出第二条边长,即可得出第三条边长;(2)本题需先根据a=7,求出三边的长,根据三角形三边关系进行判断;(3)根据三角形的三边关系列出不等式组,即可求出a的取值范围;(3)本题需先求出a的值,然后即可得出三角形的三边长.【解答】解:(1)∵第二条边长为(2a+2)米,∴第三条边长为30﹣a﹣(2a+2)=28﹣3a(米);(2)不能.当a=7时,三边长分别为7,16,7,由于7+7<16,所以不能构成三角形,即第一条边长不能为7m;(3)根据题意得:,解得:<a<,即a的取值范围是<a<.(4)能围成.在(3)的条件下,a为整数时,a只能取5或6.当a=5时,三角形的三边长分别为5,12,13.由52+122=132知,恰好能构成直角三角形.当a=6时,三角形的三边长分别为6,14,10.由62+102≠142知,此时不能构成直角三角形.综上所述,能围成满足条件的小圈,它们的三边长分别为5m,12m,13m.【点评】本题主要考查了勾股定理、三角形三边关系以及一元一次不等式组的应用,在解题时根据三角形的三边关系,列出不等式组是本题的关键.20.“饺子“又名“交子”或者“娇耳”,是新旧交替之意,它是重庆人民的年夜饭必吃的一道美食.今年除夕,小侨跟着妈妈一起包饺子准备年夜饭,体验浓浓的团圆气氛.已知小侨家共10人,平均每人吃10个饺子,计划用10分钟将饺子包完.(1)若妈妈每分钟包饺子的速度是小侨速度的2倍少2个,那么小侨每分钟至少要包多少个饺子?(2)小侨以(1)问中的最低速度,和妈妈同时开始包饺子,妈妈包饺子的速度在(1)问的最低速度基础上提升了a%,在包饺子的过程中小侨外出耽误了分钟,返家后,小侨与妈妈一起包完剩下的饺子,所用时间比原计划少了a%,求a的值.【分析】题目明确给出了工作总量为10×10个饺子,工作时间10分钟,再设一个工作速度即能列得等量关系.(1)题干中明确给出妈妈和小侨包饺子的速度关系,设一个未知数即可表示两人的速度.问题出现“至少”说明应列不等式解题,即若小侨速度加快的话,包的饺子总量有可能大于100个.(2)明确了小侨的速度,妈妈速度提升的是一个百分数,所用是原来速度再乘以(1+a%),所用时间减少的也是一个百分数,应是10×(1﹣a%).小侨速度×时间+妈妈速度×时间=100个.计算时先把含a%的式子化简,能帮助准确计算.【解答】解:(1)设小侨每分钟包x个饺子,则妈妈每分钟包(2x﹣2)个饺子,得:10x+10(2x﹣2)≥10×10解得:x≥4(2)依题意得:小侨每分钟包4个饺子,妈妈每分钟包饺子数量为6×(1+a%)=6+a,包饺子总时间为10×(1﹣a%)=10﹣a,列得方程:(6+a)(10﹣a)+4(10﹣a﹣a)=100解得:a1=0(舍去),a2=40答:(1)小侨每分钟包至少包4个饺子;(2)a的值为40.【点评】本题考查了一元一次不等式的应用和一元二次方程的应用,解题关键是(1)找准是等量关系还是不等量关系;(2)提升或减少的是一个百分数,带a%式子的准确计算.六.解答题(共1小题,满分12分,每小题12分)21.如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的长.【分析】由题意知∠3=180°﹣2∠1=45°、∠4=180°﹣2∠2=30°、BE=KE、KF=FC,作KM⊥BC,设KM=x,知EM=x、MF=x,根据EF的长求得x=1,再进一步求解可得.【解答】解:由题意,得:∠3=180°﹣2∠1=45°,∠4=180°﹣2∠2=30°,BE=KE、KF =FC,如图,过点K作KM⊥BC于点M,设KM=x,则EM=x、MF=x,∴x+x=+1,解得:x=1,∴EK=、KF=2,∴BC=BE+EF+FC=EK+EF+KF=3++,∴BC的长为3++.【点评】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.七.解答题(共1小题,满分12分,每小题12分)22.一架长2.5米的梯子AB如图所示斜靠在一面墙上,这时梯足B离墙底C(∠C=90°)的距离BC为0.7米.(1)求此时梯顶A距地面的高度AC;(2)如果梯顶A下滑0.9米,那么梯足B在水平方向,向右滑动了多少米?【分析】(1)根据勾股定理可以求得这个梯子的顶端距地面的距离;(2)利用勾股定理可求出B′C的长,进而得到BB′=CB′﹣CB的值.【解答】解:(1)由题意可得,AC===2.4(米),即此时梯顶A距地面的高度AC是2.4米;(2)∵梯子的顶端A下滑了0.9米至点A′,∴A′C=AC﹣A′A=2.4﹣0.9=1.5(m),在Rt△A′CB′中,由勾股定理得A′C2+B′C2=A′B′2,即1.52+B′C2=2.52所以B′C=2(m)BB′=CB′﹣BC=2﹣0.7=1.3(m),即梯子的底端在水平方向滑动了1.3m.【点评】本题考查了勾股定理在实际生活中的应用,本题中根据梯子长不会变的等量关系求解是解题的关键.八.解答题(共1小题,满分14分,每小题14分)23.(14分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?【分析】(1)设每次降价的百分率为x,(1﹣x)2为两次降价的百分率,40降至32.4就是方程的平衡条件,列出方程求解即可;(2)设每天要想获得510元的利润,且更有利于减少库存,则每件商品应降价y元,由销售问题的数量关系建立方程求出其解即可.【解答】解:(1)设每次降价的百分率为x.40×(1﹣x)2=32.4x=10%或190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件32.4元,两次下降的百分率啊10%;(2)设每天要想获得510元的利润,且更有利于减少库存,则每件商品应降价y元,由题意,得(40﹣30﹣y)(4×+48)=510,解得:y1=1.5,y2=2.5,∵有利于减少库存,∴y=2.5.答:要使商场每月销售这种商品的利润达到510元,且更有利于减少库存,则每件商品应降价2.5元.【点评】此题主要考查了一元二次方程应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.。

最新学校17—18学年下学期八年级期中考试数学试题(附答案)

最新学校17—18学年下学期八年级期中考试数学试题(附答案)

绝密★启用前2017-2018学年第二学期期中考试八年级数学试题卷2018.4本试卷共2页,23小题,满分100分.考试用时90分钟.注意事项:1.答卷前,考生先检查试卷与答题卷是否整洁无缺损,并用黑色字迹的签字笔在答题卷指定位置填写自己的班级、姓名、学号和座位号。

2.选择题每小题选出答案后,请将答案填写在答题卷上对应的题目序号后,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上。

不按要求填涂的,答案无效。

3.非选择题必须用黑色字迹的签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卷的整洁,考试结束后,将答题卷交回。

一、选择题(每小题3分,共36分)1. 下列美丽的图案中,既是轴对称图形又是中心对称图形的个数是A.1个B.2个C.3个D.4个 2.已知等腰三角形的两边长分别为6㎝、3㎝,则该等腰三角形的周长是 A.9㎝ B .12㎝ C .12㎝或者15㎝ D .15㎝ 3.要使代数式2-x 有意义,则x 的取值范围是( ).A .2-≤xB .2-≥xC .2≥xD .2≤x4. 不等式组⎩⎨⎧<>-421x x 的解集是 ( ).A. x <3B. 3<x <4C. x <4D. 无解 5.下列各多项式中,不能用平方差公式分解的是( ).A.a 2b 2-1 B .4-0.25a 2 C .-a 2-b 2 D .-x 2+16.分解因式x 2y ﹣y 3结果正确的是( ).A .y (x +y )2B .y (x -y )2C .y (x 2-y 2)D .y (x +y )(x -y ) 7.如果多项式x 2-mx +9是一个完全平方式,那么m 的值为( ). A .-3 B .-6 C .±3 D .±6 8.满足0106222=+-++n m n m 的是( ). A.3,1==n mB.3,1-==n mC.3,1=-=n mD.3,1-=-=n m9.如图,在正方形ABCD 中,E 为DC 边上的点,连结BE ,将△BCE 绕点C 顺时针方向旋转900得到△DCF ,连结EF ,若∠BEC=620,则∠EFD 的度数为( )A 、150B 、160C 、170D 、18010.如图所示,在矩形ABCD 中,AD=8,DC=4,将△ADC 按逆时针方向绕点A 旋转到△AEF(点,A,B,E 在同一直线上),连接CF ,则CF=( )A . 10 B. 12C.D.11.矩形ABCD 中,AB=5,AD=12,将矩形ABCD 按如图所示的方式在直线l 上进行两次旋转,则点B 在两次旋转过程中经过的路径的长是( )A.12πB.252π C. 13πD.12.某种肥皂原零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办FCCDE F法.第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售.你在购买相同数量肥皂的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买( )块肥皂.A.5B.4C.3D.2 二、填空题(每小题3分,共12分)13.不等式组⎩⎨⎧-><13x x 的解集是 _____.14.利用分解因式计算:32003+6×32002-32004=_____________.15.已知关于x 的不等式组⎩⎪⎨⎪⎧4(x -1)+2>3x ,x -1<6x +a7有且只有三个整数解,则a 的取值范围是16.如图,Rt ⊿ABC 中,∠C = 90º,以斜边AB 为边向外 作正方形ABDE ,且正方形对角线交于点O ,连接OC , 已知AC=6,OC=BC 的长为 三、解答题(共52分)17.分解因式(每小题3分.共6分)⑴ 4a 2-8ab+4b 2 ⑵ (2)x 2(m ﹣n )﹣y 2(m ﹣n )18. (每小题4分.共8分)解下列不等式组:⑴ ⑵523(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩①② CA BEDO4(1)42123x x x x -≥+⎧⎪+⎨<⎪⎩ 19.计算(每小题5分,共10分)⑴.已知a+b=-3,ab=5,求多项式4a2b+4ab2-4a-4b的值(2)已知x2-3x-1=0,求代数式3-3 x2+9x的值?20. (6分)求关于x、y的方程组24563x y mx y m+=+⎧⎨+=+⎩的解x、y都是正数,求m的取值范围。

2017~2018学年第二学期初二数学期中考试试卷及答案

2017~2018学年第二学期初二数学期中考试试卷及答案

2017~2018学年第二学期期中考试试卷初 二 数学 2018.04一、选择题:(本大题共8小题,每小题2分,共16分.)1.下列图形中,既是轴对称图形又是中心对称图形的是2.若分式23x x +-的值为零,则A.3x = B.3x =- C.2x = D.2x =- 3.若反比例函数的图象经过点(2,3)-,则该反比例函数图象一定经过点A.(2,3)-B.(2,3)--C.(2,3)D.(1,6)--4. 一个不透明的盒子中装有3个红球,2个黄球,这些球除了颜色外其余都相同,从中随机摸出3个小球,则事件“所摸3个球中必含有红球”是A.确定事件B.必然事件C.不可能事件D.随机事件5.如图,△ABC 中,∠ACB=90°,∠ABC=25°,以点C 为旋转中心顺时针旋转后得到△A ′B ′C ,且点A 在边A ′B ′上,则旋转角的度数为A .65°B . 60°C .50°D . 40°6.如图,在□ABCD 中,BM 是ABC ∠的平分线,交CD 于点M ,且DM=2, □ABCD 的周长是14,则BC 的长等于A .2 B . 2. 5 C .3 D . 3. 5(第5题) (第6题) (第7题) (第8题)7.如图,P 为边长为2的正方形ABCD 的对角线BD 上任一点,过点P 作PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接EF .给出以下4个结论:①AP=EF ;②AP ⊥EF ;③EF 最短长度为;④若∠BAP=30°时,则EF 的长度为2.其中结论正确的有A .①②③B .①②④C .②③④D .①③④8.如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA 分别在x 轴、y 轴的正半轴上,反比例函数(0)k y x x=>与AB 相交于点D ,与BC 相交于点E ,若3BD AD =,且ODE ∆的面积是9,则k 的值是A. 92 B. 74 C. 245D. 12 二、 填空题:(本大题共10小题,每小题2分,共20分.)9.使式子11-x 有意义的x 的取值范围是 . 10.分式3212x y 、213x y 的最简公分母是 . 11.在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干只.某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复.下表是活动中的一组数据,则摸到白球的概率约是__________.12.关于x 的方程122x a x x +=--有增根,则a 的值为 . 13.若点A (a ,b )在反比例函数2y x =的图像上,则代数式ab -4的值为________. 14.平行四边形ABCD 的周长是30,AC ,BD 相交于点O ,OAB ∆的周长比OBC ∆的周长大3,则AB = .15.已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为 。

2017-2018学年八年级下学期期中考试数学试题及答案(1)

2017-2018学年八年级下学期期中考试数学试题及答案(1)

2017-2018学年八年级下学期期中考试数学试题(一)姓名:_________班级:_________考号:________得分:__________第I 卷(选择题)一、单选题1.下列计算正确的是( ) A.822-=B. 235+=C. 236⨯=D. 824÷=2.下列二次根式中属于最简二次根式的是 ( ) A. 2xy B. 2ab C. 0.5 D. 22x 3.平行四边形、矩形、菱形、正方形都具有的性质是( )A. 对角线互相平分B. 对角线互相垂直C. 对角线相等D. 轴对称图形4.一个菱形的两条对角线的长分别为5和8,那么这个菱形的面积是( )A. 40B. 20C. 10D. 255.已知△ABC 的各边长度分别为3cm ,4cm ,5cm ,则连结各边中点的三角形的周长为( )A. 2cmB. 7cmC. 5cmD. 6cm6.满足下列条件的三角形中,不是直角三角形的是( )A. 三内角之比为1:2:3B. 三边长的平方之比为1:2:3C. 三边长之比为3:4:5D. 三内角之比为3:4:57.已知直角三角形两边的长为3和4,则此三角形的周长为( ) A. 12 B. 7+7 C. 12或7+7 D. 以上都不对8.如图,□ABCD 中,AE 平分∠DAB ,∠B=100°,则∠AED 的度数为A. 100°B. 80°C. 60°D. 40°9.在下列命题中,正确的是 ( )A. 一组对边平行的四边形是平行四边形B. 有一个角是直角的四边形是矩形C. 有一组邻边相等的平行四边形是菱形D. 对角线互相垂直平分的四边形是正方形10.若顺次连接四边形ABCD 各边的中点所得四边形是菱形,则四边形ABCD 一定是( )A. 菱形B. 对角线互相垂直的四边形C. 矩形D. 对角线相等的四边形11.已知a+1a=√7,则a-1a=()A. √3B. ﹣√3C. ±√3D. ±√1112.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是()①∠DCF=12∠BCD②EF=CF③S△BEC=2S△CEF④∠DFE=3∠AEFA. ①②③B. ①②C. ②③④D. ①②④第II卷(非选择题)二、填空题13.使41x 有意义的x的取值范围是 .14.已知x=2﹣√3,则代数式(7+4√3)x2的值是_____.15.如图所示,在数轴上点A所表示的数为a,则a的值为_____.16.如图,正方形ABCD的面积为25,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为_____________。

2017-2018学年湖北省武汉市江夏区八年级下期中数学试卷(含答案解析)【精品推荐】

2017-2018学年湖北省武汉市江夏区八年级下期中数学试卷(含答案解析)【精品推荐】

2017-2018学年湖北省武汉市江夏区八年级(下)期中数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑1.(3分)化简()A.﹣2 B.﹣4 C.2 D.42.(3分)如果线段a、b、c,满足a2=c2﹣b2,则这三条线段组成的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定3.(3分)在平行四边形ABCD中,已知AB=5,BC=3,则它的周长为()A.8 B.10 C.14 D.164.(3分)如图,在平面直角坐标系中有两点A(5,0),B(0,4),则它们之间的距离为()A.B.C.D.5.(3分)计算(+)=()A. +B. +C. +D. +6.(3分)已知菱形的两条对角线的长分别是6和8,则菱形的周长和面积分别是()A.20,12 B.20,24 C.28,12 D.28,247.(3分)计算2×3=()A.6B.6C.30D.308.(3分)如图,一架2.6m长的梯子AB斜靠在一竖直的墙AO上,此时AO=2.4m,若梯子的顶端A沿墙下滑0.5m,那么梯子底端B外移了(参考数据取1.4,取1.7,取1.8)()A.0.8m B.1.5m C.0.9m D.0.4m9.(3分)如图,用黑白两种颜色的平行四边形纸片,按黑色纸片数逐渐增加1的规律拼成下列图性,若第n个图案中有2020个白色纸片,则n的值为()A.674 B.673 C.672 D.67110.(3分)如图,矩形ABCD中,AB=5,AD=4,M是边CD上一点,将△ADM沿直线AM对折,得△ANM,连BN,若DM=1,则△ABN的面积是()A.B.C.D.二、填空题(共6小题,每小题3分,共18分)11.(3分)计算:6﹣2=.12.(3分)命题“同旁内角互补,两直线平行”的逆命题是.13.(3分)如图,在平行四边形ABCD中,AC=8cm,BD=14cm,则△DBC的周长比△ABC 的周长多cm.14.(3分)如图,△ACB和△ECD都是等腰直角三角形,△ACB的锐角顶点A在△ECD的斜边DE上,若AE=,AC=,则DE=.15.(3分)已知:m+n=10,mn=9,则=.16.(3分)已知:如图,在平行四边形ABCD中,AB=4,BC=9,∠BAD=120°,点O为平行四边形ABCD的对角线的交点,直线l为过点O的任意一条直线,则点C到直线l的最大距离为.三、解答题(共8小题,共72分17.(8分)计算:(1)÷(2)(3﹣2)÷18.(8分)如图,在△ABC中,AB=AC=6,BC=4,AD为△ABC的高,求:(1)AD的长;(2)△ABC的面积.19.(8分)已知:如图,AC,BD是平行四边形ABCD的对角线,且AC=BD,若AB=4,BD =8,求:平行四边形ABCD的周长.20.(8分)如图,在4×4正方形的网格中,线段AB,CD如图位置,每个小正方形的边长都是1.(1)求线段AB、CD的长度.(2)在图中画出线段EF,使EF=,并判断以AB,CD,EF三条线段组成的三角形的形状,请说明理由.(3)我们J把(2)中三条线段按照点E与点C重合,点F与点B重合,点D与点A重合,这样可以得△ABC,则点C到直线AB的距离为(直接写结果).21.(8分)已知:x=2+1,y=﹣1求:(1)x2+2xy+y2的立方根;(2)x2+y2﹣2+1的平方根;(3)(4+2)y2+(2﹣1)x﹣8的值.22.(10分)已知:四边形ABCD是边长为4的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点F.(1)如图(1),①求AC的长;②求证:AE=CF;(2)如图(2),若∠EOD=30°,连BE,CE,求△BEC的周长.23.(10分)(1)如图(1),在平行四边形ABCD中,DE⊥AB,BF⊥CD,垂足分别为E、F,求证:AE=CF(2)如图(2),在平行四边形ABCD中,AC、BD是两条对角线,请探究:AC2,AB2,BD2,BC2之间的数量关系,并证明你的结论.(3)如图(3),PQ是△PMN的中线,若PM=11,PN=13,MN=10,直接写出PQ的长度.24.(12分)如图所示,在平面直角坐标系中,A(a,0),B(b,0),D(0,d),以AB、AD为邻边作平行四边形ABCD,其中:=,a,d满足(a+2)2+=0(1)如图1,求点C的坐标及线段BC的长;(2)如图2,线段BC的中垂线交y轴于E点,F为AD的中点,连CE,BE,EF及BF,求证:BF⊥EF;(3)如图3,点G在线段BD上,点H,M分别在线段OB,OD上,且BG=BH,DG=DM,过点H作NH⊥HG交GM的延长线于点N,若N(t,﹣t),求点G的坐标.2017-2018学年湖北省武汉市江夏区八年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑1.(3分)化简()A.﹣2 B.﹣4 C.2 D.4【解答】解:=|﹣2|=2,故选:C.2.(3分)如果线段a、b、c,满足a2=c2﹣b2,则这三条线段组成的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定【解答】解:∵a2=c2﹣b2,∴a2+b2=c2,∴这三条线段组成的三角形是直角三角形.故选B.3.(3分)在平行四边形ABCD中,已知AB=5,BC=3,则它的周长为()A.8 B.10 C.14 D.16【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=5,BC=AD=3,∴它的周长为:5×2+3×2=16,故选:D.4.(3分)如图,在平面直角坐标系中有两点A(5,0),B(0,4),则它们之间的距离为()A.B.C.D.【解答】解:∵A(5,0)和B(0,4),∴OA=5,OB=4,∴AB=,即这两点之间的距离是.故选:A.5.(3分)计算(+)=()A. +B. +C. +D. +【解答】解:原式=×+×=+,故选:D.6.(3分)已知菱形的两条对角线的长分别是6和8,则菱形的周长和面积分别是()A.20,12 B.20,24 C.28,12 D.28,24【解答】解:如图,菱形ABCD中,AC=8,BD=6,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB==5,∴此菱形的周长是:5×4=20,面积是:×6×8=24.故菱形的周长是20,面积是24.故选:B.7.(3分)计算2×3=()A.6B.6C.30D.30【解答】解:2×3=6=30,故选:C.8.(3分)如图,一架2.6m长的梯子AB斜靠在一竖直的墙AO上,此时AO=2.4m,若梯子的顶端A沿墙下滑0.5m,那么梯子底端B外移了(参考数据取1.4,取1.7,取1.8)()A.0.8m B.1.5m C.0.9m D.0.4m【解答】解:∵Rt△OAB中,AB=2.6m,AO=2.4m,∴OB===1m;同理,Rt△OCD中,∵CD=2.6m,OC=2.4﹣0.5=1.9m,∴OD===≈1.8m,∴BD=OD﹣OB=1.8﹣1=0.8(m).故选:A.9.(3分)如图,用黑白两种颜色的平行四边形纸片,按黑色纸片数逐渐增加1的规律拼成下列图性,若第n个图案中有2020个白色纸片,则n的值为()A.674 B.673 C.672 D.671【解答】解:∵第1个图案中白色纸片有4=1+1×3张;第2个图案中白色纸片有7=1+2×3张;第3个图案中白色纸片有10=1+3×3张;…∴第n个图案中白色纸片有1+n×3=3n+1(张),根据题意得:3n+1=2020,解得:n=673,故选:B.10.(3分)如图,矩形ABCD中,AB=5,AD=4,M是边CD上一点,将△ADM沿直线AM对折,得△ANM,连BN,若DM=1,则△ABN的面积是()A.B.C.D.【解答】解:延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA =∠AMQ ,AN =AD =4,MN =MD =1, ∴∠MAQ =∠AMQ , ∴MQ =AQ ,设NQ =x ,则AQ =MQ =1+x , ∵∠ANM =90°, ∴∠ANQ =90°,在Rt △ANQ 中,由勾股定理得:AQ 2=AN 2+NQ 2, ∴(x +1)2=42+x 2, 解得:x =7.5, ∴NQ =7.5,AQ =8.5, ∵AB =5,AQ =8.5,∴S △NAB =S △NAQ =×AN •NQ =××4×7.5=;故选:D .二、填空题(共6小题,每小题3分,共18分)11.(3分)计算:6﹣2= 4 .【解答】解:6﹣2=4.故答案为:4.12.(3分)命题“同旁内角互补,两直线平行”的逆命题是 两直线平行,同旁内角互补 . 【解答】解:命题“同旁内角互补,两直线平行”的逆命题是:两直线平行,同旁内角互补, 故答案为:两直线平行,同旁内角互补.13.(3分)如图,在平行四边形ABCD 中,AC =8cm ,BD =14cm ,则△DBC 的周长比△ABC 的周长多 6 cm .【解答】解:∵四边形ABCD是平行四边形,∴AB=DC,AC=2AO,BD=2OD,∵AO=4,OD=7,∴BD=14,AC=8,∴△DBC的周长﹣△ABC的周长=BD+BC+DC﹣AC﹣BC﹣AB=AC﹣BD=14﹣8=6,故答案为:614.(3分)如图,△ACB和△ECD都是等腰直角三角形,△ACB的锐角顶点A在△ECD的斜边DE上,若AE=,AC=,则DE=.【解答】解:连结BD,如图,∵△ACB与△ECD都是等腰直角三角形,∴∠ECD=∠ACB=90°,∠E=∠ADC=∠CAB=45°,EC=DC,AC=BC,∵∠ECD﹣∠ACD=∠ACB﹣∠ACD,∴∠ACE=∠BCD,在△AEC和△BDC中,,∴△AEC≌△BDC(SAS).∴AE=BD=,∠E=∠BDC=45°,∴∠BDA=∠BDC+∠ADC=90°,在Rt△ACB中.AB=AC=,由勾股定理得:AD===,∴DE=AE+AD=+;故答案为: +.15.(3分)已知:m+n=10,mn=9,则=±.【解答】解:∵m+n=10,mn=9,∴()2====,∴=±.故答案是:.16.(3分)已知:如图,在平行四边形ABCD中,AB=4,BC=9,∠BAD=120°,点O为平行四边形ABCD的对角线的交点,直线l为过点O的任意一条直线,则点C到直线l的最大距离为.【解答】解:连接AC,作CH⊥AD于H,在Rt△CHD中,∠D=60°,∴DH=CD=2,∴AH=7,CH=2,在Rt△AHC中,AC==,∵CE⊥l,∴CE≤CO=AC=.∴点C到直线l的最大距离为.三、解答题(共8小题,共72分17.(8分)计算:(1)÷(2)(3﹣2)÷【解答】解:(1)原式==;(2)原式=3﹣2.18.(8分)如图,在△ABC中,AB=AC=6,BC=4,AD为△ABC的高,求:(1)AD的长;(2)△ABC的面积.【解答】解:(1)∵AB=AC,AD⊥BC,∴BD=CD=BC=2,∴AD==4;=×BC×AD=8.(2)S△ABC19.(8分)已知:如图,AC,BD是平行四边形ABCD的对角线,且AC=BD,若AB=4,BD =8,求:平行四边形ABCD的周长.【解答】解:∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD是矩形,∴AD==4,∴平行四边形ABCD的周长是8+8.20.(8分)如图,在4×4正方形的网格中,线段AB,CD如图位置,每个小正方形的边长都是1.(1)求线段AB、CD的长度.(2)在图中画出线段EF,使EF=,并判断以AB,CD,EF三条线段组成的三角形的形状,请说明理由.(3)我们J把(2)中三条线段按照点E与点C重合,点F与点B重合,点D与点A重合,这样可以得△ABC,则点C到直线AB的距离为(直接写结果).【解答】解:(1)AB==,CD==2.(2)EF=,如图所示;∵CD2+EF2=AB2∴以AB,CD,EF三条线段组成的三角形是直角三角形;(3)设C到直线AB的距离为h.则有••2=••h,∴h=,∴C到直线AB的距离为.故答案为.21.(8分)已知:x=2+1,y=﹣1求:(1)x2+2xy+y2的立方根;(2)x2+y2﹣2+1的平方根;(3)(4+2)y2+(2﹣1)x﹣8的值.【解答】解:(1)∵x=2+1,y=﹣1,∴x2+2xy+y2=(x+y)2=(2+1+﹣1)2=27,27的立方根为3;(2)∵x=2+1,y=﹣1,∴x2+y2﹣2+1=(2+1)2+(﹣1)2﹣2+1=13+4+4﹣2﹣2+1=18,18平方根为±3;(3)∵x=2+1,y=﹣1,∴(4+2)y2+(2﹣1)x﹣8=(4+2)(﹣1)2+(2﹣1)(2+1)﹣8=(4+2)(4﹣2)+12﹣1﹣8=16﹣12+12﹣1﹣8=7.22.(10分)已知:四边形ABCD是边长为4的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点F.(1)如图(1),①求AC的长;②求证:AE=CF;(2)如图(2),若∠EOD=30°,连BE,CE,求△BEC的周长.【解答】解:(1)①根据题意及菱形的性质,可求∠BAO=30°,BO=2,∴AO=2,∴AC=4;②∵四边形ABCD是菱形,∴AO=CO,AD∥BC,∴∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF;(2)依题意△CBD是等边△,BD=4,可得EF⊥BC,∵BO=2,OE=OF,BF=1,∴OF=,EF=2,BE=,EC=∴△BEC的周长为(4++)23.(10分)(1)如图(1),在平行四边形ABCD中,DE⊥AB,BF⊥CD,垂足分别为E、F,求证:AE=CF(2)如图(2),在平行四边形ABCD中,AC、BD是两条对角线,请探究:AC2,AB2,BD2,BC2之间的数量关系,并证明你的结论.(3)如图(3),PQ是△PMN的中线,若PM=11,PN=13,MN=10,直接写出PQ的长度2.【解答】解:(1)∵平行四边形ABCD中,DE⊥AB,BF⊥CD,∴AD=CB,DE=BF,∠AED=∠CFB=90°,∴Rt△AED≌Rt△CFB,∴AE=CF;(2)如图,分别过A,D作AE⊥BC交CB延长线于E,DF⊥BC于F.根据勾股定理可得:AC2=AE2+(BE+BC)2①,AE2=AB2﹣BE2②,BD2=DF2+(BC﹣CF)2③,DF2=DC2﹣CF2④,∵四边形ABCD是平行四边形,∴AB=DC,又∵AE⊥BC,DF⊥BC,∴∠AEB=∠DFC=90°,AE=DF,∴Rt△AEB≌Rt△DFC,∴BE=CF,而AB=DC,把②代①,④代③,可得:AC2=AB2﹣BE2+(BE+BC)2BD2=DC2﹣CF2+(BC﹣CF)2两式相加,可得:AC2+BD2=2(AB2+BC2);(3)PQ=2.如图,延长PQ至R,使得QR=PQ,连接RM,RN,∵PQ是△PMN的中线,∴NQ=MQ,∴四边形NPMR是平行四边形,由(2)可得,MN2+PR2=2(NP2+MP2),又∵PM=11,PN=13,MN=10,∴102+(2PQ)2=2(132+112),解得PQ=2.故答案为:2.24.(12分)如图所示,在平面直角坐标系中,A(a,0),B(b,0),D(0,d),以AB、AD为邻边作平行四边形ABCD,其中:=,a,d满足(a+2)2+=0(1)如图1,求点C的坐标及线段BC的长;(2)如图2,线段BC的中垂线交y轴于E点,F为AD的中点,连CE,BE,EF及BF,求证:BF⊥EF;(3)如图3,点G在线段BD上,点H,M分别在线段OB,OD上,且BG=BH,DG=DM,过点H作NH⊥HG交GM的延长线于点N,若N(t,﹣t),求点G的坐标.【解答】解:(1)∵=,(a+2)2+=0,∴b=6,a=﹣2,d=8,∴A(﹣2,0),B(6,0),D(0,8),∴CD=AB=8,OD=8,∴C( 8,8),BC=AD=2;(2)证明:如图2,延长EF至Q,使FQ=EF,连AQ,BQ.由F为AD的中点,可得AF=DF,又∵∠AFQ=∠DFE,∴△DEF≌△AQF,∴DE=AQ,∠EDF=∠QAF,∴DE∥AQ.又∵AB⊥DE,∴AB⊥AQ,∴∠BAQ=∠CDE=90°,又∵AB=DC,∴△BAQ≌△CDE,∴BQ=CE,∵CE=BE,∴BQ=BE,而F为EQ的中点,∴BF⊥EF;(3)在△BOD中,∵∠OBD+∠ODB=90°,又∵BG=BH,DG=DM,∴2∠DGM+2∠BGH=360°﹣90°=270°,∴∠DGM+∠BGH=135°,∴∠NGH=45°,而NH⊥HG,∴△GHN是等腰直角三角形.如图3,分别过点N,G作NR⊥AB于R,GS⊥AB于S,则∠NRH=∠HSG=90°,∴∠NHR=∠HGS,而NH=HG,∴△HRN≌△GSH,∴NR=HS,HR=GS.如图3,连ON,GO,∵N(t,﹣t),∴NR=OR,∴GS=OS,∴△GSO为等腰直角三角形,∵S△DOB =S△DOG+S△BOG∴•OB•OD=•OB•GS+•OD•OS,∴GS=OS=,∴G(,).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年湖北省武汉市江汉区八年级(下)期中数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.(3分)下列式子中,属于最简二次根式的是()A.B.C. D.2.(3分)以下列各组数为长度的线段,不能构成直角三角形的是()A.2,3,4 B.1,1,C.6,8,10 D.5,12,133.(3分)下列各式计算正确的是()A.B.C.D.4.(3分)直角三角形的两条直角边的长分别为4和5,则斜边长是()A.3 B.41 C. D.95.(3分)已知四边形ABCD,对角线AC,BD交于点O,下列条件能判定它是平行四边形的是()A.AB∥CD,OB=OD B.AB=CD,OA=OC C.AB=BC,CD=DA D.AB=CD,AD ∥BC6.(3分)若菱形两条对角线的长分别为6和8,则这个菱形的边长为()A.5 B.10 C.20 D.147.(3分)下列说法错误的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直且平分的四边形是菱形D.邻边相等的矩形是正方形8.(3分)下列命题的逆命题是真命题的是()A.对顶角相等B.若a<b,则﹣2a>﹣2bC.若a>0,则D.全等三角形的面积相等9.(3分)如图,平行四边形ABCD的对角线AC、BD相交于点O,E为AD边中点,若△OED的周长为6,则△ABD的周长是()A.3 B.6 C.12 D.2410.(3分)如图,在矩形ABCD中,对角线AC,BD交于点E,DF⊥AC于F点,若∠ADF=3∠FDC,则∠DEC的度数是()A.30°B.45°C.50°D.55°二、填空题(共6小题,每小题3分,共18分)11.(3分)若二次根式有意义,则x的取值范围是.12.(3分)已知平行四边形ABCD中,∠A﹣∠B=50°,则∠C=.13.(3分)+=.14.(3分)顺次连结菱形各边中点所得的四边形必定是.15.(3分)如图,已知平行四边形ABCD,AE平分∠BAD交边BC于点E,若BE=5cm,EC=6cm,则平行四边形ABCD的周长是cm.16.(3分)如图,在△ABC中,∠BAC为钝角,AF、CE都是这个三角形的高,P为AC的中点,若∠B=40°,则∠EPF=.三、解答题(共5题,共52分)在答题卡指定位置上写出必要的演算过程或证明过程17.(10分)计算下列各题(1)(2)18.(10分)已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O 交AD于点E,交BC于点F.求证:OE=OF.19.(10分)如图正方形网格中,每个小正方形的边长均为1,在如图的网格格点处取A,B,C三点,使AB=2,BC=,AC=.(1)请你在图中画出满足条件的△ABC;(2)求△ABC的面积;(3)直接写出点A到线段BC的距离.20.(10分)在一条南北向的海岸边建有一港口O,A、B两支舰队从O点出发,分别前往不同的方向进行海上巡查,已知A舰队以15海里/小时的速度向北偏东40°方向行驶,B舰队以8海里/小时的速度向另一个方向行驶,2小时后,A、B 两支舰队相距34海里,你知道B舰队是往什么方向行驶的吗?21.(12分)已知矩形ABCD,把△BCD沿BD翻折,得△BDG,BG,AD所在的直线交于点E,过点D作DF∥BE交BC所在直线于点F.(1)如图1,AB<AD,①求证:四边形BEDF是菱形;②若AB=4,AD=8,求四边形BEDF的面积;(2)如图2,若AB=8,AD=4,请按要求画出图形,并直接写出四边形BEDF的面积.四、填空题(共4小题,每小题4分,共16分)22.(4分)边长为a的等边三角形的面积为.23.(4分)若2x﹣1=,则x2﹣x=.24.(4分)如图,在菱形ABCD中,AB=6,∠A=135°,点P是菱形内部一点,=,则PC+PD的最小值是.且满足S△PCD25.(4分)如图,已知△ABC中,AB=AC=cm,∠BAC=120°,点P在BC上从C向B运动,点Q在AB、AC上沿B→A→C运动,点P、Q分别从点C、B同时出发,速度均为1cm/s,当其中一点到达终点时两点同时停止运动,则当运动时间t=s时,△PAQ为直角三角形.五、解答题(共3题,共34分)在答题卡指完位置上写出必要的演算过程或证明过程26.(10分)(1)①若有意义,则化简=.②化简:a2=.(2)已知|7﹣9m|+(n﹣3)2=9m﹣7﹣,求(n﹣m)2018.27.(12分)已知在菱形ABCD中,∠ABC=60°,M、N分别是边BC,CD上的两个动点,∠MAN=60°,AM、AN分别交BD于E、F两点.(1)如图1,求证:CM+CN=BC;(2)如图2,过点E作EG∥AN交DC延长线于点G,求证:EG=EA;(3)如图3,若AB=1,∠AED=45°,直接写出EF的长.28.(12分)如图1,在直角坐标系中,A(0,3),B(3,0),点D为射线OB上一动点(D不与O、B重合),以AD为边在AD右侧作正方形ADEF,连BF、AE相交于点G.(1)若点D坐标为(a2+,0),且a+,求F点坐标;(2)在(1)的条件下,求AG的长;(3)如图2,当D点在线段OB延长线上时,若BD:BF=14,求BG的长.2017-2018学年湖北省武汉市江汉区八年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.(3分)下列式子中,属于最简二次根式的是()A.B.C. D.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A、=3,故A错误;B、是最简二次根式,故B正确;C、=2,不是最简二次根式,故C错误;D、=,不是最简二次根式,故D错误;故选:B.【点评】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.(3分)以下列各组数为长度的线段,不能构成直角三角形的是()A.2,3,4 B.1,1,C.6,8,10 D.5,12,13【分析】欲求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、22+32=13≠42,故不是直角三角形,故正确;B、12+12=2=()2,故是直角三角形,故错误;C、62+82=100=102,故是直角三角形,故错误;D、52+122=169=132,故是直角三角形,故错误.故选:A.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.(3分)下列各式计算正确的是()A.B.C.D.【分析】根据同类二次根式的定义、二次根式的乘法、二次根式的性质逐一计算即可得.【解答】解:A、2﹣=,此选项错误;B、,此选项正确;C、==,此选项错误;D、、不是同类二次根式,不能合并,此选项错误;故选:B.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.4.(3分)直角三角形的两条直角边的长分别为4和5,则斜边长是()A.3 B.41 C. D.9【分析】利用勾股定理即可求出斜边长.【解答】解:由勾股定理得:斜边长为,故选:C.【点评】本题考查了勾股定理;熟练掌握勾股定理,理解勾股定理的内容是关键.5.(3分)已知四边形ABCD,对角线AC,BD交于点O,下列条件能判定它是平行四边形的是()A.AB∥CD,OB=OD B.AB=CD,OA=OC C.AB=BC,CD=DA D.AB=CD,AD ∥BC【分析】根据平行四边形的判定方法,一一判断即可解决问题.【解答】解:A、∵AB∥CD,∴∠BAO=∠DCO,∠ABO=∠CDO,∵OB=OD,∴△ABO≌△DCO,∴OA=OC,OB=OD,能判定四边形ABCD是平行四边形,正确;B、AB=CD,OA=OC不能判定四边形ABCD是平行四边形,错误;C、AB=BC,CD=DA不能判定四边形ABCD是平行四边形,错误;D、AB=CD,AD∥BC不能判定四边形ABCD是平行四边形,错误;故选:A.【点评】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理.6.(3分)若菱形两条对角线的长分别为6和8,则这个菱形的边长为()A.5 B.10 C.20 D.14【分析】菱形的对角线垂直且互相平分,四个边长相等,两条对角线的一半和菱形的边构成直角三角形,从而可求出菱形的边长.【解答】解:∵菱形两条对角线的长分别为6和8.∴菱形两条对角线的一半长分别为3和4.∴菱形的边长为:=5.故选:A.【点评】本题考查菱形的性质,知道菱形的对角线垂直且互相平分,四个边长相等.7.(3分)下列说法错误的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直且平分的四边形是菱形D.邻边相等的矩形是正方形【分析】根据平行四边形的判定、菱形的判定及正方形的判定逐一判断后即可确定正确的选项.【解答】解:A、对角线互相平分的四边形是平行四边形,正确;B、对角线互相平分且相等的四边形是矩形,错误;C、对角线互相垂直且平分的四边形是菱形,正确;D、邻边相等的矩形是正方形,正确;故选:B.【点评】本题考查了命题与定理,掌握平行四边形的判定、菱形的判定及正方形的判定是解答本题的关键.8.(3分)下列命题的逆命题是真命题的是()A.对顶角相等B.若a<b,则﹣2a>﹣2bC.若a>0,则D.全等三角形的面积相等【分析】根据逆命题的概念分别写出各个命题的逆命题,判断即可.【解答】解:A、对顶角相等的逆命题是相等的角是对顶角,是假命题;若a<b,则﹣2a>﹣2b的逆命题是若﹣2a>﹣2b,则a<b,是真命题;若a>0,则的逆命题是若,则a>0,是假命题;全等三角形的面积相等的逆命题是面积相等的两个三角形全等,是假命题;故选:B.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.(3分)如图,平行四边形ABCD的对角线AC、BD相交于点O,E为AD边中点,若△OED的周长为6,则△ABD的周长是()A.3 B.6 C.12 D.24【分析】根据三角形的中位线定理,可得AB=2OE,由题意BD=2OD,AD=2DE,根据OE+OD+DE=6,可得2OE+2OD+2DE=12,即AB+BD+AD=12.【解答】解:∵四边形ABCD是平行四边形,∴OD=OB,∵AE=ED,∴AB=2OE,BD=2OD,AD=2DE,∵OE+OD+DE=6,∴2OE+2OD+2DE=12,∴AB+BD+AD=12,∴△ABD的周长为12,故选:C.【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.(3分)如图,在矩形ABCD中,对角线AC,BD交于点E,DF⊥AC于F点,若∠ADF=3∠FDC,则∠DEC的度数是()A.30°B.45°C.50°D.55°【分析】根据∠ADC=90°,求出∠CDF和∠ADF,根据矩形性质求出ED=EC,推出∠BDC=∠DCE,求出∠BDC,即可求出答案.【解答】解:设∠ADF=3x°,∠FDC=x°,∵四边形ABCD是矩形,∴∠ADC=90°,∴x+3x=90,x=22.5°,即∠FDC=x°=22.5°,∵DF⊥AC,∴∠DFC=90°,∴∠DCE=90°﹣22.5°=67.5°,∵四边形ABCD是矩形,∴AC=2EC,BD=2ED,AC=BD,∴ED=EC,∴∠BDC=∠DCE=67.5°,∴∠BDF=∠BDC﹣∠CDF=67.5°﹣22.5°=45°,∴∠DEC=90°﹣45°=45°故选:B.【点评】本题考查了矩形性质,三角形的内角和定理的应用,关键是求出∠BDC 和∠CDF的度数,注意:矩形的对角线互相平分且相等.二、填空题(共6小题,每小题3分,共18分)11.(3分)若二次根式有意义,则x的取值范围是x≥2.【分析】根据二次根式有意义的条件,可得x﹣2≥0,解不等式求范围.【解答】解:根据题意,使二次根式有意义,即x﹣2≥0,解得x≥2;故答案为:x≥2.【点评】本题考查二次根式的意义,只需使被开方数大于或等于0即可.12.(3分)已知平行四边形ABCD中,∠A﹣∠B=50°,则∠C=115°.【分析】利用平行四边形的邻角互补,和已知∠A﹣∠B=50°,就可建立方程求出两角.【解答】解:在平行四边形ABCD中,∠A+∠B=180°,又有∠A﹣∠B=50°,把这两个式子相加即可求出∠A=∠C=115°,故答案为:115°.【点评】本题考查了平行四边形的性质:邻角互补,对角相等,建立方程组求解.13.(3分)+=4.【分析】首先化简二次根式,进而计算得出答案.【解答】解:原式=+3=4.故答案为:4.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.14.(3分)顺次连结菱形各边中点所得的四边形必定是矩形.【分析】根据三角形的中位线定理首先可以证明:顺次连接四边形各边中点所得四边形是平行四边形.再根据对角线互相垂直,即可证明平行四边形的一个角是直角,则有一个角是直角的平行四边形是矩形.【解答】解:如图,四边形ABCD是菱形,且E、F、G、H分别是AB、BC、CD、AD的中点,则EH∥FG∥BD,EF=FG=BD;EF∥HG∥AC,EF=HG=AC,AC⊥BD.故四边形EFGH是平行四边形,又∵AC⊥BD,∴EH⊥EF,∠HEF=90°∴边形EFGH是矩形.故答案为:矩形.【点评】本题主要考查了菱形的性质和矩形的判定定理,正确理解菱形的性质以及三角形的中位线定理是解题的关键.15.(3分)如图,已知平行四边形ABCD,AE平分∠BAD交边BC于点E,若BE=5cm,EC=6cm,则平行四边形ABCD的周长是32cm.【分析】先根据平行四边形的性质得到BC的长,再根据∠BAE=∠DAE=∠BEA,即可得到AB=BE=5cm,进而得出平行四边形的周长.【解答】解:∵在▱ABCD中,BE=5cm,EC=6cm,∴BC=11cm,∵AE平分∠BAD,AD∥BC,∴∠BAE=∠DAE=∠BEA,∴AB=BE=5cm,∴▱ABCD的周长为2(AB+BC)=2×16=32(cm).故答案为:32.【点评】本题主要考查了平行四边形的性质,等腰三角形的判定;在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.16.(3分)如图,在△ABC中,∠BAC为钝角,AF、CE都是这个三角形的高,P为AC的中点,若∠B=40°,则∠EPF=100°.【分析】根据三角形内角和定理求出∠C,根据直角三角形的性质得到PF=AC=PC,PE=AC=PC,根据等腰三角形的性质、三角形的外角的性质计算即可.【解答】解:∵CE⊥BA,∠B=40°,∴∠C=50°,∵AF⊥BC,CE⊥BA,P为AC的中点,∴PF=AC=PC,PE=AC=PC,∴∠PFC=∠PCF,∠PEC=∠PCE,∴∠EPF=2∠PCF+2∠PCE=2∠C=100°,故答案为:100°.【点评】本题考查的是直角三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.三、解答题(共5题,共52分)在答题卡指定位置上写出必要的演算过程或证明过程17.(10分)计算下列各题(1)(2)【分析】(1)根据二次根式的乘除法则运算;(2)先把各二次根式化简为最简二次根式,然后合并即可.【解答】解:(1)原式==12;(2)原式=3﹣=.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(10分)已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O 交AD于点E,交BC于点F.求证:OE=OF.【分析】由四边形ABCD是平行四边形,可得AD∥BC,OA=OC,继而可利用ASA判定△AOE≌△COF,继而证得OE=OF.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC,∴∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF.【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.19.(10分)如图正方形网格中,每个小正方形的边长均为1,在如图的网格格点处取A,B,C三点,使AB=2,BC=,AC=.(1)请你在图中画出满足条件的△ABC;(2)求△ABC的面积;(3)直接写出点A到线段BC的距离.【分析】(1)在正方形网格中,根据勾股定理画出线段AB,BC,AC,从而画出△ABC;(2)利用分割法求三角形的面积即可;(3)利用三角形的面积公式,可求点B到线段AC的距离.【解答】解:(1)△ABC如图所示:=3×4﹣×2×2﹣×2×3﹣×4×1=5.(2)S△ABC(3)作AH⊥BC于H.=•BC•AH=5,∵S△ABC∴AH=,∴点A到线段BC的距离为.【点评】考查了勾股定理,三角形的面积等知识,关键是熟练掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.20.(10分)在一条南北向的海岸边建有一港口O,A、B两支舰队从O点出发,分别前往不同的方向进行海上巡查,已知A舰队以15海里/小时的速度向北偏东40°方向行驶,B舰队以8海里/小时的速度向另一个方向行驶,2小时后,A、B 两支舰队相距34海里,你知道B舰队是往什么方向行驶的吗?【分析】直接利用勾股定理逆定理结合方向角分析得出答案.【解答】解:如图所示:由题意可得:OA=30海里,OB=16海里,AB=34海里,∵302+162=342,∴AO2+BO2=AB2,∴△AOB是直角三角形,∵A舰队以15海里/小时的速度向北偏东40°方向行驶,∴B舰队是往南偏东50度方向行驶;或B舰队是往北偏西50度方向行驶.【点评】此题主要考查了勾股定定理的应用以及方向角,正确分类讨论是解题关键.21.(12分)已知矩形ABCD,把△BCD沿BD翻折,得△BDG,BG,AD所在的直线交于点E,过点D作DF∥BE交BC所在直线于点F.(1)如图1,AB<AD,①求证:四边形BEDF是菱形;②若AB=4,AD=8,求四边形BEDF的面积;(2)如图2,若AB=8,AD=4,请按要求画出图形,并直接写出四边形BEDF的面积.【分析】(1)①根据一组邻边相等的平行四边形是菱形,可得结论;②根据菱形面积公式代入可得结论;(2)画图,并根据面积公式可得结论.【解答】(1)①证明:如图1,∵AD∥BC,DF∥BE,∴四边形BEDF是平行四边形,由翻折得:∠CBD=∠GBD,∵AD∥BC,∴∠ADB=∠CBD,∴∠GBD=∠ADB,∴BE=ED,∴四边形BEDF是菱形;②解:设BE=x,则DE=x,AE=8﹣x,由勾股定理得:x2=42+(8﹣x)2,x=5,∴四边形BEDF的面积=ED•AB=5×4=20;(2)解:如图2,由(1)同理得:PD=5,∵∠PAD=∠EGD=90°,∠EDG=∠ADP,∴△APD∽△GED,∴,∴,∴ED=10,∵AD∥BC,DF∥BE,∴四边形BEDF是平行四边形,∴S▱BEDF=DE•AB=10×8=80.【点评】本题是四边形的综合题,难度适中,考查了矩形的性质、菱形和平行四边形的判定及面积、三角形相似的性质和判定,熟练掌握折叠的性质及利用勾股定理列方程求线段的长.四、填空题(共4小题,每小题4分,共16分)22.(4分)边长为a的等边三角形的面积为a2.【分析】作出等边三角形一边上的高,利用60°的正弦值可得三角形一边上的高,乘以边长除以2即为等边三角形的面积.【解答】解:如图作AD⊥BC于点D.∵△ABC为等边三角形,∴∠B=60°,∴AD=AB×sin∠B=a,∴边长为a的等边三角形的面积为×a×a=a2,故答案为:a2【点评】考查三角形的面积的求法;利用60°的正弦值得到等边三角形一边上的高是解决本题的突破点.23.(4分)若2x﹣1=,则x2﹣x=.【分析】根据完全平方公式以及整体的思想即可求出答案.【解答】解:∵2x﹣1=,∴(2x﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x)=2∴x2﹣x=故答案为:【点评】本题考查二次根式的运算,解题的关键是熟练运用完全平方公式,本题属于基础题型.24.(4分)如图,在菱形ABCD中,AB=6,∠A=135°,点P是菱形内部一点,=,则PC+PD的最小值是2.且满足S△PCD【分析】如图在BC 上取一点E,使得EC=BC=2,作EF∥AB,作点C关于EF的对称点C′,CC′交EF于G,连接DC′交EF于P,连接PC,此时此时S△=,PD+PC的值最小.PDC【解答】解:如图在BC 上取一点E,使得EC=BC=2,作EF∥AB,作点C关于EF的对称点C′,CC′交EF于G,连接DC′交EF于P,连接PC,此时此时S△=,PD+PC的值最小.PDCPC+PD的最小值=PD+PC′=DC′,∵四边形ABCD是菱形,∠A=135°,∴∠B=∠CEG=45°,∠BCD=135°∵∠CGE=90°,CE=2,∴CG=GE=GC′=,∴∠GCE=45°,∠D CC′=90°,∴DC′==2,故答案为2.【点评】本题考查轴对称﹣最短问题,三角形的面积,勾股定理等知识,解题的关键是学会利用轴对称解决最短问题.25.(4分)如图,已知△ABC中,AB=AC=cm,∠BAC=120°,点P在BC上从C向B运动,点Q在AB、AC上沿B→A→C运动,点P、Q分别从点C、B同时出发,速度均为1cm/s,当其中一点到达终点时两点同时停止运动,则当运动时间t=1或2或(6﹣9)s时,△PAQ为直角三角形.【分析】分三种情形分别求解即可解决问题;【解答】解:①当PA⊥AB时,△PAQ是直角三角形.∵∠B=30°,AB=,∴PA=1,PB=2,∵BC=3,∴PC=1,∴t=1s时,△PAQ是直角三角形.②当PQ⊥AB时,△PAQ是直角三角形.此时BQ=PB,∴t=(3﹣t),∴t=6﹣9,∴t=(6﹣9)s时,△PAQ是直角三角形.③当点Q在AC上时,PA⊥AC时,△PAQ是直角三角形,此时PC=2,t=2,∴t=2s时,△PAQ是直角三角形.综上所述,t=1或2或(6﹣9)s时,△PAQ是直角三角形.故答案为1或2或(6﹣9).【点评】本题考查等腰三角形的性质、解直角三角形、直角三角形的性质、勾股定理等知识,解题的关键是学会用分类讨论的射线思考问题,属于中考常考题型.五、解答题(共3题,共34分)在答题卡指完位置上写出必要的演算过程或证明过程26.(10分)(1)①若有意义,则化简=2x﹣5.②化简:a2=.(2)已知|7﹣9m|+(n﹣3)2=9m﹣7﹣,求(n﹣m)2018.【分析】(1)①根据有意义,可以得到x的取值范围,从而可以化简题目中的二次根式;②根据题目中的式子可以a<0,从而可以解答本题;(2)根据题意目中的式子可以求得m、n的值,从而可以解答本题.【解答】解:(1)①∵有意义,∴x﹣5≥0,得x≥5,∴=2x﹣5,故答案为:2x﹣5;②a2=,故答案为:;(2)∵|7﹣9m|+(n﹣3)2=9m﹣7﹣,∴m﹣4≥0,得m≥4,∴9m﹣7+(n﹣3)2=9m﹣7﹣,∴(n﹣3)2=﹣,∴n﹣3=0,m﹣4=0,解得,m=4,n=3,∴(n﹣m)2018=(3﹣4)2018=1.【点评】本题考查二次根式的化简求值、二次根式有意义的条件,解答本题的关键是明确它们各自的计算方法.27.(12分)已知在菱形ABCD中,∠ABC=60°,M、N分别是边BC,CD上的两个动点,∠MAN=60°,AM、AN分别交BD于E、F两点.(1)如图1,求证:CM+CN=BC;(2)如图2,过点E作EG∥AN交DC延长线于点G,求证:EG=EA;(3)如图3,若AB=1,∠AED=45°,直接写出EF的长.【分析】(1)如图1中,在AC上截取CG,使得CG=CM.首先证明△BAM≌△CAN,推出AM=AN,△AMN是等边三角形,再证明△AMG≌△NMC即可解决问题;(2)如图2中,想办法证明AE=EC,EC=EG即可解决问题;(3)如图3中,将△ABE绕点A逆时针旋转120°得到△ADQ,首先证明△FQD 是特殊直角三角形,设DQ=x,构建方程即可解决问题;【解答】(1)证明:如图1中,在AC上截取CG,使得CG=CM.∵四边形ABCD是菱形,∠ABC=60°,∴△ABC,△ACD都是等边三角形,∴∠BAC=∠MAN=60°,∴∠BAM=∠CAN,∵AB=AC,∠B=∠ACN=60°,∴△BAM≌△CAN,∴AM=AN,∵∠MAN=60°,∴△AMN是等边三角形,∵CM=CG,∠MCG=60°,∴△CMG是等边三角形,∴MA=MN,MG=MC,∵∠AMN=∠GMC=60°,∴∠AMG=∠NMC,∴△AMG≌△NMC,∴AG=CN,∴BC=AC=CG+AG=CM+CN,即BC=CM+CN.(2)证明:如图2中,连接EC.∵BA=BC,∠ABE=∠CBE,BE=BE,∴△ABE≌△CBE,∴AE=EC,∠BAE=∠BCE,∵EG∥AN,∴∠G=∠AND,∵∠AND=∠CAN+∠ACN=60°+∠CAN,∠ECG=60°+∠ECB,∵∠ECB=∠BAE=∠CAN,∴∠ECG=∠AND=∠G,∴EC=EG,∴EA=EG.(3)解:如图3中,将△ABE绕点A逆时针旋转120°得到△ADQ,易证△AFE≌△AFQ,∴∠AEF=∠AQF=45°,∵∠AEB=∠AQD=135°,∴∠FQD=90°,∵∠QDF=∠ADQ+∠ADF=60°,设DQ=BE=x,则DF=2x,EF=FQ=x,∵AB=AD=1,∠ABD=30°,∴BD=,∴x+2x+x=,∴x=,∴EF=x=.【点评】本题考查四边形综合题、等边三角形的判定和性质、全等三角形的判定和性质、平行线的性质、直角三角形30度角的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.28.(12分)如图1,在直角坐标系中,A(0,3),B(3,0),点D为射线OB上一动点(D不与O、B重合),以AD为边在AD右侧作正方形ADEF,连BF、AE相交于点G.(1)若点D坐标为(a2+,0),且a+,求F点坐标;(2)在(1)的条件下,求AG的长;(3)如图2,当D点在线段OB延长线上时,若BD:BF=14,求BG的长.【分析】(1)先求出点D的坐标,根据勾股定理求出AD,再判断出△AOD≌△AHF,即可得出结论;(2)先判断△AOD∽△FEM,进而求出EM=,再判断出△EGM∽△AGF,得出==,即可得出结论;(3)同(1)的方法得出F(3,a+3),得出BF∥OA,再求出a=5,即可得出BF=8,BD=2,再判断出△DBN∽△DOA,求出BN=,DN=,利用勾股定理求出AD=,进而得出AN=,同(2)的方法得,得出NG=FG,即可得出结论.【解答】解:(1)如图1,∵a+,两边平方得,(a+)2=3,∴a2+=1,∴D(1,0),∴OD=1,∵A(0,3),∴OA=3,在Rt△AOD中,OA=3,OD=1,根据勾股定理得,AD=,∵四边形ADEF是正方形,∴∠DEF=∠DAF=90°,AF=DE=EF=AD=,∴∠DAO+∠FAH=90°,∵∠DAO+∠ADO=90°,∴∠ADO=∠FAH,∵∠AOD=∠FHA=90°,∴△AOD≌△AHF(AAS),∴FH=OA=3,AH=OD=1,∴OH=OA+AH=4,∴F(3,4);(2)由(1)知,F(3,4),∵B(3,0),∴BF∥OA,∴BF⊥OB,∴∠OBF=90°,BF=4,∵BF∥OA,AD∥EF,∴∠OAD=∠EFM,∵∠AOD=∠FEM=90°,∴△AOD∽△FEM,∴=,∴=,∴EM=,∵AF∥DE,∴△EGM∽△AGF,∴==,∵AE是正方形ADEF的对角线,∴AE=AD=2,∴AG=AE=.(3)如图2,设点D(a,0)(a>3)过点F作FH⊥OA于H,同(1)的方法得,△AOD≌△AHF(AAS),∴FH=OA=3,AH=OD=a,∴OH=OA+AH=a+3,∴F(3,a+3);∵B(3,0),∴BF∥OA,BF=a+3,BD=a﹣3,∵BD:BF=1:4,∴(a﹣3):(a+3)=1:4,∴a=5,∴D(5,0),∴F(3,8),OD=5,∴BF=8,BD=2,∵BF∥OA,∴△DBN∽△DOA,∴,∴,∴BN=,DN=,在Rt△AOD中,根据勾股定理得,AD=,∵四边形ADEF是正方形,EF=AD=,∴AN=AD﹣DN=,同(2)的方法得,△AGN∽△EGF,∴,∴=,∴NG=FG.∵FG+NG=BF﹣BN=,∴FG+FG=,∴FG=,∴BG=BF﹣FG=.【点评】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判断和性质,相似三角形的判定和性质,勾股定理,解本题的关键是判断出BF∥OA.。

相关文档
最新文档