信号完整性分析--信号反射

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号完整性:信号反射

信号沿传输线向前传播时,每时每刻都会感受到一个瞬态阻抗,这个阻抗可能是传输线本身的,也可能是中途或末端其他元件的。对于信号来说,它不会区分到底是什么,信号所感受到的只有阻抗。如果信号感受到的阻抗是恒定的,那么他就会正常向前传播,只要感受到的阻抗发生变化,不论是什么引起的(可能是中途遇到的电阻,电容,电感,过孔,PCB 转角,接插件),信号都会发生反射。

那么有多少被反射回传输线的起点?衡量信号反射量的重要指标是反射系数,表示反射 电压和原传输信号电压的比值。反射系数定义为:ρ= 1

212Z Z Z Z +-。其中:Z 1为变化前的阻 抗,Z 2为变化后的阻抗。假设PCB 线条的特性阻抗为50欧姆,传输过程中遇到一个100欧姆的贴片电阻,暂时不考虑寄生电容电感的影响,把电阻看成理想的纯电阻,那么反射系 数为:ρ=3

150********=+-,信号有1/3被反射回源端。如果传输信号的电压是3.3V 电压,反射电压就是1.1V 。 纯电阻性负载的反射是研究反射现象的基础,阻性负载的变化无非是以下四种情况:阻抗增加有限值、减小有限值、开路(阻抗变为无穷大)、短路(阻抗突然变为0)。

阻抗增加有限值:

反射电压上面的例子已经计算过了。这时,信号反射点处就会有两个电压成分,一部分是从源端传来的3.3V 电压,另一部分是在反射电压1.1V ,那么反射点处的电压为二者之和,即4.4V 。

阻抗减小有限值:

仍按上面的例子,PCB 线条的特性阻抗为50欧姆,如果遇到的电阻是30欧姆,则反射 系数为 ρ=50

305030+-=-0.25,反射电压为 3.3*(-0.25)V= -0.825V 。此时反射点电压为3.3V+(-0.825V )=2.475V 。

开路:

开路相当于阻抗无穷大,反射系数按公式计算为1。即反射电压3.3V 。反射点处电压为

6.6V 。可见,在这种极端情况下,反射点处电压翻倍了。

短路:

短路时阻抗为0,电压一定为0。按公式计算反射系数为-1,说明反射电压为-3.3V ,因此反射点电压为0。

由于反射现象的存在,信号传播路径中阻抗发生变化的点,其电压不再是原来传输的电压。这种反射电压会改变信号的波形,从而可能会引起信号完整性问题。

信号完整性分析---信号反射及阻抗匹配

信号反射产生的原因,当信号从阻抗为Z0进入阻抗为Z l的线路时,由于阻抗不匹配的原因,有部分信号会被反射回来,也可以用“传输线上的回波来概括”。如果源端、负载端和传输线具有相同的阻抗,反射就不会发生了。

反射的影响: 如果负载阻抗小于传输线阻抗,反射电压为负,反之,如果负载阻抗大于传输线阻抗,反射电压为正。实际问题中,PCB上传输线不规则的几何形状,不正确的信号匹配,经过连接器的传输及电源平面不连续等因素均会导致反射情况发生,而表现出诸如过冲、下冲以及振荡等信号失真的现象。

过冲,当信号的第一个波峰超过原来设定的最大值,信号的第一个波谷超过原来设定的最大值时,为过冲,也就是冲过头了。

下冲,当信号的第二个波峰波谷超过设定值时,称为下冲。过大的过冲会导致元件保护二极管损坏,而下冲严重时会产生假时钟,导致系统误读写操作。

如果过冲过大我们可以采用阻抗匹配的方式消除过冲。

震荡:信号的反射也会引起信号震荡,而震荡的本质跟过冲/下冲是一样的,在一个周期,信号反复的过冲下冲我们称之为信号震荡。震荡是消除电路多余能量的一种方式。通过震荡的信号,可以将反射而产生的多余能量给消耗掉。欠阻尼(振铃)是指终端的阻尼小,过阻尼(环绕)是指终端的阻尼大了。(不只是分布式电路才会产生振荡,集总电路由于LC振荡也会产生振荡,其振荡的大小和电路的品质因素Q有关,Q值代表了电路号的衰减速度,Q值越高衰减越慢。可以通过单位时间电路储存的能量与丢失的能量比值来衡量) Q<1/2的时候就不存在过冲或者振荡。

阻抗匹配,由于源端与负载端的阻抗不匹配才引起信号的反射,因此要进行阻抗匹配,从而降低反射系数,可以在源端串接阻抗,或者负载端并行接阻抗。反射系数公式:P=(Z1-Z0)/(Z1+Z0)

阻抗匹配端接技术汇总

单电阻端接

经总结:串联电阻匹配一般适用于单个负载的情况。

一、串行端接串行匹配:(不太适用太高的高速)

二、并行端接并行匹配:(更适用于高速)

1、单电阻并行端接

缺点:降低了输出的高电平,匹配电阻接地会造成下降沿过快(接电源上升源变快),这样会导致波形占空比不平衡

2、戴维宁并行接法

优点:综合适用上下来电阻,平衡输出高低电平,减小因占空比失调能力消耗

缺点:静态直流功率过大,在TTL和CMOS电路中不常用。

3、并行AC端接

优点:AC端接避免较多的电源消耗,

缺点:由于电容的大小很难确定,大电容会吸收较大电流增加电源损耗,小电容则会减弱匹配效果,建议通过仿真来确定电容值。

应用:并联交流匹配一般用在多接收端和时钟信号线。(二极管端接法,此法不属于阻抗匹配的思路,而是通过二极管的钳位来减小过冲与下冲,尽管成本会提高,但是系统整体布局布线开销可能会减小,因为不需要考虑精确控制传输线的阻抗匹配,它的缺点在于二极管本身不会消耗振铃信号,因此反射回来的信号会对电源或者地产生噪声,开关速度不够高,对较高速系统不太适用)

串扰:

如果足够细心你会发现,有时对于某根信号线,从功能上来说并没有输出信号,但测量时,会有幅度很小的规则波形,就像有信号输出。这时你测量一下与它邻近的信号线,看看是不是有某种相似的规律!对,如果两根信号线靠的很近的话,通常会的。这就是串扰。当然,被串扰影响的信号线上的波形不一定和邻近信号波形相似,也不一定有明显的规律,更多的是表现为噪声形式。串扰在当今的高密度电路板中一直是个让人头疼的问题,由于布线空间小,信号必然靠得很近,因此你比须面对它,只能控制但无法消除。对于受到串扰的信号线,邻近信号的干扰对他来说就相当于噪声。

串扰大小和电路板上的很多因素有关,并不是仅仅因为两根信号线间的距离。当然,距离最容易控制,也是最常用的解决串扰的方法,但不是唯一方法。这也是很多工程师容易误解的地方。

轨道塌陷:

噪声不仅存在于信号网络中,电源分配系统也存在。我们知道,电源和地之间电流流经路径上不可避免存在阻抗,除非你能让电路板上的所有东西都变成超导体。那么,当电流变化时,不可避免产生压降,因此,真正送到芯片电源管脚上的电压会减小,有时减小得很厉害,就像电压突然产生了塌陷,这就是轨道塌陷。轨道塌陷有时会产生致命的问题,很可能影响你的电路板的功能。高性能处理器集成的门数越来越多,开关速度也越来越快,在更短的时间消耗更多的开关电流,可以容忍的噪声变得越来越小。但同时控制噪声越来越难,因为高性能处理器对电源系统的苛刻要求,构建更低阻抗的电源分配系统变得越来越困难。

相关文档
最新文档