用加减法解二元一次方程组课件PPT
合集下载
用加减消元法解二元一次方程组-七年级数学上册课件(沪科版)
x=a (5) 写解: 将方程组的解表示成 y=b 的形式.
x=a
(5) 写解:将方程组的解表示成
的形式.
y=b
课前热身
根据等式的基本性质填空: (1) 若 a=b,那么 a±c = b±c . (等式性质1) 思考:若 a=b,c=d,那么 a+c=b+d 吗? (2) 若 a=b,那么 ac = bc . (等式性质2)
探究新知
例 1 解方程组
3x 5y 21 2x 5y 11
4、解方程组
用加减法消去 x 的方法
5x-6y=33, ②
是 ①×5-②×3 ,消去 y 的方法是 ①×3+②×2 .
巩固练习
3x+5y=m+2 5、已知关于 x,y 的二元一次方程组
2x+3y=m 的解满足 x+y=-10,求代数式 m2-2m+1 的值.
巩固练习
6、已知 (3x+2y-5)2 与 │5x+3y-8│互为相反数, 则 x= 1 , y= 1 .
知识回顾 三、用代入消元法解二元一次方程组的步骤:
(1) 变形:选择一个系数比较简单的方程,用含有 x 的代数式 表示 y (或用含有 y 的代数式表示 x );
(2) 代入:将变形后的方程代入另外一个方程中,消去一个未知 数,得到一个一元一次方程;
(3) 解:解消元后的一元一次方程;
(4) 反代:把求得的未知数的值代入原方程组中任意的一个方程 (或代入变形后的方程)中,求得另一个未知数数的值;
①
除代入消元法,还
② 有其他方法吗?
认真观察此方程组中各个未知数的 系数有什么特点,并相互讨论看还有 没有其它的解法.
x=a
(5) 写解:将方程组的解表示成
的形式.
y=b
课前热身
根据等式的基本性质填空: (1) 若 a=b,那么 a±c = b±c . (等式性质1) 思考:若 a=b,c=d,那么 a+c=b+d 吗? (2) 若 a=b,那么 ac = bc . (等式性质2)
探究新知
例 1 解方程组
3x 5y 21 2x 5y 11
4、解方程组
用加减法消去 x 的方法
5x-6y=33, ②
是 ①×5-②×3 ,消去 y 的方法是 ①×3+②×2 .
巩固练习
3x+5y=m+2 5、已知关于 x,y 的二元一次方程组
2x+3y=m 的解满足 x+y=-10,求代数式 m2-2m+1 的值.
巩固练习
6、已知 (3x+2y-5)2 与 │5x+3y-8│互为相反数, 则 x= 1 , y= 1 .
知识回顾 三、用代入消元法解二元一次方程组的步骤:
(1) 变形:选择一个系数比较简单的方程,用含有 x 的代数式 表示 y (或用含有 y 的代数式表示 x );
(2) 代入:将变形后的方程代入另外一个方程中,消去一个未知 数,得到一个一元一次方程;
(3) 解:解消元后的一元一次方程;
(4) 反代:把求得的未知数的值代入原方程组中任意的一个方程 (或代入变形后的方程)中,求得另一个未知数数的值;
①
除代入消元法,还
② 有其他方法吗?
认真观察此方程组中各个未知数的 系数有什么特点,并相互讨论看还有 没有其它的解法.
人教版数学七年级下册第八章《8.2加减消元法解二元一次方程组》优质课课件(21张PPT)
解:由②-①得: x=6
把x=6代入①,得 6+y=10
解得
y=4
所以这个方程组的解是
x
y
6 4
3x +10 y=2.8 ①
15x -10 y=8 ②
解:把 ①+②得: 18x=10.8 x=0.6
把x=0.6代入①,得: 3×0.6+10y=2.8
解得:y=0.1
所以这个方程组的解是
x
y
0.6 0.1
解得 x = 1
把x= 1 代入①得 1+3y=4
解得 y = 1
x 1
所以这个方程组的解是
y
1
2、已知
a 2b 4 3a 2b 8
①②,
则a+b等于_3__
。
分析:法一,直接解方程组,求出a 与b的值,然后就可以求出a+b
法二,+得4a+4b=12 a+b=3
1、已知 5x3y2 3 (x 3y 7 )20,求 x- y 的值。
1
(3)3xx22yy91
① ②
解:①+②,得 4x=8
解得 x=2
把x =2 代入①得 2+2y=9
解得 y=3.5
所以这个方程组的解是
x 2
y
3.5
(4)xx
y7 3y 17
① ②
解:②-①,得 2y=10
解得 y = 5
把y= 5 代入①得 x+5=7
解得 x = 2
x 2
所以这个方程组的解是
解:① + ②,得
① ②
9u=18
解得 u = 2
把u= 2 代入①得 3×2+2t=7
把x=6代入①,得 6+y=10
解得
y=4
所以这个方程组的解是
x
y
6 4
3x +10 y=2.8 ①
15x -10 y=8 ②
解:把 ①+②得: 18x=10.8 x=0.6
把x=0.6代入①,得: 3×0.6+10y=2.8
解得:y=0.1
所以这个方程组的解是
x
y
0.6 0.1
解得 x = 1
把x= 1 代入①得 1+3y=4
解得 y = 1
x 1
所以这个方程组的解是
y
1
2、已知
a 2b 4 3a 2b 8
①②,
则a+b等于_3__
。
分析:法一,直接解方程组,求出a 与b的值,然后就可以求出a+b
法二,+得4a+4b=12 a+b=3
1、已知 5x3y2 3 (x 3y 7 )20,求 x- y 的值。
1
(3)3xx22yy91
① ②
解:①+②,得 4x=8
解得 x=2
把x =2 代入①得 2+2y=9
解得 y=3.5
所以这个方程组的解是
x 2
y
3.5
(4)xx
y7 3y 17
① ②
解:②-①,得 2y=10
解得 y = 5
把y= 5 代入①得 x+5=7
解得 x = 2
x 2
所以这个方程组的解是
解:① + ②,得
① ②
9u=18
解得 u = 2
把u= 2 代入①得 3×2+2t=7
二元一次方程组的解法 乘法 加减消元法.ppt
加 减 消 元 法:
消去一个未知数的方法是:如果两个方程中有一个未知数的系数 相等,那么把这两个方程相减(或相加);否则,先把其中一个方 程乘以适当数,将所得方程与另一个方程相减(或相加),或者先 把两个方程分别乘以适当的数,再把所得到的方程相减(或相加). 这种解二元一次方程组的方法叫做加减消元法简称加减法
所以
x 1
y
3
2x3(3)11
x 1
解方程组
3x 4y 8 ① 4x 2y 1 ②
能不能使两个方 程中x(或y)的 系数相等(或互
为相反数)
解 : ②×2,得 8x4y2 ③
③- ,得
(8x4y)(3x4y)(2)8
5x10
解 得 x2 把 x2 代入①,得
3(2)4y8
x2
所以
y 7
x 3
y
2
试一试:用加减法解方程组
3x+4y= 16 ①
5x-6y= 33 ②
解: ①×3,②×2,得
9x+12y= 48 ③ 10x-12y= 66 ④
③+④,得
(9x+12y)+(10x-12y)=48+66 19x= 114
x=6
把x=6代入①,得 x= 6
所以
y= - 1
3×6+4y= 16 4y= -2 y= - 1 2
8.2 二元一次方程组的解法 加减消元法
3x 5y 21 ① 2x 5y 11 ②
①+②
4x 5y 3 ① 2x 5y 1 ②
①-②
下例方程组可以用加 减消元法来做吗?
3x+4y= 16 ①
5x-6y= 33 ② 分析:1、此方程组能否直接用加减法消
二元一次方程组的解法---加减法(课件格式)
x=4
D y=2
二、填一填.
1、已知方程组
5x+2y=4 ① 5x-3y=14 ②
可用 ① - ② 得到一元一次方程
5y=-10
__________
3x-2y=2 ①
2、方程组 3x+2y=6 ②
既
y + 可以用_①___②___消去未知数_______ ,
x - 也可以用_①___②___消去未知数_______ 。
①- ②得
9y=-18
① + ②,得 7x = 14
结论要点
将两个二元一次方程相加(或相减), 消去一个未知数, 将方程组转化为一元一次方程来解,
这种解二元一次方程组的方法叫做加 减消元法,简称加减法。
思考:
用加减法解二元一次方程组的时候,什 么条件下用加法、什么条件下用减法?
结论要点
相同未知数的系数相同时用减法,互 为相反数时用加法。
学习目标
知识与能力 1.进一步理解解二元一次方程组的基本思想(消元)。 2.会用加减法解某个未知数的系数的绝对值相等的二元 一次方程组. 数学思考与问题解决 经历解决数学问题的过程,培养观察、比较、类比、归 纳、联想以及分析问题和解决问题的能力;通过对解决问 题过程与方法的反思,获得解决问题的经验. 情感与态度 在独立思考的基础上学会交流,敢于发表个人见解,并 能与他人共享成果,体验成功的快乐,同时锻炼克服困难 的意志,建立学习的自信心.
7x +7y =14, x-y=- 4 则x +y =2
六、说一说:(能力拔高题.)
已知方程组 2x+5y=-26 和
ax-by=-4
方程组 3x-5y=36 ax+by=8
10.3 解二元一次方程组 课件(共18张PPT)2024-2025学年苏科版七年级数学下册
减 系数互为相反数
组转化为一
时,将两个方程相 元一次方程.
加.
注意
(1)加减前,应将对应未
知数对齐再加减,若一个方
程缺少某一项时,将该项
看作0,再对齐加减;
(2)一定要把两个方程两
边分别相加减.
新知探究 知识点2 用加减消元法解二元一次方程组
步
骤
③
求
解
具体做法
目的
解消元后得到的一 求出一个未
元一次方程.
起来.
新知探究 知识点2 用加减消元法解二元一次方程组
典例2 用加减法解方程组:
新知探究 知识点2 用加减消元法解二元一次方程组
解:(1)① + ②,得3 = 9,解得 = 3.
把 = 3代入①,得3 − = 5,解得 = −2.
= 3,
所以这个方程组的解是ቊ
= −2.
(2)② × 2,得10 + 4 = 20.③
把③代入①,得2 + 3 4 − 5 = −1.
解这个方程,得 = 1.
把 = 1代入③,得 = −1.
= 1,
所以这个方程组的解是ቊ
= −1.
新知探究 知识点1 用代入消元法解二元一次方程组
2 + 5 = 16, ①
(3)൝
8 − 7 = 10. ②
解:由①,得2 = 16 − 5. ③
③ − ①,得7 = 14,解得 = 2.
把 = 2代入①,得6 + 4 = 6,解得 = 0.
= 2,
所以这个方程组的解是ቊ
= 0.
新知探究 知识点2 用加减消元法解二元一次方程组
(3)① × 2,得8 − 6 = 30.③
组转化为一
时,将两个方程相 元一次方程.
加.
注意
(1)加减前,应将对应未
知数对齐再加减,若一个方
程缺少某一项时,将该项
看作0,再对齐加减;
(2)一定要把两个方程两
边分别相加减.
新知探究 知识点2 用加减消元法解二元一次方程组
步
骤
③
求
解
具体做法
目的
解消元后得到的一 求出一个未
元一次方程.
起来.
新知探究 知识点2 用加减消元法解二元一次方程组
典例2 用加减法解方程组:
新知探究 知识点2 用加减消元法解二元一次方程组
解:(1)① + ②,得3 = 9,解得 = 3.
把 = 3代入①,得3 − = 5,解得 = −2.
= 3,
所以这个方程组的解是ቊ
= −2.
(2)② × 2,得10 + 4 = 20.③
把③代入①,得2 + 3 4 − 5 = −1.
解这个方程,得 = 1.
把 = 1代入③,得 = −1.
= 1,
所以这个方程组的解是ቊ
= −1.
新知探究 知识点1 用代入消元法解二元一次方程组
2 + 5 = 16, ①
(3)൝
8 − 7 = 10. ②
解:由①,得2 = 16 − 5. ③
③ − ①,得7 = 14,解得 = 2.
把 = 2代入①,得6 + 4 = 6,解得 = 0.
= 2,
所以这个方程组的解是ቊ
= 0.
新知探究 知识点2 用加减消元法解二元一次方程组
(3)① × 2,得8 − 6 = 30.③
华东师大版七年级下册数学《加减法解二元一次方程组》课件
• 2、如遇见未知数系数绝对值不等呢:运用方 程基本变形规则2扩大系数至绝对值相等,再 用加减消元
三、实践验证感悟 •P32练习 1、3题
活动小结:
1、方法与思想:今天我们又学习了解二元一次方程组的另 一种消元方法--加减法,它是通过把两个方程两边相加(或 相减)消去一个未知数,把二元一次方程组转化为一元一次方 程。
2、依据方程变形规则1.
3、如何实现准确加减消元:位置对应 理 据符号关系定加减
系数绝对值相等处
4、请同学们归纳一下,什么样的方程组用“代入法”,什么 样的方程组用“加减法”。
作业巩固
•P36习题7.2第1题 ① ③ ④
加减消元法 解二元一次方程组
井研县周坡镇初级中学校 詹 勇
一、温故为知新
• 1.解二元一次方程组的基本思想是什
么?
。
• 2.用代入法解方程组
• 2x + 3y = 4 ①
• 2x - 3y = -8 ②
二、新知探索------初认识
• 例1 解方程组 2x + 3y = 4 ①
•
2x - 3y =-8 ②
•
3x- 4y = 2 ②
解:
①+
②得 ∴
8x = 16 x=2
把x=2代入②得 y = 1
ห้องสมุดไป่ตู้
∴
x=2
y =1
消谁最方便? 如何消?
如要想消x, 又怎么办呢?
新知探索------深入认识
• 深入思考实践解方程组
•
5x+4y=11 ①
•
3x - y = 7 ②
探索交流--经验
• 1、通过将两个方程相加(或相减),消去一个 未知数,将 方程组转化为一元一次方程来解, 这种解法叫加减消元法,简称加减法。依据 是方程基本变形规则1
三、实践验证感悟 •P32练习 1、3题
活动小结:
1、方法与思想:今天我们又学习了解二元一次方程组的另 一种消元方法--加减法,它是通过把两个方程两边相加(或 相减)消去一个未知数,把二元一次方程组转化为一元一次方 程。
2、依据方程变形规则1.
3、如何实现准确加减消元:位置对应 理 据符号关系定加减
系数绝对值相等处
4、请同学们归纳一下,什么样的方程组用“代入法”,什么 样的方程组用“加减法”。
作业巩固
•P36习题7.2第1题 ① ③ ④
加减消元法 解二元一次方程组
井研县周坡镇初级中学校 詹 勇
一、温故为知新
• 1.解二元一次方程组的基本思想是什
么?
。
• 2.用代入法解方程组
• 2x + 3y = 4 ①
• 2x - 3y = -8 ②
二、新知探索------初认识
• 例1 解方程组 2x + 3y = 4 ①
•
2x - 3y =-8 ②
•
3x- 4y = 2 ②
解:
①+
②得 ∴
8x = 16 x=2
把x=2代入②得 y = 1
ห้องสมุดไป่ตู้
∴
x=2
y =1
消谁最方便? 如何消?
如要想消x, 又怎么办呢?
新知探索------深入认识
• 深入思考实践解方程组
•
5x+4y=11 ①
•
3x - y = 7 ②
探索交流--经验
• 1、通过将两个方程相加(或相减),消去一个 未知数,将 方程组转化为一元一次方程来解, 这种解法叫加减消元法,简称加减法。依据 是方程基本变形规则1
沪科版七上数学二元一次方程组的解法——加减消元法教学课件
请完成对应习题
2, 1.
方法二:①-②,得-14y=-14,所以y=1.
把y=1代入①,得3x-7×1=-1,所以x=2.
x 2,
所以原方程组的解为
y
1.
2.同一未知数的系数的绝对值成倍数关系.
8x+9 y 73, ①
(2) 17x 3 y 74. ②
知1-讲
导引:两个方程中y的系数的绝对值成倍数关系, 方程②乘以3就可与方程①相加消去y.
导引:方程①和②中x,y的系数的绝对值都不相等,也 不成倍数关系,应取系数的绝对值的最小公倍 数6,可以先消去x,也可以先消去y.
解:方法一:①×3,得6x+9y=9.③
知1-讲
②×2,得6x+4y=22.④
③-④,得5y=-13,即y=-
把y=- 13
5
代入①,得2x+3×
13 5
13 .
5 =3,解得x=
第3章 一次方程与方程组
3.3 二元一次方程组及其解法 二元一次方程组的解法—加减消元法
1 课堂讲授 加减消元法:
直接加减消元 先变形,再加减消元
2 课时流程 用适当的方法解二元一次方程组
逐点 导讲练
课堂 小结
课后 作业
知识点 1 加减消元法
类型一 直接加减消元
知1-导
把两个方程的两边分别相加或相减消去 一个未知数的方法,叫做加减消元法,简称 加减法.
下列做法正确的是(
D
)
A.要消去y,可以将①×5+②×2
B.要消去x,可以将①×3+②×(-5)
C.要消去y,可以将①×5+②×3
D.要消去x,可以将①×(-5)+②×2
知1-练
6
用加减法解方程组
初中数学【二元一次方程组的解法——加减消元法】课件
加,符号相同时相减,得到一个一元一次方程,解一个未
知数的数值。
3.把解得的一个未知数的 值代入原方程中的任意一个方程,
解得另一个未知数的值。
4.把解得的两个未知数的,并列写在花括号,得到原方程
组的解。
拓展提升
解方程组
+ −
+ =6
2
3
①
2(x+y)-3x+3y=24
②
引导:将较为复杂的方程组先化简转化为一般形式,然后用代入法或
③ - ④, 得 26v=13
解这个一元一次方程,得v=
1
2
1
2
将v= 代入方程①,得5u+1=-9
解得
u=-2∴Βιβλιοθήκη 程组的解为u=-2v=
1
2
课堂总结
用加减消元法解二元一次方程组的一般步骤:
1.在一个或两个方程的两边分别乘以一个适当的数,使两
个方程中某一个未知数的系数绝对值相等。
2.绝对值相等的未知数的系数符号相反时,将两个方程相
二元一次方程组的解法——加减消元法
知识回顾
解二元一次方程组的根本方法—— “消元”
消元本质: 通过消掉一个未知数,将二元转化为
一元。
情景导航
x+y=7300 ①
解方程组
y-x=6100
②
“加减消元法”
“化归思想”
观察这个方程组的系数特点,你还能想出其它办法来消元吗?
整体思路:
法1:①式与②式x前面的系数互为相反数,利用等式的基本性质,将两式相加,就能消
的这种解法叫做加减消元法,简称加减法。
典例分析
5u+2v=-9 ①
解方程组
知数的数值。
3.把解得的一个未知数的 值代入原方程中的任意一个方程,
解得另一个未知数的值。
4.把解得的两个未知数的,并列写在花括号,得到原方程
组的解。
拓展提升
解方程组
+ −
+ =6
2
3
①
2(x+y)-3x+3y=24
②
引导:将较为复杂的方程组先化简转化为一般形式,然后用代入法或
③ - ④, 得 26v=13
解这个一元一次方程,得v=
1
2
1
2
将v= 代入方程①,得5u+1=-9
解得
u=-2∴Βιβλιοθήκη 程组的解为u=-2v=
1
2
课堂总结
用加减消元法解二元一次方程组的一般步骤:
1.在一个或两个方程的两边分别乘以一个适当的数,使两
个方程中某一个未知数的系数绝对值相等。
2.绝对值相等的未知数的系数符号相反时,将两个方程相
二元一次方程组的解法——加减消元法
知识回顾
解二元一次方程组的根本方法—— “消元”
消元本质: 通过消掉一个未知数,将二元转化为
一元。
情景导航
x+y=7300 ①
解方程组
y-x=6100
②
“加减消元法”
“化归思想”
观察这个方程组的系数特点,你还能想出其它办法来消元吗?
整体思路:
法1:①式与②式x前面的系数互为相反数,利用等式的基本性质,将两式相加,就能消
的这种解法叫做加减消元法,简称加减法。
典例分析
5u+2v=-9 ①
解方程组
北师大版八年级数学上册《求解二元一次方程组(加减法)》课件
(4)写解
写出方程组的解
作业
习题5.3,第1、3题.
想一想
用加减法解方程组:
2x 3y 12 ① 3x 4 y 17 ②
①×3得6x+9y=36 ③
分析
对于当方程组中两方程 不具备上述特点时,则可用 等式性质来改变方程组中方 程的情势,即得到与原方程
②×2得6x+8y=34 ④ ③-④得:y=2
组同解的且某未知数系数的 绝对值相等的新的方程组, 从而为加减消元法解方程组
如果方程组中同一未知数系数绝对值均不相等时, 把一个或两个方程两边乘以一个适当的数,使两个方 程中某一未知数的系数绝对值相等,从而化为第一类 型方程组求解
1.指出下列方程组求解过程中有错误的步骤。
7x-4y=4
①
(1)
5x-4y=-4 ②
解:①-②,得
2x=4-4,
x=0
解: ①-②,得 2x=4+4,
5x 6 y 9 ① (4) 7x 4 y 5 ②
3.用不同的方法解下列方程组.
x+y=7
①
5x+3y=31 ②
加减消元法解方程组基本思路是什么?主要步骤有哪些?
基本思路: 加减消元: 二元
一元
主要步骤:
(1)变形
同一个未知数的系数相同或互为相反数
(2)加减
消去一个元
(3)求解
分别求出两个未知数的值
分析:
视察方程组中的两个方程,未知 数x的系数相等,都是2。把两个方 程两边分别相减,就可以消去未知 数x,同样得到一个一元一次方程。
举一反三
解方程组 2x-5y=7 ① 2x+3y=-1 ②
解: ②-①得: 8y=-8
解二元一次方程组加减消元法公开课一等奖课件省赛课获奖课件
10.3. 解二元一次方程组(2)
【教学目的】
1、会用加减消元法解二元一次方程组。 2、能根据方程组的特点,灵活选用适宜消元办法。 3、经历从“二元”到“一元”的转化过程,进一 步体会 “转化”的思想办法在数学中的应用价值。
【教学重点、难点】
1、掌握加减消元法解二元一次方程组的原理及普 通环节。
2、能纯熟运用加减消元法解二元一次方程组。 3、体会解二元一次方程组的基本思路——消元即 “化二元为一元”的思想。
你懂得苹果汁、橙汁的单价吗?
已知买3瓶苹果汁和2瓶橙汁共需23元; 又知买5瓶苹果汁和2瓶橙汁共需33元。
解法二、
设苹果汁和橙汁的单价分别为x 元和y元
ቤተ መጻሕፍቲ ባይዱ
① ② 根据题意可得
x我会2解3 !2y
3
① ② 5 23 2y 2y 33
3
x 5 y 4
你是如何解这个方程组的?
① 解由法①一得、3xx22yy15
组的特点!
解得 x=5
将x=5代入①得 15+2y=23
解因这此个原方方程程得组的y=解4是52xx
2y 3y
4 5
注意:1、勿忘检查 ;2、应用题勿忘答!
你能用上面的办法解下列方程组吗?
① x2
② P90例2、解方程组
y 3
想一想:
1、回想上述解方程组的过程,你的 基本思路是什么?
2、这里所用的办法与代入消元法有 何异同?
试一试:
参考上面的思路如何解下列方程组呢?
No
例3、解方程组
Image
解:①×3得,15x-6y=12 ③
②×2得,4x-6y=-10 ④
③-④得,11x=22
x=2
【教学目的】
1、会用加减消元法解二元一次方程组。 2、能根据方程组的特点,灵活选用适宜消元办法。 3、经历从“二元”到“一元”的转化过程,进一 步体会 “转化”的思想办法在数学中的应用价值。
【教学重点、难点】
1、掌握加减消元法解二元一次方程组的原理及普 通环节。
2、能纯熟运用加减消元法解二元一次方程组。 3、体会解二元一次方程组的基本思路——消元即 “化二元为一元”的思想。
你懂得苹果汁、橙汁的单价吗?
已知买3瓶苹果汁和2瓶橙汁共需23元; 又知买5瓶苹果汁和2瓶橙汁共需33元。
解法二、
设苹果汁和橙汁的单价分别为x 元和y元
ቤተ መጻሕፍቲ ባይዱ
① ② 根据题意可得
x我会2解3 !2y
3
① ② 5 23 2y 2y 33
3
x 5 y 4
你是如何解这个方程组的?
① 解由法①一得、3xx22yy15
组的特点!
解得 x=5
将x=5代入①得 15+2y=23
解因这此个原方方程程得组的y=解4是52xx
2y 3y
4 5
注意:1、勿忘检查 ;2、应用题勿忘答!
你能用上面的办法解下列方程组吗?
① x2
② P90例2、解方程组
y 3
想一想:
1、回想上述解方程组的过程,你的 基本思路是什么?
2、这里所用的办法与代入消元法有 何异同?
试一试:
参考上面的思路如何解下列方程组呢?
No
例3、解方程组
Image
解:①×3得,15x-6y=12 ③
②×2得,4x-6y=-10 ④
③-④得,11x=22
x=2
北师大版初中数学八年级(上)5-2求解二元一次方程组(第2课时加减法) 教学课件
①
解方程组:
②
解: ②×4得:
4x-4y=16③
①+③得:7x = 35,
解得:x = 5.
把x = 5代入②得,y = 1.
所以原方程组的解为
方法总结
同一未知数的系数 不相等也不互为相反数 时,
利用等式的性质,使得未知数的系
数 相等或互为相反数
.
找系数的最小公倍数
课堂小结
基本思路“消元”
解
二
元
7x-4y=4, ①
5x-4y=-4. ② 解:①-②,得
2x=4-4,×
x=0
3x-4y=14, ① 5x+4y=2. ② 解: ①-②,得
-2x=12 ×
x=-6
订正:解:①-②,得 2x=4+4, x=4
订正:解:①+②,得 8x=16 x=2
7.用加减消元法解方程组:
①
②
【解】由①×6,得 2x+3y=4 ③
像上面这种解二元一次方程组的方法,叫做加减 消元法,简称加减法.
例3:用加减法解方程组:
2x 3y 12 ① 3x 4y 17 ② 解:①×3得: 6x+9y=36 ③
②×2得:6x+8y=34 ④ ③-④得: y=2 把y=2代入①,
解得: x=3
所以原方程组的解是
x y
3 2
试一试
解得:y 1.
把 y 1 代入①,得:2x 5 注哦7.意! :要检验
解得:x 1.
x 1,
所以方程组的解为 y 1.
方法总结
同一未知数的系数 相等
时,
把两个方程的两边分别 相减 !
归纳总结
当方程组中两个方程的某个未知数的系数互为 相反数或相等时,可以把方程的两边分别相加(系数 互为相反数)或相减(系数相等)来消去这个未知数, 得到一个一元一次方程,进而求得二元一次方程组的 解.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
追问1 直接加减是否可以?为什么? 追问2 能否对方程变形,使得两个方程中某个 未知数的系数相反或相同? 追问3 如何用加减法消去x?
应用新知
二
①×5
元 3x+4y=16
15x+20y=80
一
使未知数x系
数相等
次
方 5x-6y=33 ②×3 15x-18y=99
程
解得x
组代
入 x=6
解得y
y= 1
1 2
原方程组的解为
x=6
y=
1 2
点悟:
当未知数 的系数没 有倍数关 系,则应 将两个方 程同时变 形,同时 选择系数 比较小的 未知数消 元。
用加减法解下列方程组:
2m 3n 8 3m 4n 11
一.填空题:
x+3y=17
1.已知方程组
两个方程
2x-3y=6
只要两边 分别相加 就可以消去未知数 y
2
38y=-19
两 式消 相x 减
思考:解方程组
3x+ 4y = 16 ① 5x - 6y = 33 ②
解:① ×3 得: 9x+ 12y = 48 ③
② ×2 得: 10x - 12y = 66 ④ ③ + ④ 得: 19x = 114
即x=6
把x = 6代入①得
18 + 4y = 16
即y=
用加减法
解二元一次方程 组
解方程组
2x 4y 14 ① 2x 3y 12 ②
①一②得: y 2
问题1.观察上述方程组,未知数X的系数
把 y有代什2人么①(或特②)点,得?到
x3
所以原方程组的解为
问题2.x 你 3可以通过什么办法进行消元?
y 2
2x 4 y 14 ① 2x 3 y 12 ②
25x-7y=16
2.已知方程组
两个方程
25x+6y=10
只要两边分别相减就可以消去未知数 x
二.选择题
6x+7y=-19①
1. 用加减法解方程组
应用(B)
6x-5y=17②
A.①-②消去y B.①-②消去x
B. ②- ①消去常数项 D. 以上都不对
3x+2y=13
2.方程组
消去y后所得的方程是(B)
3x-2y=5
A.6x=8 B.6x=18 C.6x=5 D.x=18
三、已知a、b满足方程组 则a+b=__5__
a+2b=8 2a+b=7
小结 :
1.加减消元法解方程组基本思路是什么? 主要步骤有哪些?
基本思路: 加减消元: 二元
一元
主要步骤:变形
同一个未知数的系 数相同或互为相反数
加减
消去一个元
求解 求出两个未知数的值
写解
写出方程组的解
2. 二元一次方程组解法有 代入法、加减法 .
小试牛刀
一、选择你喜欢的方法解下列方程组
②
②
知识应用 用加减法解下列方程组
{ 拓展升华
4x - y =12 ① 2x +3y =-8 ②
解: ②×2得:
4x +6y =-16 ③
③-②得:7y=-28 将y =-4代入①得:
4x-(-4)=12
解得: x = 2
{x =2
∴原方程组的解是 y =-4
两个二元一次方程中同一未知数的系数互 为相反数或相等时可用加减消元法解方程组.
1、系数相同时用 3x + 5y = 5 11x-6y=5
减法消元
3x -4y = 23 13x-6y =21
2、系数互为相反数时用加法消元
6x+7y=5
0.5X-3y=5
6x-7y=15
-0.5x-5y=3
指出下列方程组求解过程中有错误步骤,并给予订正:
①-②消去x
2x 4 y 14
2x
3
y
12
① ②
①+②消去x
减,此通消时过去又将其该方中怎程的组一样中个消的未元两知呢个数方,? 程转相化加为或一相元
一次方程。这种解方程组的方法称为加减 消元法,简称“加减法”。
8.2(3)用加减法解二元一次方程组
能直接用加减消元法解二元一次方程组的前提是什 么?
7x-4y=4 ①
3x-4y=14 ①
5x-4y=-4 ② 解 ①-②,得
5x+4y=2 ② 解 ①-②,得
2x=4-4,
-2x=12
x=0
x =-6
7x-4y=4 5x-4y=-4 解 ①-②,得
2x=4+4, x=4
3x-4y=14 5x+4y=2 解 ①+②,得
8x=16 xBiblioteka =2类比应用、闯关练习解: ①×3得: 12x -3y =36 ③
③+②得:14x =28 解得: x=2
将x = 2代入①得: 4 ×2-y =12 解得: y =-4
{x =2
∴原方程组的解是 y =-4
用你喜欢的方法解方程组:
②
应用新知
问题4 如何用加减消元法解下列二元一次方程组?
3x 4y 16, 5x 6y 33.
应用新知
二
①×5
元 3x+4y=16
15x+20y=80
一
使未知数x系
数相等
次
方 5x-6y=33 ②×3 15x-18y=99
程
解得x
组代
入 x=6
解得y
y= 1
1 2
原方程组的解为
x=6
y=
1 2
点悟:
当未知数 的系数没 有倍数关 系,则应 将两个方 程同时变 形,同时 选择系数 比较小的 未知数消 元。
用加减法解下列方程组:
2m 3n 8 3m 4n 11
一.填空题:
x+3y=17
1.已知方程组
两个方程
2x-3y=6
只要两边 分别相加 就可以消去未知数 y
2
38y=-19
两 式消 相x 减
思考:解方程组
3x+ 4y = 16 ① 5x - 6y = 33 ②
解:① ×3 得: 9x+ 12y = 48 ③
② ×2 得: 10x - 12y = 66 ④ ③ + ④ 得: 19x = 114
即x=6
把x = 6代入①得
18 + 4y = 16
即y=
用加减法
解二元一次方程 组
解方程组
2x 4y 14 ① 2x 3y 12 ②
①一②得: y 2
问题1.观察上述方程组,未知数X的系数
把 y有代什2人么①(或特②)点,得?到
x3
所以原方程组的解为
问题2.x 你 3可以通过什么办法进行消元?
y 2
2x 4 y 14 ① 2x 3 y 12 ②
25x-7y=16
2.已知方程组
两个方程
25x+6y=10
只要两边分别相减就可以消去未知数 x
二.选择题
6x+7y=-19①
1. 用加减法解方程组
应用(B)
6x-5y=17②
A.①-②消去y B.①-②消去x
B. ②- ①消去常数项 D. 以上都不对
3x+2y=13
2.方程组
消去y后所得的方程是(B)
3x-2y=5
A.6x=8 B.6x=18 C.6x=5 D.x=18
三、已知a、b满足方程组 则a+b=__5__
a+2b=8 2a+b=7
小结 :
1.加减消元法解方程组基本思路是什么? 主要步骤有哪些?
基本思路: 加减消元: 二元
一元
主要步骤:变形
同一个未知数的系 数相同或互为相反数
加减
消去一个元
求解 求出两个未知数的值
写解
写出方程组的解
2. 二元一次方程组解法有 代入法、加减法 .
小试牛刀
一、选择你喜欢的方法解下列方程组
②
②
知识应用 用加减法解下列方程组
{ 拓展升华
4x - y =12 ① 2x +3y =-8 ②
解: ②×2得:
4x +6y =-16 ③
③-②得:7y=-28 将y =-4代入①得:
4x-(-4)=12
解得: x = 2
{x =2
∴原方程组的解是 y =-4
两个二元一次方程中同一未知数的系数互 为相反数或相等时可用加减消元法解方程组.
1、系数相同时用 3x + 5y = 5 11x-6y=5
减法消元
3x -4y = 23 13x-6y =21
2、系数互为相反数时用加法消元
6x+7y=5
0.5X-3y=5
6x-7y=15
-0.5x-5y=3
指出下列方程组求解过程中有错误步骤,并给予订正:
①-②消去x
2x 4 y 14
2x
3
y
12
① ②
①+②消去x
减,此通消时过去又将其该方中怎程的组一样中个消的未元两知呢个数方,? 程转相化加为或一相元
一次方程。这种解方程组的方法称为加减 消元法,简称“加减法”。
8.2(3)用加减法解二元一次方程组
能直接用加减消元法解二元一次方程组的前提是什 么?
7x-4y=4 ①
3x-4y=14 ①
5x-4y=-4 ② 解 ①-②,得
5x+4y=2 ② 解 ①-②,得
2x=4-4,
-2x=12
x=0
x =-6
7x-4y=4 5x-4y=-4 解 ①-②,得
2x=4+4, x=4
3x-4y=14 5x+4y=2 解 ①+②,得
8x=16 xBiblioteka =2类比应用、闯关练习解: ①×3得: 12x -3y =36 ③
③+②得:14x =28 解得: x=2
将x = 2代入①得: 4 ×2-y =12 解得: y =-4
{x =2
∴原方程组的解是 y =-4
用你喜欢的方法解方程组:
②
应用新知
问题4 如何用加减消元法解下列二元一次方程组?
3x 4y 16, 5x 6y 33.