数据包络分析讲义教材课程

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 对于每一个决策单元DMUj都有相应的效率评价指数:
பைடு நூலகம்
s
hj
uT yi vTxj
ur yrj
r1 mn
, j 1,2,,n
vi xij
i1
我们总可以适当的取权系数v和u,使得 hj≤1, j=1,…,n
• 对第j0个决策单元进行效率评价,一般说来,hj0越大表 明DUMj0能够用相对较少的输入而取得相对较多的输出。 这样我们如果对DUMj0进行评价,看DUMj0在这n个 DMU中相对来说是不是最优的,我们可以考察当尽可能 的变化权重时, hj0的最大值究竟是多少。
u2
. . . . . …. .
...
. yrj … .
.
ur
. . . . . …. .
ys1 ys2 ys3 … ysj … ysn s
us
权系数 s种输出
各字母定义如下:
• xij-------- 第j个决策单元对第i种类型输入的投入总量.xij〉0 • yrj-------- 第j个决策单元对第r种类型输出的产出总量.yrj〉0 • vi -------- 对第i种类型输入的一种度量,权系数 • ur -------- 对第r种类型输出的一种度量,权系数 • i ----------1,2,…,m • r ----------1,2,…,s • j ----------1,2,…,n
DEA方法以相对效率概念为基础,以凸分析和线形规 划为工具的一种评价方法,应用数学规划模型计算比较决 策单元之间的相对效率,对评价对象做出评价,它能充分 考虑对于决策单元本身最优的投入产出方案,因而能够更 理想地反映评价对象自身的信息和特点;同时对于评价复 杂系统的多投入多产出分析具有独到之处。
DEA方法的特点:
应用DEA方法对经济体 效率的评价
西安交大经济管理学院
目 录:
一、 DEA方法简介 二、 DEA基本原理和模型 三、 DEA应用案例 四、 DEA软件介绍 五、 DEA主要应用领域 六、 DEA最新研究进展 七、DEA主要参考文献
一、 DEA方法简介
数据包络分析方法( DEA,Data Envelopment Analysis )由Charnes、Coopor和Rhodes于1978年提出, 该方法的原理主要是通过保持决策单元(DMU, Decision Making Units) 的输入或者输入不变,借助于数 学规划和统计数据确定相对有效的生产前沿面,将各个决 策单元投影到DEA的生产前沿面上,并通过比较决策单元 偏离DEA前沿面的程度来评价它们的相对有效性。
• 对于CCR模型可以用规划P表达,而线性规划一个重要 的有效理论是对偶理论,通过建立对偶模型更容易从理论 和经济意义上作深入分析
• 规划P的对偶规划为规划D/:
(D/)
min
n
s . t . j x j x 0 j1
n
jy j y0 j1
j 0 , j 1,2 , n 无约束
t
1 vTx0
,wtv,tu
由t vt1x0 wtx0 1
可变成如下的线性规划模型P:
maxhj0 T yo
(P) s.t.wT xj T y j 0, j 1,2, n
wT x0 1
w 0, 0
• 利用线性规划的最优解来定义决策单元j0的有效性,从 模型可以看出,该决策单元j0的有效性是相对其他所有决 策单元而言的。
• 为了讨论和计算应用方便,进一步引入松弛变量s+和
剩余变量s-,将上面的不等式约束变为等式约束,可
变成:
min
n
s .t .
jx j s x0
j1
(D)
n
jy j s y0 j1
j 0 , j 1,2 , n
无约束,
s 0,s 0
将上述规划(D)直接定义为规划(P)的对偶规划
➢ 无须任何权重假设,而以决策单元输入输出的实际数据求 得最优权重,排除了很多主观因素,具有很强的客观性
➢ DEA方法假定每个输入都关联到一个或者多个输出,且输 入输出之间确实存在某种联系,但不必确定这种关系的显 示表达式
二、 DEA基本原理和模型
定义:
权系数
1 2 3 … j …n
v1
1 x11 x12 x13 … x1j … x1n
v2
2 x21 x22 x23 … x2j … x2n
. . . . . . ….
vi
.. .
.
. Xij … .
. . . . . . ….
vm
m xm1 xm2 xm3 … xmj … xmn
n个 决策单元 (DMU)
m种输入
y11 y12 y13 … y1j … y1n
1
u1
y21 y22 y23 … y2j … y2n 2
• 定理2 DMUj0 为弱DEA有效的充要条件是线性规划 (D)的最优值θ*=1; DMUj0为DEA有效的充要条件是 线性规划(D)的最优值θ*=1,并且对于每个最优解λ*, 都有s*+=0,s*-=0
DEA有效性的定义:
我们能够用CCR模型判定是否同时技术有效和规模有效:
• (1)θ*=1,且s*+=0,s*-=0。则决策单元j0为DEA有 效,决策单元的经济活动同时为技术有效和规模有效
• 如以第j0个决策单元的效率指数为目标,以所有决策单元 的效率指数为约束,就构造了如下的CCR(C2R)模型:
s
u r y rj o
max
h jo
r 1 m
v i x ij o
i1
s
u r y rj
s .t.
r 1 m
1, j 1,2, n
v i x ij
i1
u 0,v 0
• 上述规划模型是一个分式规划,使用Charnes-Cooper变 化,令:
几个定理和定义:
• 定理 1 线性规划(P)和对偶规划(D)均存在可行解, 所以都存在最优值。假设它们的最优值为别为hj0*与θ*, 则有hj0*= θ*
定义1 若线性规划(P)的最优值hj0*=1,则称决策单元 DMUj0为弱DEA有效
定义2 若线性规划(P)的解中存在w*>0,μ* >0, 并且最优值hj0*=1,则称决策单元DMUj0为DEA有效的
• (2)θ*=1,但至少某个输入或者输出大于0,则决策单 元j0为弱DEA有效,决策单元的经济活动不是同时为技术 效率最佳和规模最佳
• (3) θ*<1,决策单元j0不是DEA有效,经济活动既不是 技术效率最佳,也不是规模最佳
相关文档
最新文档