高光谱成像技术进展(光电检测技术大作业)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高光谱成像技术进展
By 130405100xx 一.高光谱成像技术的简介
高光谱成像技术的出现是一场革命,尤其是在遥感界。它使本来在宽波段不可探测的物质能够被探测,其重大意义已得到世界公认。高光谱成像技术光谱分辨率远高于多光谱成像技术,因此高光谱成像技术数据的光谱信息更加详细,更加丰富,有利于地物特征分析。有人说得好,如果把多光谱扫描成像的MSS ( multi-spectral scanner) 和TM( thematic mapper) 作为遥感技术发展的第一代和第二代的话, 那么高光谱成像( hyperspectral imagery) 技术则是第三代的成像技术。
高光谱成像技术的具体定义是在多光谱成像的基础上,从紫外到近红外(200-2500nm)的光谱范围内,利用成像光谱仪,在光谱覆盖范围内的数十或数百条光谐波段对目标物体连续成像。在获得物体空间特征成像的同时,也获得了被测物体的光谱信息。
(一)高光谱成像系统的组成和成像原理
而所谓高光谱图像就是在光谱维度上进行了细致的分割,不仅仅是传统所谓的黑、白或者R、G、B的区别,而是在光谱维度上也有N个通道,例如:我们可以把400nm-1000nm分为300个通道。因此,通过高光谱设备获取到的是一个数据立方,不仅有图像的信息,并且在光谱维度上进行展开,结果不仅可以获得图像上每个点的光谱数据,还可以获得任一个谱段的影像信息。
目前高光谱成像技术发展迅速,常见的包括光栅分光、声光可调谐滤波分光、棱镜分光、芯片镀膜等。下面分别介绍下以下几种类别:
(1)光栅分光光谱仪
空间中的一维信息通过镜头和狭缝后,不同波长的光按照不同程度的弯散传播,这一维图像上的每个点,再通过光栅进行衍射分光,形成一个谱带,照射到探测器上,探测器上的每个像素位置和强度表征光谱和强度。一个点对应一个谱段,一条线就对应一个谱面,因此探测器每次成像是空间一条线上的光谱信息,为了获得空间二维图像再通过机械推扫,完成整个平面的图像和光谱数据采集。
如下图所示。
经过狭缝的光由于不同波长照射到不同的探测器像元上,光能量很低,因此需要选择高灵敏相机,同时需要加光源。例如系统如下:
光源相机(成像光谱仪+ccd)装备有图像采集卡的计算机是高光谱成像技术的硬件组成,其光谱的覆盖范围为200-400nm,400-1000nm,900-1700nm,1000-2500nm。其中光谱相机的主要组成部分为准直镜,光栅光谱仪,聚焦透镜以及面阵ccd。
其扫描过程是当ccd探测器在光学焦面的垂直方向上做横向扫描(x),当横向的平行光垂直入射到投身光栅是就形成了光栅光谱,这是像元经过高光谱仪在ccd上得出的数据,它的横向式x方向上的像素点也就是扫描的象元,它的总像是各像元对应的信息。在检测系统输送前进是排列的他测器完成纵向扫面(y)。综合扫描信息即可得到物体的三围高光谱数据。
(2)声光可调谐滤波分光(AOTF)光谱仪
AOTF由声光介质、换能器和声终端三部分组成。射频驱动信号通过换能器在声光介质内激励出超声波。改变射频驱动信号的频率,可以改变AOTF衍射光的波长,从而实现电调谐波长的扫描。
最常用的AOTF晶体材料为TeO2即非共线晶体,也就是说光波通过晶体之后以不同的出射角传播。如上图所示:在晶体前端有一个换能器,作用于不同的驱动频率,产生不同频率的振动即声波。不同的驱动频率对应于不同振动的声波,声波通过晶体TeO2之后,使晶体中晶格产生了布拉格衍射,晶格更像一种滤波
器,使晶体只能通过一种波长的光。光进入晶体之后发生衍射,产生衍射光和零级光。
上图是AOTF的组成。由图可知,AOTF是由成像物镜+准直镜+偏振片+晶体+偏振片+物镜+detector,入射光经过物镜会聚之后进入准平行镜(把所有的入射光变成平行光),准平行光进入偏振片通过同一方向的传播的光,平行光进入晶体之后,平行于光轴的光按照原来方向前行,非平行光进行衍射,分成两束相互垂直o光和e光(入射光的波长不同经过晶体之后的o光与e光的角度也不同,因此在改变波长的过程中,图像会出现漂移);o光和e光及0级光分别会聚在不同的面上。如下图所示:
为了保证入射光经过准平行镜之后能够完全变化成平行光,因此对前端的物镜视场角有一定的要求,根据晶体的xxx角,可算出物镜最大的视场角,小于最大视场角的情况,成像ok,如果大于视场角,则会造成重影(衍射光与0级光都进入了sensor)。可在晶体的出光口加入遮挡片,即遮挡0级光,避免与衍射光一起进入sensor,以免造成重影现象。同时,对聚光准直系统的优化有两个方面:1.提高光源的聚光效果,2.减小聚光准直系统的外形尺寸。
(3)棱镜分光光谱仪
入射光通过棱镜后被分成不同的方向,然后照射到不同方向的探测器上进行成像。棱镜分光后,在棱镜的出射面镀了不同波段的滤光膜,使得不同方向的探测器可以采集到不同光谱信息,实现同时采集空间及光谱信息。
(4)芯片镀膜光谱仪
近年来,IMEC(欧洲微电子研究中心)采用高灵敏CCD芯片及SCMOS芯片研制了一种新的高光谱成像技术,在探测器的像元上分别镀不同波段的滤波膜实现高光谱成像,此技术大大降低了高光谱成像的成本。
目前IMEC提供三种标准的光谱探测器:100波带的线扫描探测器,32波带的瓷砖式镀膜探测器,16波带以4x4为一个波段的马赛克式镀膜探测器。
这种光谱技术的优点是可以同时获得光谱分辨率和空间分辨率,可以进行快速、高性能地获得光谱信息和空间信息,集成度高,成本低。但是缺点是光谱灵敏度较低,一般大于10nm,多用于无人机等大范围扫描的光谱应用领域。
(二)高光谱成像技术的特点
1.光谱响应范围广,光谱分辨率高。
成像光谱仪响应的电磁波长从可见光延伸到近红外,甚至到中红外,光谱分辨率达到纳米级。
2.光谱信息与图像信息有机结合,即“图谱合一”。
在高光谱影像数据中,每一像元对应于一条光谱曲线。整个数据是光谱影像的立方体,具有空间图像维和光谱维。
3.数据描述模型多,分析更加灵活。
高光谱影像通常有三种描述模型:图像模型、光谱模型与特征模型。
4.数据量大,信息冗余多。
高光谱数据的波段众多,其数据量巨大,而且波段之间相关性大。
(三)高光谱成像技术的优势
高光谱图像集样本的图像信息与光谱信息于一身,图像信息可以反映样本的大小、形状、缺陷等外部品质特征。由于不同成分对光谱的吸收也不同,在某个