模糊数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模糊数学结课论文
摘要:模糊数学,亦称弗晰数学或模糊性数学。1965年以后,在模糊集合、模糊逻辑的基础上发展起来的模糊拓扑、模糊测度论等数学领域的统称。是研究现实世界中许多界限不分明甚至是很模糊的问题的数学工具。它使过去那些与数学毫不相干或关系不大的学科都有可能永定量化和数学化加以描述和处理。模糊数学自诞生以来取得迅猛的发展,目前正沿着理论研究和应用研究两个方向迅速发展着。在模式识别、人工智能等方面有广泛的应用。
关键字:模糊数学内容发展应用实例分析
引言:模糊数学作为一种新型学科,在人类的实际生产生活中有着不可磨灭的作用。生活中存在着一系列抽象的,界限模糊的食物以及概念。而此类问题用经典数学理论是无法解决的,往往很棘手。但是在用到这种新型模糊数学理论体系就可以轻轻松松的解决掉他们。随着计算机和信息技术的高速发展,数学的应用范围急剧扩展,特别是近年来对模糊数学理论的研究,已经渗透到数学以及其他自然科学和社会科学的许多领域。其应用之广泛已经遍及理工农医各个方面。
正文
一、模糊数学的概念的内容及发展
1-1定义
模糊数学,是用数学方法研究和处理具有“模糊性”现象的数学,是指在模糊集合、模糊逻辑的基础上发展起来的模糊拖扑、模糊测度论等数学领域。所谓“模糊性”主要指客观事物差异的中间过渡界限的“不分明性”。在地质学上,如储层的含油气性、油田规模的大小、成油地质条件的优劣等。这些模糊变量的描述或定义是模糊的,各变量内部分级没有明显界限。模糊观念的理论强调以模糊逻辑来描述现实生活中实物的等级,以弥补古典逻辑(二值逻辑)无法对不明确定义边界事物描述的缺点。
1-2 产生与发展
模糊数学是一门新兴学科,是研究和处理模糊性现象的数学理论和方法,它不是让数学变得模糊,而是让数学研究进入到模糊现象这样的领域。1965年美国控制论学者扎德发表论文《模糊集合》,标志着这门新学科的诞生。该学科的发展主流在它的应用方面,由于模糊性的概念已经找到了模糊集的描述方式,人们运用概念进行判断、评价、推理、决策和控制的过程也可以用模糊数学的方法来描述。这些方法构成了一种模糊性系统理论,它已广泛应用于计算机科学、人工智能、信息处理、控制工程、经济与管理科学、气象预报等领域。
数学思想方法的几次重大转折:
常量数学→变量数学
必然数学→概率数学
清晰数学→模糊数学
模糊数学目前正沿着理论研究和应用研究两个方向迅速发展着。理论研究主要是经典数学概念的模糊化。由于模糊集自身的层次结构,使得这种理论研究更加复杂,当然也因而更具吸引力。目前已形成了模糊拓扑、模糊代数、模糊分析、模糊测度及模糊计算机等模糊数学分支。应用研究主要是对模糊性之内在规律的探讨.对模糊逻辑及模糊信息处理技术的研究。模糊数学的应用范围已遍及自然科学与社会科学的几乎所有的领域。模糊新产品不断问世,模糊技术不断被应用到高精尖领域。因此,可以毫不夸张地说,全球性的“模糊热”已经形成。
1-3研究内容
美国控制论学者查德发表论文《模糊集合》,论文将模糊数学的研究内容概括为以下三个方面:
第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系。
查德以精确数学集合论为基础,并考虑到对数学的集合概念进行修改和推广。他提出用“模糊集合”作为表现模糊事物的数学模型。并在“模糊集合”上逐步建立运算、变换规律,开展有关的理论研究,就有可能构造出研究现实世界中的大量模糊的数学基础,能够对看来相当复杂的模糊系统进行定量的描述和处理的数学方法。
在模糊集合中,给定范围内元素对它的隶属关系不一定只有“是”或“否”两种情况,而是用介于0和1之间的实数来表示隶属程度,还存在中间过渡状态。比如“老人”是个模糊概念,70岁的肯定属于老人,它的从属程度是 1,40岁的人肯定不算老人,它的从属程度为 0,按照查德给出的公式,55岁属于“老”的程度为0.5,即“半老”,60岁属于“老”的程度0.8。查德认为,指明各个元素的隶属集合,就等于指定了一个集合。当隶属于0和1之间值时,就是模糊集合。
第二,研究模糊语言学和模糊逻辑。
人类自然语言具有模糊性,人们经常接受模糊语言与模糊信息,并能做出正确的识别和判断。为了实现用自然语言跟计算机进行直接对话,就必须把人类的语言和思维过程提炼成数学模型,才能给计算机输入指令,建立合适的模糊数学模型,这是运用数学方法的关键。查德采用模糊集合理论来建立模糊语言的数学模型,使人类语言数量化、形式化。
如果我们把合乎语法的标准句子的从属函数值定为1,那么,其他近义的,以及能表达相仿的思想的句子,就可以用以0到1之间的连续数来表征它从属于“正确句子”的隶属程度。这样,就把模糊语言进行定量描述,并定出一套运算、变换规则。目前,模糊语言还很不成熟,语言学家正在深入研究。人们的思维活动常常要求概念的确定性和精确性,采用形式逻辑的排中律,即:非真即假,然后进行判断和推理,得出结论。现有的计算机都是建立在二值逻辑基础上的,它在处理客观事物的确定性方面,发挥了巨大的作用,但是却不具备处理事物和概念的不确定性或模糊性的能力。为了使计算机能够模拟人脑高级智能的特点,就必须把计算机转到多值逻辑基础上,研究模糊逻辑。目前,模糊逻辑还很不成熟,尚需继续研究。
第三,研究模糊数学的应用。
模糊数学是以不确定性的事物为其研究对象的。模糊集合的出现是数学适应描述复杂事物的需要,查德的功绩在于用模糊集合的理论找到解决模糊性对象加以确切化,从而使研究确定性对象的数学与不确定性对象的数学沟通起来,过去精确数学、随机数学描述感到不足之处,就能得到弥补。在模糊数学中,目前已
有模糊拓扑学、模糊群论、模糊图论、模糊概率、模糊语言学、模糊逻辑学等分支。
模糊数学已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面。在气象、结构力学、控制、心理学等方面已有具体的研究成果。然而模糊数学最重要的应用领域是计算机职能,不少人认为它与新一代计算机的研制有密切的联系。目前,世界上发达国家正积极研究、试制具有智能化的模糊计算机1986年日本山川烈博士首次试制成功模糊推理机,它的推理速度是1000万次/秒。1988年,我国汪培庄教授指导的几位博士也研制成功一台模糊推理机——分立元件样机,它的推理速度为1500万次/秒。这表明我国在突破模糊信息处理难关方面迈出了重要的一步。
二、模糊数学的研究方法及应用
2-1模糊数学的方法
(1)模糊聚类分析
模糊聚类分析的方法的步骤:
1.数据标准化;在实际问题中,不同的数据有不同的量纲,为了使不同的量纲也能进行比较,通常需要对数据做相应的变换但是,即便这样,得到的数据也不一定在区间0~1上。通常要做变换;
a;平移标准差变换;
b;平移极差变换;
c;对数变换
2.标定(建立模糊数学相似矩阵)
a;相似系数法
b;距离法
3.聚类(求动态聚类图)
a,基于模糊等价矩阵聚类方法
b;直接聚类法;
(2)模糊模式识别