人教版菱形
合集下载
人教版八年级下册数学《菱形》平行四边形说课复习(菱形的性质)
∴AC⊥BD
∵AB=BC=CD=AD
∴AC平分∠BAD,∠BCD, BD平分∠ABC,∠ADC
归纳总结:
菱形的对角线把菱形分成4个全等的直角三角形,而平行四边
形通常只被分成两对全等三角形.
(4)对称性:菱形既是轴对称图形,又是中心对称图形,有两条对称
轴,其对称轴为两条对角线所在直线,对称中心为其对角线的交
再与同伴交流.
合作探究
用一长一短两根细木条,在它们的中点处固定一个小钉,做成一个可以转动
的十字,四周围上一根橡皮筋,做成一个平行四边形.转动木条,这个平行
四边形什么时候变成菱形?
可以发现,对角线互相垂直的平行四边形是菱形.
下面我们证明这个结论.
合作探究
已知:如图,在□ABCD中,对角线AC与BD相交于点O,AC⊥BD.
对角线互相平分 相等
平分
例1: 如图,菱形花坛ABCD的边长为20 m,∠ABC=60°,沿着
菱形的对角线修建了两条小路AC和BD.求两条小路的长(结果保
留小数点后两位)和花坛的面积(结果保留小数点后一位).
A
B
O
C
D
解:∵花坛ABCD的形状是菱形,
1
1
∴AC⊥BD,∠ABO= ∠ABC= 2 ×60°= 30°.
人教版八年级数学
菱 形
第1课时 菱形的性质
课件
课标解读
1.理解菱形的定义,能够分辨平行四边形与菱形的区别和联系。
2.掌握菱形的性质定理,并能运用菱形的性质定理进行简单的计算与证明
知识梳理
1.菱形的定义:有一组邻边相等的平行四边形是菱形
D
温馨提示:菱形的定义有两个要素:
①四边形是平行四边形
∵AB=BC=CD=AD
∴AC平分∠BAD,∠BCD, BD平分∠ABC,∠ADC
归纳总结:
菱形的对角线把菱形分成4个全等的直角三角形,而平行四边
形通常只被分成两对全等三角形.
(4)对称性:菱形既是轴对称图形,又是中心对称图形,有两条对称
轴,其对称轴为两条对角线所在直线,对称中心为其对角线的交
再与同伴交流.
合作探究
用一长一短两根细木条,在它们的中点处固定一个小钉,做成一个可以转动
的十字,四周围上一根橡皮筋,做成一个平行四边形.转动木条,这个平行
四边形什么时候变成菱形?
可以发现,对角线互相垂直的平行四边形是菱形.
下面我们证明这个结论.
合作探究
已知:如图,在□ABCD中,对角线AC与BD相交于点O,AC⊥BD.
对角线互相平分 相等
平分
例1: 如图,菱形花坛ABCD的边长为20 m,∠ABC=60°,沿着
菱形的对角线修建了两条小路AC和BD.求两条小路的长(结果保
留小数点后两位)和花坛的面积(结果保留小数点后一位).
A
B
O
C
D
解:∵花坛ABCD的形状是菱形,
1
1
∴AC⊥BD,∠ABO= ∠ABC= 2 ×60°= 30°.
人教版八年级数学
菱 形
第1课时 菱形的性质
课件
课标解读
1.理解菱形的定义,能够分辨平行四边形与菱形的区别和联系。
2.掌握菱形的性质定理,并能运用菱形的性质定理进行简单的计算与证明
知识梳理
1.菱形的定义:有一组邻边相等的平行四边形是菱形
D
温馨提示:菱形的定义有两个要素:
①四边形是平行四边形
人教版数学八年级下册18.2.2菱形菱形的性质说课稿
本节课的主要知识点包括:
1.菱形的定义:一组邻边相等的平行四边形叫做菱形。
2.菱形的性质:
(1)菱形的四条边都相等;
(2)菱形的对角线互相垂直;
(3)菱形的对角线平分一组对角;
(4)菱形的对角线将菱形分成四个全等的直角三角形。
(二)教学目标
知识与技能:
1.了解菱形的定义,掌握菱形的性质;
2.能够运用菱形的性质解决相关问题;
2.菱形的性质:以菱形的定义为基础,引导学生运用几何画板等工具,观察、探索菱形的性质。在此过程中,我会适时提问,引导学生发现性质,并给出严谨的证明。
3.性质的运用:通过实例演示,展示如何运用菱形的性质解决实际问题,如求菱形的面积、周长等。
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
2.培养学生勇于探索、严谨求实的科学态度;
3.增强学生的团队合作意识,培养他们相互学习、共同进步的精神。
(三)教学重难点
根据对学生的了解和教学内容的分析,本节课的教学重点和难点如下:
教学重点:
1.菱形的定义及性质;
2.运用菱形性质解决实际问题;
3.菱形性质的应用。
教学难点:
1.菱形对角线垂直性质的证明;
(二)教学反思
在教学过程中,我预见到以下问题和挑战:
1.学生可能对菱形性质的理解不够深入,导致应用时出现错误;
2.课堂互动可能不够充分,影响学生的参与度和学习兴趣;
3.部分学生对几何证明感到困难,需要更多的个别辅导。
应对策略:
1.通过设计实例和练习,强化学生对性质的理解和应用;
2.优化课堂互动设计,确保每个学生都能参与到学习过程中;
(二)学习障碍
1.菱形的定义:一组邻边相等的平行四边形叫做菱形。
2.菱形的性质:
(1)菱形的四条边都相等;
(2)菱形的对角线互相垂直;
(3)菱形的对角线平分一组对角;
(4)菱形的对角线将菱形分成四个全等的直角三角形。
(二)教学目标
知识与技能:
1.了解菱形的定义,掌握菱形的性质;
2.能够运用菱形的性质解决相关问题;
2.菱形的性质:以菱形的定义为基础,引导学生运用几何画板等工具,观察、探索菱形的性质。在此过程中,我会适时提问,引导学生发现性质,并给出严谨的证明。
3.性质的运用:通过实例演示,展示如何运用菱形的性质解决实际问题,如求菱形的面积、周长等。
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
2.培养学生勇于探索、严谨求实的科学态度;
3.增强学生的团队合作意识,培养他们相互学习、共同进步的精神。
(三)教学重难点
根据对学生的了解和教学内容的分析,本节课的教学重点和难点如下:
教学重点:
1.菱形的定义及性质;
2.运用菱形性质解决实际问题;
3.菱形性质的应用。
教学难点:
1.菱形对角线垂直性质的证明;
(二)教学反思
在教学过程中,我预见到以下问题和挑战:
1.学生可能对菱形性质的理解不够深入,导致应用时出现错误;
2.课堂互动可能不够充分,影响学生的参与度和学习兴趣;
3.部分学生对几何证明感到困难,需要更多的个别辅导。
应对策略:
1.通过设计实例和练习,强化学生对性质的理解和应用;
2.优化课堂互动设计,确保每个学生都能参与到学习过程中;
(二)学习障碍
人教版菱形的性质
A
D
已知四边形ABCD是菱形 2、相等的角:
12
7 8Leabharlann 5B6O
4 3
C
∠DAB=∠BCD ∠ABC =∠CDA
∠AOB=∠DOC=∠AOD=∠BOC =90°
∠1=∠2=∠3=∠4 ∠5=∠6=∠7=∠8
已知四边形ABCD是菱形
3、等腰三角形有: B
A
D
12
7 8
O
5
4
6
3
C
△ABC △ DBC △ACD △ABD
A
D
2.菱形ABCD中∠ABC=60度,
O
则∠BAC=__6_0_度___.
C
B
3.菱形ABCD中,O是两条对角线的
交点,已知AB=5cm,AO=4cm,求
两对角线AC、BD的长。
有关菱形问题可转化为直角三角形 或等腰三角形的问题来解决
1.定义:
2.性质:
矩形和菱形常利用图中 的RT△进行计算和证明
A
菱形
B
O
E
C
菱形是特殊的平行四边形,
那么能否利用平行四边形 面积公式计算菱形的面积吗?
D
S菱形=BC. AE
思考:计算菱形的面积除了上式方法外,利用对
为
角线能 计算菱形的面积公式吗?
1 S S S 菱形ABCD = △ABD+ △BCD = 2 AC×BD
?
什 么
菱形的面积=底×高=对角线乘积的一半
7 8
O
1、图中有哪些相等的线段? 5
4
2、图中有哪些相等的角? B
6
3
C
3、图中有哪些等腰三角形?
4、图中有哪些直角三角形?
人教版八年级数学下册《菱形》课件
•
20、任何人都不可以随随便便的成功,它来自完全的自我约束和坚韧不拔的毅力。永远别放弃自己,哪怕所有人都放弃了你。
Hale Waihona Puke •6、在别人肆意说你的时候,问问自己,到底怕不怕,输不输的起。不必害怕,不要后退,不须犹豫,难过的时候就一个人去看看这世界。多问问自己,你是不是已经为了梦想而竭尽全力了?
•
7、人往往有时候为了争夺名利,有时驱车去争,有时驱马去夺,想方设法,不遗余力。压力挑战,这一切消极的东西都是我进取成功的催化剂。
菱形
1.什么叫做平行四边形? 2.什么叫矩形? 3.平行四边形和矩形之间的关系 是什么?
矩形
一 . 定义
平行四边形
邻边相等
菱形
有一组邻边相等的平行四边形叫做菱形.
感受
生活
三菱越野汽车欣赏
菱形就在我们身边
菱形是特殊的平行四边形,它具有平 行四边形的一切性质.即
边:菱形的对边平行且相等. 角:菱形的对角相等. 对角线:菱形的对角线互相平分.
求:(1)∠ABC的度数 (2)对角线AC、BD的长;
(3)菱形ABCD的面积。
D
C
O
A
B
E
回味无穷
这 堂 课 你 学 到 了 什 么?
作业
课本 60 页 5、11题
•
1、快乐总和宽厚的人相伴,财富总与诚信的人相伴,聪明总与高尚的人相伴,魅力总与幽默的人相伴,健康总与阔达的人相伴。
•
2、人生就有许多这样的奇迹,看似比登天还难的事,有时轻而易举就可以做到,其中的差别就在于非凡的信念。
A
O
B
D
C
课堂检测
1.已知菱形的周长是12cm,那 么它的边长是______.
人教版数学八年级下册18.2.2菱形菱形的判定优秀教学案例
1.采用问题驱动、合作探讨的教学方法,引导学生主动发现、总结菱形的性质和判定方法。
2.利用多媒体教学手段,展示菱形的直观图形,帮助学生建立清晰的菱形概念,提高学生的空间想象能力。
3.设计具有挑战性和实际意义的几何问题,激发学生运用菱形知识解决问题的欲望,培养学生的创新能力。
4.鼓励学生互相交流、分享学习心得,培养学生的团队合作精神和沟通能力。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,如:“我在学习菱形的过程中遇到了哪些困难?是如何克服的?”等。
2.学生之间互相评价、提问,共同提高,培养学生的批判性思维和自我反思能力。
3.教师对学生的学习情况进行总结和评价,关注学生的个体差异,采取不同的教学方法,让每个学生都能在课堂上得到锻炼和提高。
4.教育学生关爱环境,关注自然资源的合理利用,将菱形知识与现实生活中的环保理念相结合,提高学生的道德素养。
三、教学策略
(一)情景创设
1.利用多媒体展示各种生活中的菱形物品,如钻石、奖杯等,让学生感受菱形的美感和实用性,激发学生的学习兴趣。
2.设计富有挑战性和实际意义的问题,让学生在解决问题的过程中,自然地引入菱形的学习,如:“为什么钻石闪耀着迷人的光芒?”、“奖杯的形状为什么是菱形的?”等。
1.教师引导学生总结本节课所学的内容,如:菱形的定义、性质、判定方法等。
2.学生通过反思和总结,巩固所学知识,提高自我反思能力。
3.教师关注学生的个体差异,对学生的学习情况进行点评,采取不同的教学方法,让每个学生都能在课堂上得到锻炼和提高。
(五)作业小结
1.教师布置具有实际意义和挑战性的作业,让学生运用菱形的性质和判定方法进行解决,如:设计一个菱形图案等。
4.鼓励学生在课后进行拓展学习,如:查阅相关资料、参加数学竞赛等,提高学生的自主学习能力。
2.利用多媒体教学手段,展示菱形的直观图形,帮助学生建立清晰的菱形概念,提高学生的空间想象能力。
3.设计具有挑战性和实际意义的几何问题,激发学生运用菱形知识解决问题的欲望,培养学生的创新能力。
4.鼓励学生互相交流、分享学习心得,培养学生的团队合作精神和沟通能力。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,如:“我在学习菱形的过程中遇到了哪些困难?是如何克服的?”等。
2.学生之间互相评价、提问,共同提高,培养学生的批判性思维和自我反思能力。
3.教师对学生的学习情况进行总结和评价,关注学生的个体差异,采取不同的教学方法,让每个学生都能在课堂上得到锻炼和提高。
4.教育学生关爱环境,关注自然资源的合理利用,将菱形知识与现实生活中的环保理念相结合,提高学生的道德素养。
三、教学策略
(一)情景创设
1.利用多媒体展示各种生活中的菱形物品,如钻石、奖杯等,让学生感受菱形的美感和实用性,激发学生的学习兴趣。
2.设计富有挑战性和实际意义的问题,让学生在解决问题的过程中,自然地引入菱形的学习,如:“为什么钻石闪耀着迷人的光芒?”、“奖杯的形状为什么是菱形的?”等。
1.教师引导学生总结本节课所学的内容,如:菱形的定义、性质、判定方法等。
2.学生通过反思和总结,巩固所学知识,提高自我反思能力。
3.教师关注学生的个体差异,对学生的学习情况进行点评,采取不同的教学方法,让每个学生都能在课堂上得到锻炼和提高。
(五)作业小结
1.教师布置具有实际意义和挑战性的作业,让学生运用菱形的性质和判定方法进行解决,如:设计一个菱形图案等。
4.鼓励学生在课后进行拓展学习,如:查阅相关资料、参加数学竞赛等,提高学生的自主学习能力。
人教版八年级下册18.2.2 菱形 课件(共30张PPT)
D
∴ AB2=OA2+OB2,
∴△AOB是直角三角形, A
O
C
即AC⊥BD,
B
又∵四边形ABCD是平行四边形,
∴四边形ABCD是菱形.
例2 如图,矩形ABCD的对角线AC的垂直平分线与边AD、 BC分别交于点E、F,求证:四边形AFCE是菱形.
证明:∵四边形ABCD是矩形,
∴AE∥FC,∴∠1=∠2.
证明:连接AC、BD.
A
E
D
∵四边形ABCD是矩形,
F
H
∴AC=BD.
∵点E、F、G、H为各边中点, B
G
C
E F G H 1B D , F G E H 1A C ,
2
2
∴EF=FG=GH=HE,
∴四边形EFGH是菱形.
【变式题】 如图,顺次连接对角线相等的四边形 ABCD各边中点,得到四边形EFGH是什么四边形?
拓展1 如图,顺次连接平行四边形ABCD各
边中点,得到四边形EFGH是什么四边形?
解:连接AC、BD.
E
B
A
∵点E、F、G、H为各边中点,
F
E F G H 1 2 B D , F G E H 1 2A C , D
小刚的作法对吗? 猜想:四条边相等的四边形是菱形.
证一证 已知:如图,四边形ABCD中,AB=BC=CD=AD.
求证:四边形ABCD是菱形.
证明:∵AB=BC=CD=AD;
B
∴AB=CD , BC=AD.
A
∴四边形ABCD是平行四边形.
C D
又∵AB=BC,
∴四边形ABCD是菱形.
归纳总结 菱形的判定定理:
解:四边形EFGH是菱形.
人教版八下数学课件第18章18.2.2第1课时菱形的性质
灿若寒星
解 : 当 四 边 形 EDD′F 为 菱 形 时 , △A′DE 是 等 腰 三 角 形 , △A′DE≌△EFC′.理由:∵△BCA 是直角三角形,∠ACB=90°,AD=
DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C∥AC,∴∠DA′E=
∠A , ∠DEA′ = ∠DCA , ∴∠DA′E = ∠DEA′ , ∴DA′ = DE ,
7.如图,AC、BD 是菱形 ABCD 的对角线,那么下列结论一定正确的是( B ) A.△ABD 与△ABC 的周长相等 B.△ABD 与△ABC 的面积相等 C.菱形的周长等于两条对角线之和的两倍 D.菱形的面积等于两条对角线之积的两倍
灿若寒星
8.如图,在菱形 ABCD 中,∠BAD=120°,AB=4.
初中数学课件
灿若寒星*****整理制作
八年级数学(下册)·人教版
第十八章 平行四边形
18.2.2 菱形 第1课时 菱形的性质
灿若寒星
1.定义:四条边相等的四边形 叫做菱形.菱形是轴对称图形,它的对称 轴是 两条对角线所在的直线 . 2.性质:①菱形的四条边 相等 ;②菱形的对角线 互相垂直平分 ,并且 每条对角线 平分 一组对角. 3.菱形的面积等于两对角线长的乘积的 一半 .
解:∵四边形 ABCD 为菱形,∴AC⊥BD,OA=12AC=8cm,OD=21BD= 6cm.∴AD= 62+82=10,∴C 菱形=4AD=40cm.由 S 菱形=AB×DE=12 ×AC×BD,即 10×DE=12×16×12,∴DE=9.6cm.
灿若寒星
5.如图,将一张直角三角形 ABC 纸片沿斜边 AB 上的中线 CD 剪开,得到 △ACD,再将△ACD 沿 DB 方向平移到△A′C′D′的位置,若平移开始后 点 D′,未到达点 B 时,A′C′交 CD 于 E,D′C′交 CB 于点 F,连接 EF,当四边形 EDD′F 为菱形时,试探究△A′DE 的形状,并判断△A′DE 与△EFC′是否全等?请说明理由.
解 : 当 四 边 形 EDD′F 为 菱 形 时 , △A′DE 是 等 腰 三 角 形 , △A′DE≌△EFC′.理由:∵△BCA 是直角三角形,∠ACB=90°,AD=
DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C∥AC,∴∠DA′E=
∠A , ∠DEA′ = ∠DCA , ∴∠DA′E = ∠DEA′ , ∴DA′ = DE ,
7.如图,AC、BD 是菱形 ABCD 的对角线,那么下列结论一定正确的是( B ) A.△ABD 与△ABC 的周长相等 B.△ABD 与△ABC 的面积相等 C.菱形的周长等于两条对角线之和的两倍 D.菱形的面积等于两条对角线之积的两倍
灿若寒星
8.如图,在菱形 ABCD 中,∠BAD=120°,AB=4.
初中数学课件
灿若寒星*****整理制作
八年级数学(下册)·人教版
第十八章 平行四边形
18.2.2 菱形 第1课时 菱形的性质
灿若寒星
1.定义:四条边相等的四边形 叫做菱形.菱形是轴对称图形,它的对称 轴是 两条对角线所在的直线 . 2.性质:①菱形的四条边 相等 ;②菱形的对角线 互相垂直平分 ,并且 每条对角线 平分 一组对角. 3.菱形的面积等于两对角线长的乘积的 一半 .
解:∵四边形 ABCD 为菱形,∴AC⊥BD,OA=12AC=8cm,OD=21BD= 6cm.∴AD= 62+82=10,∴C 菱形=4AD=40cm.由 S 菱形=AB×DE=12 ×AC×BD,即 10×DE=12×16×12,∴DE=9.6cm.
灿若寒星
5.如图,将一张直角三角形 ABC 纸片沿斜边 AB 上的中线 CD 剪开,得到 △ACD,再将△ACD 沿 DB 方向平移到△A′C′D′的位置,若平移开始后 点 D′,未到达点 B 时,A′C′交 CD 于 E,D′C′交 CB 于点 F,连接 EF,当四边形 EDD′F 为菱形时,试探究△A′DE 的形状,并判断△A′DE 与△EFC′是否全等?请说明理由.
菱形菱形的判定课件人教版数学八年级下册
所以CE=AE=AC.
又因为AF=CE,所以AF=AE=AC.
7.(丹东)如图,在▱ABCD中,O是AD的中点,连接CO并延长,交BA的延长线于 点E,连接AC,DE.
(1)求证:四边形ACDE是平行四边形. (2)若AB=AC,判断四边形ACDE的形状,并说明理由.
8.(滨州)如图,矩形ABCD的对角线AC,BD相交于点O,BE∥AC, AE∥BD.
第4题图
5.如图,过▱ABCD的对角线交点O作互相垂直的两条直线EG,FH,
与AD,AB,BC,CD分别相交于点E,F,G,H.求证:四边形EFGH是
菱形.
证明:因为四边形ABCD是平行四边形,
所以AD∥BC,OB=OD.
所以∠ODE=∠OBG,∠OED=∠OGB.
所以△EOD≌△GOB.
所以OE=OG.
第十八章 平行四边形
18.2 特殊的平行四边形
菱形——菱形的判定
自主导学
菱形的判定方法: 方法1(定义法):有一组___邻__边___相等的平行四边形是菱形. 方法2:对角线__互__相__垂__直____的平行四边形是菱形. 方法3:四条边___相__等___的四边形是菱形.
探究学习
对角线互相垂直的平行四边形是菱形 【例1】如图,▱ABCD的对角线AC的垂直平分线与 边AD,BC分别相交于点E,F.求证:四边形AFCE是菱 形.
(1)求证:AE=DF.
(2)四边形AEFD能成为菱形吗?若能,求出相应的t值;若不能,请说 明理由.
解:能. 因为∠B=∠DFC=90°, 所以DF∥AB. 又DF=AE, 所以四边形AEFD是平行四边形. 当AD=AE时,四边形AEFD是菱形,即60-4t=2t,解得t=10. 所以当t=10时,四边形AEFD是菱形.
人教版八年级数学下册18.2.2菱形的判定教案
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了菱形的基本概念、判定方法及其在实际生活中的应用。通过实践活动和小组讨论,我们加深了对菱形知识的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
突破方法:引导学生从已知条件和基本几何定理出发,逐步展开证明过程,培养学生严谨的逻辑推理能力。
(4)在实际问题中的应用:将菱形知识应用于解决实际问题,要求学生能够将理论知识与实际情境相结合,这对学生来说是一个挑战。
突破方法:设置生活实例和实际应用问题,引导学生运用菱形知识进行分析和解答,提高学生的知识运用能力。
突破方法:通过动画演示、实物模型展示等方式,让学生直观感受菱形的性质。
(2)菱形判定方法的灵活运用:在实际问题中,学生需要根据不同条件选择合适的判定方法,这要求学生对判定方法有深入理解。
突破方法:设计不同类型的练习题,让学生在解决问题过程中逐步掌握判定方法的应用。
(3)几何图形的证明:在证明菱形相关性质时,学生需要运用几何知识进行推理和证明,这对于学生的逻辑思维和推理能力有较高要求。
举例:已知菱形ABCD的对角线AC和BD相交于点E,求证:AE=CE,BE=DE。
(3)掌握菱形的判定方法:定义法、四边相等法、对角线垂直平分法。这是判断一个四边形是否为菱形的关键。
举例:判断四边形EFGH是否为菱形,其中EF=EH,GH=FE,∠EFG=∠HFG。
2.教学难点
(1)对菱形性质的理解:学生需要通过直观图形和具体实例,理解并记住菱形的性质,这对于初学者来说可能存在难度。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了菱形的基本概念、判定方法及其在实际生活中的应用。通过实践活动和小组讨论,我们加深了对菱形知识的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
突破方法:引导学生从已知条件和基本几何定理出发,逐步展开证明过程,培养学生严谨的逻辑推理能力。
(4)在实际问题中的应用:将菱形知识应用于解决实际问题,要求学生能够将理论知识与实际情境相结合,这对学生来说是一个挑战。
突破方法:设置生活实例和实际应用问题,引导学生运用菱形知识进行分析和解答,提高学生的知识运用能力。
突破方法:通过动画演示、实物模型展示等方式,让学生直观感受菱形的性质。
(2)菱形判定方法的灵活运用:在实际问题中,学生需要根据不同条件选择合适的判定方法,这要求学生对判定方法有深入理解。
突破方法:设计不同类型的练习题,让学生在解决问题过程中逐步掌握判定方法的应用。
(3)几何图形的证明:在证明菱形相关性质时,学生需要运用几何知识进行推理和证明,这对于学生的逻辑思维和推理能力有较高要求。
举例:已知菱形ABCD的对角线AC和BD相交于点E,求证:AE=CE,BE=DE。
(3)掌握菱形的判定方法:定义法、四边相等法、对角线垂直平分法。这是判断一个四边形是否为菱形的关键。
举例:判断四边形EFGH是否为菱形,其中EF=EH,GH=FE,∠EFG=∠HFG。
2.教学难点
(1)对菱形性质的理解:学生需要通过直观图形和具体实例,理解并记住菱形的性质,这对于初学者来说可能存在难度。
人教版菱形的判定定理
C
证明: ∵AB=CD,AD=BC
∴四边形ABCD是平行四边形
A
又∵AB=AD,∴四边形ABCD是菱形
B
∴四条边相等的四边形是菱形
探索新知:
u菱形的判定方法(三):
A
D
A
D
AB=BC=CD=DA
B
C
B
C
四边形ABCD
菱形ABCD
AB=BC=CD=DA
四边形ABCD是菱形
判定定理归纳: u菱形常用的判定方法:
总结反思
• 1 .本节课复习了哪些数学知识? 2. 在解决问题的过程中突出的 数学思想方法是什么?
平行四边形的问题往往转化为三 角形来解决,同时平行四边形又 为三角形全等提供边等和角等.
3.畅所欲言:本节课中你有什么收 获?还有什么疑惑呢?
u那么你知道如何判定一个四边形是菱 形吗?
学习目标:
1:理解并掌握菱形的判定定理
2:会运用菱形的判定定理解决有 关问题
探索新知
u菱形的判定方法(一):
一组邻边相等的平行四边形是菱形;
A
D
A
D
AB=BC
B
C
□ABCD
AB=BC
□ABCD
B
C
菱形ABCD
四边形ABCD是菱形
探索新知
菱形的判定方法(二):
巩固新知
1老师说下列三个图形都是菱形,你相信吗?5Βιβλιοθήκη 34435
图1
┍
3 44
3
图2
5
5 5
5
图3
要证明一个四边形是菱形有以下几种方法
方法一:先证明四边形是平行四边形,再证明有一组邻边 相等(如图1) 方法二:先证明四边形是平行四边形,再证明对角线互相垂直 (如图2) 方法三:证明四条边相等的四边形(如图3)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
34
43
5
┍
3 44
3
5
5 5
5
有一组邻边 相等的平行四 边形叫做菱形
对角线互相 垂直的平行四 边形是菱形
有四条边相等的 四边形是菱形。
2、判断下列说法是否正确?为什么?
(1)对角线互相垂直的四边形是菱形; ( )╳
(2)对角线互相垂直平分的四边形是菱形;(√)
(3)对角线互相垂直,且有一组邻边相等
D
O
C
B
菱形的两组对角分别相等
角 菱形的邻角互补
怎样判断一个四 边形是菱形?
菱形的 两条对角线互相平分 对角线 菱形的两条对角线互相垂直平分,
并且每一条对角线平分一组对角。
回顾反思 类比猜想
我们学习了矩形的定义、性质和判定,如下表 .你 能发现矩形的三条判定定理分别是从哪个角度得到的吗?
矩形的 定义 有一个角是直角的平行四边形叫做矩形
18.2.2菱形的判定
课件说明
• 学习目标: 1.掌握菱形的三种判定方法,能根据不同的已知条 件,选择适当的判定定理进行推理和计算; 2.经历菱形判定定理的探究过程,渗透类比思想, 体会研究图形判定的一般思路.
• 学习重点: 菱形判定条件的探索、证明和应用.
边 菱形的两组对边平行且相等 A
菱形的四条边相等
C
∴四边形ABCD是菱形
还有其他么方法吗?
探究一
用一长一短两根细木条,在它们的中点 处固定一个小钉,做成一个可以转动的十字, 四周围上一根橡皮筋,做成一个四边形.转动 木条,这个四边形什么时候变成菱形?
猜想: 对角线互相垂直的 平行四边形是菱形.
命题:对角线互相垂直的平行四边形是菱形.
已知:在 AB中CD,AC ⊥ BD
∴四边形EFGH是菱形
9、已知:如图,□ ABCD的对角线AC的
垂直平分线与边AD,BC分别交于E,
F.
A
证求明证::四边形AFCE是菱形
E
D
∵EF垂直平分AC ∴AO=CO, ∠AOE=90° B
O
F
C
∴∠FOC=∠AOE=90°
∴OE=OF
∵四边形ABCD是平行四边形又∵AO=CO
∴ AD∥BC ∴AE∥FC ∴∠AEO=∠CFO
交于点O,AB=5,AC=8,DB=6D
求证:四边形ABCD是菱形.
A 证明: ∵ 四边形ABCD是平行四边形
O
C
∴OA=OC=4 OB=OD=3
B
又∵AB=5 ∴AB2=AO2+BO2 ∴∠AOB=90°
∴AC⊥BD 又∵ 四边形ABCD是平行四边形
∴四边形ABCD是菱形.
1、老师说下列三个图形都是菱形,你相信吗?
C
∵AB=CD,AD=BC
∴四边形ABCD是平行四边形
又∵AB=AD,
A
B
∴四边形ABCD是菱形
判定方法3:
四条边都相等的四边形是菱形.
A
D AB=BC=CD=DA A
D
B C
四边形ABCD
B
C
菱形ABCD
数学语言
∵在四边形ABCD中 AB=BC=CD=DA ∴四边形ABCD是菱形
菱形常用的判定方法:
①有一组邻边相等的平行四边形叫做菱形
+邻边相等 =
②对角线互相垂直的平行四边形是菱形
+对角线线互相垂直=
③有四条边相等的四边形是菱形。
四条边相等+
=
菱形的判定:
判定 法一
文字语言
一组邻边相 等的平行四 边形是菱形
图形语言
符号语言
A
D
∵在□ABCD中
AB=AD
B
C ∴四边形ABCD是菱形
判定 对角线互相垂直
的四边形是菱形;
()
╳
(4)两条邻边相等,且一条对角线平分一
╳
组对角的四边形是菱形.
D
A
()
C
A
∟
C
B
B
D
3、□ABCD的对角线AC与BD相交于点
O,
菱
(1)若AB=AD,则□ABCD是矩 形;
(2)若AC=BD,则□ABCD是 矩形;
(3)若∠ABC是直角,则□ABCD是菱 形; (4)若∠BAO=∠DADO,则□ABCD是C 形。
O
A
B
4、选择:
(1).下列命题中正确的是( C)
A.一组邻边相等的四边形是菱形 B.三条边相等的四边形是菱形 C.四条边相等的四边形是菱形 D.四个角相等的四边形是菱形
(2).对角线互相垂直且平分的四边形是( C)
A.矩形
B.一般的平行四边形
C.菱形
D.以上都不对
(3).下列条件中,不能判定四边形ABCD为菱形的是(C )
∴四边形AFCE是 平行四边形
又∵EF⊥AC
∴△AEO≌△CFO
∴四边形AFCE是菱形
课堂小结
三个角是直角
四边形
一组对边平行且相等 两组对边分别相等
两组对边分别平行
两组对角分别相等 对角线互相平分
平行四边形
四条边都相等
矩形 菱形
课本60页习题18.2第6、10题
则CE =CF,BE =DF。
A
F
D
E
B
C
7、已知:如图,AD平分∠BAC,
DE∥AC 交AB于E,DF∥AB交AC于F.
求证:四边形AEDF是菱形.
A
证明:∵DE∥AC DF∥AB
E 12
∴四边形AEDF是平行四边形 3
F
∵ DE∥AC ∴∠2=∠3
BDC
∵ AD是△ABC的角平分线
∴ ∠1=∠2
A
求证: ABC是D菱形
证明:
∟
B
O
D
C
∵四边形ABCD是平行四边形
∴OA=OC
又∵AC⊥BD;
∴BA=BC
∴ ABCD是菱形
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
判定方法2:
对角线互相垂直的平行四边形是菱形
A
D
AC⊥BD
B
C
□ABCD
A
D
B
C
菱形ABCD
数学语言 ∵在□ABCD中,AC⊥BD ∴ □ABCD是菱形
法二
的平行四边形是 菱形
判定
四边相等的四边 形是菱形
法三
A
D
O
BC
A
D
B
C
∵在□ABCD中
AC⊥BD ∴四边形ABCD是菱形
∵AB=BC=CD=DA
∴四边形ABCD是菱形
思考: 请你动脑筋
把两张等宽的纸条交叉重叠在一起,你能判断
重叠部分ABCD的形状吗?
A
D
F
∟
B
EC
例4如图, ABCD的两条对角线AC、BD相
A
D
具有平行四边形的所有性质ຫໍສະໝຸດ 矩形的 对角线相等O
性质 四个角都是直角
有一个角是直角的平行四边形是矩形
B
C 矩形的
判定 对角线相等的平行四边形是矩形
有三个角是直角的四边形是矩形
根据菱形的定义,可得菱形的 第一个判定的方法
有一组邻边相等的平行四边形叫做菱形
数学语言:
A
D
O
∵四边形ABCD是平行四边形且AB=ABD
A.AC⊥BD,AC与BD互相平分 B.AB=BC=CD=DA C.AB=BC,AD=CD,且AC⊥BD D.AB=CD,AD=BC,AC
5、一边长为5cm平行四边形的两条对角 线的长分别为6cm和8cm,则这个平行四 边形为菱形,其面积为 24。㎝²
6、如图在菱形ABCD中,CE⊥AB,CF⊥AD.
∴ ∠1=∠3
∴AE=DE ∴ □AEDF是菱形
8、如图,顺次连接矩形ABCD各边中点,
得到四边形EFGH,求证:四边形EFGH是
证菱明形:。连接AC、BD
A
E
D
∵四边形ABCD是矩形
F
H
∴AC=BD
B
∵点E、F、G、H为各边中点
G
C
EF GH 1 BD,FG EH 1 AC
2
2
∴EF=FG=GH=HE
如何利用折纸、剪切的方法, 既快又准确地剪出一个菱形的纸片? 小明是这样做的:将一张长方形的纸对折、再对 折,然后沿图中的虚线剪下,打开即可.你知道 其中的道理吗?从这个图形中你有什么发现?
命题:有四条边相等的四边形是菱形。
已知:在四边形ABCD
中,AB=BC=CD=DA.
求证证明::四边形ABCD是菱形 D