固废课程设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要
近二十多年来,世界上的能源问题突出,而随着生物学、生物化学等学科的发展和工程实践经验的积累,新的厌氧处理工艺和构筑物不断地被开发出来,新工艺克服了传统的缺点,使得厌氧生物处理技术的理论和实践都有了很大的进步,并在处理高浓度有机污水方面取得了良好的效果和经济效益。

因此,人们越来越重视厌氧消化池的应用——主要应用于处理从污水中分离出来的有机污泥、含有机固体物较多的污水和浓度很高的污水。

除此之外,厌氧接触工艺也以被成功地应用于肉类食品工业废水和其他含有高浓度可溶性有机物废水的处理。

第一章设计概况说明
一、题目:污泥厌氧消化池设计
二、内容:设计日处理240M3的中温定容式污泥厌氧消化池。

(100 M3左右)
三、原始数据及操作条件要求
(一)污泥的含水率96.5%,污泥全年平均温度25°C,日平均最低温度23°C;
(二)大气的全年平均温度21°C,土壤冬季计算温度10°C,冬季冻土深度0.6米,
土壤全年平均温度23°C,冬季室外计算温度3°C;
(三)当地底下水位深度7米(距地表);
(四)采用中温消化,消化温度控制在33—35°C,消化池需加热和搅拌。

四、污泥厌氧消化的概述
(一)基本定义;
早期的厌氧生物处理研究针对污泥消化,即在无氧的条件下,由兼性厌氧细菌及专性厌氧细菌降解有机物使污泥得到稳定,其最终产物是二氧化碳和甲烷气(或称污泥气、消化气)等。

所以污泥厌氧消化过程也称为污泥生物稳定过程。

(二)处理的对象
污泥厌氧消化法的处理对象主要是初次沉淀污泥、腐殖污泥、剩余活性污泥、食品废料、生活污水污泥以及高浓度生产污水(如屠宰场,食品厂污水等)。

特别对于处理那些BOD极高的,在缺氧的情况下易于分解的生产污水非常有效。

污泥的厌氧消化与污泥的好氧消化一样,都是稳定污泥的有效方法。

消化后的污泥可作为农业或其他方面的利用,生产的污泥可作为能源或化工原料,实现了无害化和资源化。

因而,厌氧消化法是污泥处理的基本方法。

(三)意义作用;
污泥的厌氧消化是稳定污泥的一种方法。

消化后的污泥可以作为农业或其他方面的利用,生产的污泥可以作为能源或化工原料,实现了无害化和资源化。

(四)有机物厌氧消化(厌氧发酵)的基本原理;
有机物在厌氧条件下消化降解要经过高分子有机物的水解,挥发性有机酸、醇类的生成和产甲烷、二氧化碳等三个过程。

犹豫这三个过程分为两个阶段,既酸性消化阶段和碱性消化阶段。

1.酸性消化阶段
高分子有机物必须首先由细菌分泌的胞外酶水解成简单的有机物才能进入细胞体内进行代谢。

太厌氧条件下,犹豫产酸菌分泌的外煤的作用,含碳有机物被水解成单糖,
蛋白质被水解成肽和氨基酸,脂肪被水解成丙三醇、脂肪酸。

此水解产物再进入各类产酸菌的体内,被代谢成跟简单的丁酸、丙酸、乙酸和甲酸等有机酸以及醇类、醛类、氨、二氧化碳、硫化物、氢等,同事释放出能量。

在酸性消化阶段,犹豫有机酸的形成和积累,pH值可下降至6一下。

此后随着有机酸和溶解性含氮化合物的分解,酸性逐渐减弱,pH值回升到6.5~6.8左右。

2.碱性消化阶段
这一阶段就是对酸性消化阶段的嗲写产物,在甲烷菌的作用下,进一步分解成生物气的阶段其产生的生物气主要盛饭是甲烷、二氧化碳、及少量氨和硫化氢等。

甲烷菌属于专性厌氧菌,其特点是:(1)对培养的要求不高,一般的营养盐类、二氧化碳、醇和氨都可作为碳、氮源;(2)随pH值得使用范围很窄,适宜的pH值范围在6.4~7.8之间,最佳pH值为6.8~7.2;(3)对温度的适应性较弱,甲烷菌在一定温度内被驯化后,温度波动2℃就可破话消化作用;(4)甲烷菌的世代时间较长,一般俄日4~6天,繁殖一代;(5)甲烷菌的专一性很强,每种甲烷菌只能代谢悠闲的几种底物。

因此,在厌氧条件下有机物转化往往是不完全的。

由于甲烷具有以上特点,甲烷消化阶段基本上控制着厌氧消化的整个过程。

虽然厌氧消化可分为酸性消化和碱性消化,但是在连续消化的过程中,二者是同时进行的,并且保持着某种程度的动态平衡。

这一动态平衡一旦被pH值、温度、有机物负荷等外外加因素所破坏,则碱性消化阶段往往即刻停止,起结果将导致低级脂肪
酸的积存和厌氧消化进程的失常。

(五)影响厌氧消化的因素;
1.温度温度是影响消化的主要因素。

温度适宜时,细菌发育正常,有机物分解
完全,产气量高。

细菌对温度的适应性可分为低温、中温和高温三区。

低温消
化一般不控制消化温度;中温消化30℃~35℃;高温消化50℃~56℃。

事实上,在0℃~56℃的范围内,甲烷菌并没有特定的温度限制。

然而,在一定的温度
范围内被驯化以后,温度升降两度,都可严重影响甲烷的消化作用。

尤其是高
温消化,对温度变化更为敏感。

因此在运行时,应保持温度不变。

2.污泥投配率投配率是指每日加入消化池的新鲜污泥体积与消化池体积的比
率,以百分数计。

投配率大,有机物分解程度降低,产气量下降,所需消化池
容积小;头哦诶率小,污泥中有机物分解程度提高,产气量增加,但所需的消
化池容积大,基建费用增加,
3.搅拌搅拌可以使新鲜的污泥与熟污泥均匀接触,加速热传导;均匀的提供给
细菌以养料;打碎消化池液面上的浮渣层,使整个池子处于消化活跃状态,以
提高消化池的负荷。

4.营养与C/N 消化池的营养由投配污泥供给,各基质中的含贪凉见下表:
C/N太高,细菌的单量不足,消化液缓冲能力低,pH值容易降低。

C/N太低,含氮量过高,pH值可能上升到8.0以上,脂肪酸的铵盐要积累,使有机物的分解受到限制。

对于污泥消化处理来说,C/N为(10~20):1较合适。

5.酸碱度酸碱度影响消化系统的pH值和消化液的缓冲能力,因此消化系统中
对碱度有一定要求,
6.有机毒物含量城市污水由于有工业废水排入,使污泥中含有重金属盐类和有
毒物质,当这些物质含量达到一定浓度时,将对甲烷细菌的生长发育产生抑制
作用,这个浓度成为允许浓度。

7.CO
2/CH
4
的比值当污泥性质稳定时,消化正常的情况下,CO
2
/CH
4
的比值也是
稳定的,一般为0.7左右,不同性质的污泥,比值略有不同。

比值失调,于是
消化存在问题。

如有机酸的积累,可与HCO
3作用,产生CO
2
,使CO
2
/CH
4
的比值
提高
五、厌氧消化池的类型;
(一)按容积大小分:①小型消化池(小于2500m3);
②中型消化池(2500~10000m3);
③大型消化池(大于10000m3)。

(二)按处理负荷分:①标准负荷消化池(污泥无需加热搅拌而消化时间较长);
②高负荷消化池(污泥需要加热搅拌而消化时间短)。

(三)按结构分:①固定盖式(定容式)消化池;
②浮动盖式(动容式)消化池。

(四)按消化温度分:①低温消化池(在小于20℃的条件下污泥进行自然厌氧消化,
如化粪池的消化);
②中温消化池(30℃~35℃,需加热搅拌);
③高温消化池(50℃,需家人搅拌)。

六、工艺流程。

第二章设计方法
一、设计概述
我国的定容式消化池主要为柱锥形。

消化池由集气罩(直径1~2米,高常为1米)、上椎体、池体和下椎等四部分组成,并附设有搅拌和加热设备。

消化池直径一般为6~35米,柱体部分高度约为直径的1/2,总高度与直径比约为0.8~1.0,池底坡度一般为0.08。

中温消化最佳温度为34°C。

为了防止检修时全部污泥停止厌氧消化,消化池至少应设两座。

二、 消化池的结构及尺寸的计算
(一)
普通消化池的容积有四种计算方法:
1. 按污泥投配率计算:按污泥的投配率计算,即每天投加的新鲜污泥量(m 3)
与消化池容积的比例(%),
式中 V — 消化池的计算体积,m 3;
w — 每日新鲜污泥量,m 3;
n — 污泥投配率,%,对中温消化n=6-8%。

1) 按有机物负荷计算
式中 V — 消化池的计算体积,m 3;
S v — 污泥中有机物重量,kg/d ;
S — 消化池有机物负荷,kg/ m 3 ·d ,取1.6~3.2。

2) 按消化时间计算
式中 V — 消化池的计算体积,m 3; w — 每日新鲜污泥量,m 3/d ;
w 1 — 每日排出消化池的熟污泥量,m 3/d ; T — 消化时间,d 。

3) 按固体停留时间T c 计算 2. 消化池容积及个数计算
取新鲜污泥投配率n=6%,消化池有效容积
V=n
w
=240/0.06=4000m 3
n
w
V =
S
S V v
=
T
w w w V )]([132--=
采用3个消化池,每座消化池的有效容积:
V
1
=4000/3=1333m3
3.消化池结构及尺寸计算
●池体部分埋地下,下锥体的位置需高于地下水位至少7m,防止地下水污染;
●保温层要延伸到地下,一般在冻土层下;
●需要确定和计算的尺寸:D、h1、h2、h3、h4、d1、d2、α1、α2、δ。

●由经验确定某些尺寸:
d 1=2m左右,d
2
=1m左右,h
1
=1m左右,h
3
≧D/2,α
1
=200,α
2
=250~300。

1)消化池各部分直径
消化池直径按经验值,采用插入法计算得D=13.03。

取整D=14.0m,集气罩直径
d 1=2.0m,下锥底直径d
2
=1.0m
2)消化池部分的高度
h
1=1.0m,α
1
=20º,
集气罩高度 h 2=20tan )22(
1d D -º=20tan )2
0.220.14(-º=2.19m 取h 2=2.2m 锥体高度 h 3≥D/2=14.0/2=7.0m α2=27º,下锥体高度 h 4= ︒-28tan )22(
2d D = ︒-27tan )2
.120.14(=3.3 消化池总高度 H=h 1+h 2+h 3+h 4=1.0+2.2+7.0+3.3=13.5m 检验 H/D=13.5/14=0.964 0.8<0.964<1 符合要求 消化池外部尺寸:
3) 消化池各部分容积计算
集气罩容积 V 1
=2
212114.34/0.10.2/4h d m =⨯=ππ
上锥体容积
假设消化池内液面高度为上锥体高度的一半,即h 2
'=h 2/2=2.2 /2=1.1m 此时d 1'=(D+d 1)/2=(14.0+2.0)/2=8.0m ,则上锥体有效容积 V 2'=(π/3)h 2'(D 2/4+Dd 1`/4+d 1'2/4)
=(π/3)×1.1(14.02
/4+14.0×8.0/4+8.02
/4)=107.07m
3
柱体容积V 3=(π/4)D 2·h 3=(π/4)×14.02×7.0=1077.02m 3
下锥体容积
V 4=(π/3)·h 4·(D 2/4+Dd 2/4+d 2/4) =(π/3)×3.3×(142/4+14×1/4+12/4) =182.20m 3
消化池有效容积 V 0=V 2'+V 3+V 4=107.07+1077.02+182.20
=1366.29m3>1333m3=V
1
符合要求
4)消化池各部分表面积计算
消化池总表面积 A=A
1+A
2
+A
3
+V
4
A 3= A
3地表
+A
3地下
一般,池体地上高=60%h
3, 池体地下高=40%h
3。

集气罩面积 A
1=π·d
1
·h
1
+πd
1
2/4=π 2.0×1+π×22/4=9.42m2
上锥体表面积A
2=(π/2)·(D+d
1
)·(h
2
/sinα
1
)
=(π/2)·(14.0+2.0)·(2.2/sin20º) =161.58m2
池盖表面积 A
1+A
2
=9.42+161.58=171m2
柱体表面积 A
3=π·D·h
3
=π×14.0×7.0=307.72m2
取h
3(地表)=h
3
'=60%h
3
=60%×7.0=4.2m2
取h
3(地下)=h
3
''=40%h
3
=40%×7.0=2.8m2
则消化池柱体地面以上部分表面积
A
3'=π·D·h
3
'==π×14×4.2=184.63m2
消化池柱体地面以下部分表面积
A
3''=π·D·h
3
''=π×14×2.8=123.09m2
下锥体表面积 A
4=(π/4)d
2
2+(π/2)(D+d
2
)h
4
/sinα
2
=(π/4)×12+(π/2)(14.0+1)×3.3/sin27º =171.97m2
消化池壳体总表面积 A=A
1+A
2
+A
3
+A
4
=9.42+161.58+307.72+171.97
=650.69m2
5)消化池各部分厚度
●建筑材料:钢筋混凝土。

●池盖厚度 250mm,池壁厚度 400mm,池底厚度 700mm。

三、定容式消化池加热系统的计算
(一)设计概述
为了使消化池内污泥温度保持恒定,必须对新鲜污泥进行加热,使新鲜污泥温度提高到消化温度,并补偿消化池壳体及管道系统向大气及土壤散发的热损失。

加热的热源可用锅炉或生产设备的余热。

由于消化池内污泥温度一般高于介质温度,因此通过消化池集气罩、上椎体、柱体、下椎体等壳体向大气和土壤中散热的主要方式是对流和传导。

池外介质为大气时,计算全年平均耗热量须按全年平均气温计算。

当计算最大耗热量时,按历年平均每年不保证5d的日平均温度作为室外冬季计算温度。

固定盖消化池各部分传热系数允许值为:
集气罩和上锥体(池盖):k≤2.9308×103J/m2·h·℃
池体(池壁):k≤2.5121×103J/m2·h·℃
下锥体(池底):k≤1.8841×103J/m2·h·℃
(二)所需热量计算
1.提高新鲜污泥温度至消化温度所需全年平均耗热量
Q A =V``/24×(t
d
-t
s
)×c×103
Q
A
—全年所需平均热量,J/h;
t
d
—消化温度,℃;
t
s
—污泥全年平均温度,℃;
c—污泥的比热; c ≈ 4.1868×103J/(L·℃)V``—每天每座消化池投加的新鲜污泥量,m3/d.
Q A =V``×(t
d
-t
s
)×c×103/24
=(240/3)×(35-25)×4.1868×103×103/24
= 1.396×10 8 J/h
2.新鲜污泥温度至消化温度全年所需的最大热量
Q Ama =V``/24×(t
d
-t
smin
)×c×103
t
smin
—污泥日平均最低温度,℃
Q
Ama =V``×(t
d
-t
smin
)×c×103/24
=(240/3)×(35-23)×4.1868×103×103/24
=1.675×108 J/h 3.消化池耗热量计算
Q B =ΣA·k·(t
d
-t
A
)×1.2
A—池盖、池壁、池底的散热面积,m2;
k—池盖、池壁、池底的散热系数,J/m2·h·℃;
t
A
—池外介质(大气,土壤)温度,℃;
t
d
—消化温度,℃。

Q B= Q B池盖+ Q B池体大气+ Q B池体土壤+ Q B池底
计算最大耗热量Q
Bmax
①池盖部分全年平均耗热量
Q
1=AK(t
D
-t
A
)×1.2=171×2.9308×103×(35-21)×1.2 =8.420×106J/h
池盖部分全年最大耗热量
Q 1max =AK(t
D
-t
A
')×1.2=171×2.9308×103×(35-3)×1.2
=1.924×107J/h
②池壁在地面以上部分全年平均耗热量:
Q
2=AK(t
D
-t
A
)×1.2=184.63×2.5121×103×(35-21)×1.2
=7.792×106J/h
池壁在地面以上部分全年最大耗热量:
Q
2max =AK(t
D
-t
A
')×1.2=184.63×2.5121×103×(35-3)×1.2
=1.781×107J/h
③池壁在地面以下部分全年平均耗热量:
Q
3=AK(t
D
-t
A
)×1.2 =123.09×2.512×103×(35-23)×1.2
=4.452×106J/h
池壁在地面以下部分全年最大耗热量:
Q
3max =AK(t
D
-t
A
')×1.2=123.09×2.512×103×(35-10)×1.2
=9.276×106J/h
④池椎底部分全年平均耗热量:
Q
4=AK(t
D
-t
A
)×1.2 =171.97×1.8841×103×(35-23)×1.2
=4.666×106J/h
池椎底部分全年最大耗热量:
Q
4max =AK(t
D
-t
A
')×1.2=171.97×1.8841×103×(35-10)×1.2
=9.720×106J/h
⑤每座消化池池底全年平均耗热量:
Q
B =Q
1
+Q
2
+Q
3
+Q
4
=(8.420+7.792+4.452+4.666)×106J/h
=2.533×107J/h
每座消化池池底全年最大耗热量:
Q Bmax=Q1max+Q2max+Q3max+Q4max
=(19.24+17.81+9.276+9.720)×106J/h =5.605×107J/h
4.每座消化池全面平均总耗热量:
Q=Q
A +Q
B
= 1.396×10 8 +2.533×107=1.649×108J/h
5.每座消化池全年最大耗热量:
Q
max =Q
Amax
+Q
Bmax
=1.675×108 +5.605×107=2.236×108J/h
四、消化池保温结构厚度计算
(一)设计概述
消化池的池盖、池壁和池底一般为钢筋混凝土结构,池壁外侧应有保温材料构成的保温层。

保温层外设有保护层,组成保温结构。

常用的保温材料有泡沫混凝土、膨胀珍珠岩、聚苯乙烯泡沫塑料、聚氨酯泡沫塑料等。

保温结构的总厚度应使消化池壁的热损失不超过允许数值。

传热系数λ≤4.186 J/m2·h·℃时,说明保温效果良好。

固定盖消化池各部分的传热系数,当能满足以下数据时,认为保温层结构的厚度是合适的,即池盖λ≤2.931×103 J/m2·h·℃
池壁λ≤2.512 ×103J/m2·h·℃
池底λ≤1.884 ×103J/m2·h·℃
(二)保温层设计计算
1.已知条件:池盖的钢筋混凝土的厚度为250mm
池壁的钢筋混凝土的厚度为400mm
池底的钢筋混凝土的厚度为700mm
常用保温材料:聚氨酯泡沫塑料,导热系数λ
B1
=83.74 J/m2·h·℃
混凝土的导热系数:λG =5.5684 J/m 2·h ·℃
要达到良好的保温效果,要求保温层的导热系数λB2≤4.186 J/m 2·h ·℃ 消化池各部分导热系数要求:
池盖 K ≤2.931×103 J/m 2·h ·℃ 池壁 K ≤2.512 ×103J/m 2·h ·℃ 池底 K ≤1.884 ×103J/m 2·h ·℃
各部分散热系数
污泥将热量传到钢筋混凝土池壁时 α=1256.04 J/m 2·h ·℃ 污泥气体将热量传到钢筋混凝土池壁时 α=31.4 J/m 2·h ·℃
当空气为介质时,池壁至空气的散热系数 α=12.56~33.5 J/m 2·h ·℃ 当土壤为介质时,池壁至土壤的散热系数 α=2.09~6.28 J/m 2
·h ·℃ 2.保温层厚度计算
保温材料:聚氨酯泡沫塑料
固定池盖消化池,池体为钢筋混凝土时,保温材料厚度可按下式简化计算
)/()1000(B
k G
G G G
B λλδλδ-=
δB —保温层厚度,mm
λG —池盖、池壁、池底的钢筋混凝土导热系数,J/m 2·h ·℃ k G —池盖、池壁、池底的导热系数允许值,J/m 2·h ·℃ δG —池盖、池壁、池底的钢筋混凝土厚度,mm λB —保温材料导热系数,J/m 2·h ·℃ ① 池盖保温材料厚度
)/()1000(B k G
G G G
λλδλδ-=池盖
= )74
.83105684.5/()250931
.25684
.51000(3
⨯-=24.81(mm )
② 池壁在地面以上部分保温材料厚度
)/()1000(B k G G G G
λλδλδ-=壁上
=)74
.83105684.5/()400512.25684.51000(3
⨯-=27.32(mm )
池壁在地面以上部分保温层延伸至地面一下1.1m 。

③ 池壁在地面以下土壤作为保温层最小厚度的核算
)/()1000(B k G
G G G
λλδλδ-=壁下
=)101868.4105684.5/()4008841
.15684
.51000(3
3
⨯⨯-=1829.27(mm )
④ 池底以下土壤作为保温层最小厚度的核算
)/()1000(B k G
G G G
λλδλδ-=池底
=)10
1868.4105684.5/()7008841
.15684
.51000(3
3
⨯⨯-=1614.52(mm ) 池盖、池壁的聚氨酯泡沫塑料保温材料厚度经计算分别为25mm 和28mm ,均按28mm 计,乘于修正系数,2.8×1.5=42mm ,采用45mm 。

五、消化池加热量计算 (一) 设计概述
污泥的加热方法有消化池内蒸汽直接加热与池外预热两种。

池内蒸汽直接加热是利用插在消化池中的蒸汽竖管直接向消化池内注入蒸汽来加热污泥。

这种加热方法设备投资省、操作简单,可以充分利用蒸汽的汽化热和冷凝水的热量,热效率高。

但竖管周围的污泥有过热现象,影响厌氧消化微生物的正常活动。

由于增加了冷凝水,消化污泥含水率稍有提高,消化池体积一般需增加5%~7%。

用蒸汽直接加热污泥的方法可分为低压蒸汽喷射法和高压蒸汽喷射法。

低压蒸汽喷射法是利用安装于消化池进泥管道上的污泥射流器在负压区将压力为 4.9×104Pa 的蒸汽吸入并均匀分散在污泥中。

高压蒸汽喷射法是将蒸汽直接喷入消化池泥面以下,竖管中蒸汽流速为3~5m/s 。

(二) 设计计算
1. 加热方法:池内蒸汽直接加热。

2. 每座消化池全年最大耗热量Q max =2.236×108J/h ;饱和水蒸气绝对压力 49.03×
104 Pa ,温度 151.11 ℃
①所需蒸汽量计算
d
I I Q G -=
max
Q max —每座污泥消化池全年的最大耗热量,J/h; I —饱和蒸汽的含热量,2747.8×103 J/kg;
I d —消化温度时,污泥的含热量,I d =t d ×4.18×103 J/kg,
t d 消化温度=35℃。


d I I Q G -=
max
=3
38
1018.435108.274710236.2⨯⨯-⨯⨯=85.95kg/h
②蒸汽竖管直径计算
36001046
⨯⨯=
v G d πρ (mm) ,取整数 ρ—蒸汽密度,kg/m 3 v —蒸汽流量,3~5m 3/sec
36001046⨯⨯=
v G d πρ=36005620.21095.8546
⨯⨯⨯⨯⨯π=48.18mm 取d=50mm 检验:当d=50mm 时, ③搅拌计算(略)
④投配、排泥、溢流计算(略)
六、主要参考文献
[1]崔玉川,马志毅等.废水处理工艺计算. 北京:水利出版社, 1994. [2]金儒霖,刘永泳编著.污泥处置. 北京:中国建筑工业出版社, 1982.。

相关文档
最新文档