函数方程几种具体办法

函数方程几种具体办法
函数方程几种具体办法

函数方程

三、求解函数方程的几种方法:

函数方程的变化多,求解技巧性很强,往往涉及不同领域的数学知识,特别

是附加了条件的函数,更是五花八门,各有巧妙。在高数数学各级竞赛中,都有

可能会遇到函数方程的问题,在这里我们介绍几种典型的求解函数的方法。

一.代换法

1.解函数方程: (1)

解:令;则,将此代入(1)可得:

或 。 (2)

此时(1)及(2)并无法解出;所以我们再令;则,将此代入(1)式则可得, 即。 (3)

将(1),(2)及(3)联立,则可得到一个以为独立变数的三元一次方程组;我们利用消去

法来解此问题. (1)+(3)-(2)可得:。

经检验是原函数方程的解.

2.(2007越南数学奥林匹克)设b 是一个正实数,试求所有函数,使得

对任意实数x 、y 均成立。

解:将原方程变形为:, (x , ①

令,则①等价于,(x , ②

在②中令得这表明。

1)若,则;

2)若,在②式中令得:,即。 ③

考虑函数,它的导函数,则,于是可知有两根和,于是③式等价于或。 , c

为满足的常量)

假设存在使,则,∴

或1,∴矛盾,因此,∴

综上知:

说明:代换法是解函数方程最基本方法,很多函数方程中所特有的性质是通

过代换法去发现的。本题也是通过代换法打开了解题的思路。

二.柯西法

1.设为定义在实数集R 上的单调连续函数,试解函数方程。

解:由用归纳法得:。

当时,有 。①

若,,令,得,在①式中令得:

因定义在实数集R 上,n 是偶数时,必有,这样,∴

若m 为正整数,利用上式得:,

在原方程中,令有:,因单调不恒为0,∴。

在原方程中,令有(n , ,则有, 即,(又因为有意义,∴。这样,我们便在有理数集内求得了函数方程。

又因单调,不能恒为1,则为指数函数。

当为无理数,设且a i , b i 为无限接近于的有理数,则由单调知,

∴原方程的解为。

说明:柯西法是由解柯西方程而归纳出来的方法。

2.试求定义在有理数集并且在有理数集上取值的函数,设

(1) (2)。求函数。

解:令由(2)得。 ①

将代入①,化简得。 ②

当时,有, ③

由②得

即 。 ④ 由③、④有:。 ⑤

在⑤中,令,得。 ⑥

对于任意的有理数在(2)中,令得。由⑤、⑥有

由此得 ,故所求的函数是

三.用函数迭代法解方程

1.求解函数方程:。

解:设,则并且,

,于是原方程变为:。 ①

令得:, ②

令得:, ③

令得:, ④

由①②③④得:,

说明:利用函数迭代解决函数方程问题有立竿见影的效果。

2.试求所有的函数,使得对任意,都有

解:令,则有,从而。

在上式中用代替x ,则可知,于是有

,从而有或。

验证可知,这两个函数都是方程的解。

3.设 ,找出使:

解:当时,设也在中,也

在中,那么以后都用即,,

对于 我们有:

验证:是对的.

评注:在应用迭代法时,几个常用的迭代结果是有用的:

,.

四.特值探索推导法

1.(2008年IMO第4题)求所有的函数满足对所有的正实数,x, y, z,都有:

解:令得:,对任意令,,得:,去分母整理:,所以对每个有或者。①若存在b, ,使得,,则由①知,b, c都不等于1。且,,令,,,则,所以。又因或

者;若则矛盾;

若,则矛盾。

所以经检验满足。

2.已知是定义在自然数上的函数,满足且对任意有

,求.

解:在原函数方程中,令且利用得

整理得。令得:

……,将上述各式相加,得

将代入后整理得

故所求函数为

易验证满足原函数方程.

评注:当是定义在自然数集上的函数(实际上是通项为的数列)时,可根据题中所给的函数方程,通过取特殊值得到关于的递推关系,然后根据递推关系求出.

3.有界函数,且有:求

解:令有解得或

(1),令有,;

(2),令有即,故为偶函数.

再令有:.先证对于一切

若有某个整数使则

为整数且越来越大,必将这与题设相矛盾,故不成立.为整数且绝对值小于或等于1,显然只有1,0,-1三种可能.下面具体分析.

(i) 若令有,取有:

即从而有又,有

(ii) 类似上法可得:

(iii) 类似上法可得:。

五.函数不动点求解函数方程1.是否存在这样的函数,使得。

解:不存在,我们用反证法证明。

显然,仅有两个不动点2和-1,记,则有

于是t也是的不动点,从而取值为2或-1。同理可证取值为2或-1。

但,于是,因此。

考虑的不动点集

合,并记,,则有,。

令,则有,∴

从而。

若,则有为或,从而取值为2或-1,矛盾!故应有或。

当时,便有,即为的不动点,则也是的不动点,矛盾!

同理可证当时也会发生矛盾。

综上所述,不存在满足所给出的条件。

2.已知满足条件:

(1)对,;(2)时,。求函数。

解:令,有,可见是关于f的不动点(对任意x成立)。

令,代入上式得;再令,,,代入得,

于是,解得(舍去)。于是1是关于f的不动点。

猜想:如果,即可解得。以下证明本题中f的不动点只有一个。

反设有且。

若,由,令可得,于是可推出,…,。这与条件(2)矛盾!

若,则有,于是。此时,类似于前述递推可知也与条件(2)矛盾!

因此f的不动点只有1,前述的猜想成立,即有。

评注:不动点法是讨论函数方程的重要方法.集合叫做的不动点集,即对映射而言,象即原象的那些元素所成的集合.

例题是通过考察不动点来解决函数方程的典型问题,对不动点的分析是讨论函数方程的重要方法。

六.观察函数特有的性质并利用其解题

函数的性质包括单调性、奇偶性、周期性及所具有的特殊形式,在解题的过程中需要对其进行观察判断并利用其解决问题。

1.(2007日本数学奥林匹克决赛)求定义域为正实数集,值域为实数集的函数f,满足:

,,其中x、y为任意实数。

解:令,∴及,∴。重复应用这个等式m次得:,再令。

下面证明对任意的正整数n和任意的两实数t,有,

显然当时,命题成立。又因为题中第二个不等式等价于,所以,对任意的n、

t有,若取,满足,

则:。

另一方面,有故上式中不等式号均为等号,即

因此必有。①

再证明:g为单调不增函数;对于正实数t,有。

由于,,则,

故对于所有的x, y,有,故g为单调不增函数。②

设,接下来证明:

反设对正实数t有,则存在一个有理数满足及,另一方面:由,有与及g的单调不增矛盾,同理若,也得到矛盾,因此,对于正实数t,有。

从而,,对于这样的f,有,

均满足。∴为所求

说明:该题关键是抓住函数具有①②两个特有特征而对此进行解答。抓住函数特征和性质来求解函数方程问题,是最常用的方法。

2.求适合以下条件的所有函数

(1);(2)。

解:易见,以下证明这是唯一符合要求的函数。

令,由(2)及f的定义域和值域有

于是。

又因,于是。代入前一式得

注意到,当时,也有

,由此递推可知,对任意自然数n,都有。令,就得到,于是。

3.设是正实数的集合,a、b是两个正实数,设函数满足方程,求证:该函数方程有唯一解。

解:不难猜出该方程有解,以下证明解的唯一性。

构造数列,如下:,,,

注意到,考虑当对一切x都成立时,由

,可知。

又由,可知,

于是。由此递推可知对任意正整数j有。

以下证明。先用归纳法证明。

时,,,结论成立。

当命题对成立,即有时,由递推公式,

可知命题对也成立。

再证明数列是递减的。

由可得,于是。

注意到,便有,即,命题成立。

从而存在,由易知。

类似地,可以证明。由前证有

,于是是方程的唯一解。

注:例6综合了数列的知识方法。构造数列对函数方程进行估界也是求解函数方程的有效方法之一。

4.设函数在自然数上都有定义,,并满足:,

。求。.

解:将(1)式改写为:;(2)

依次以代入(2)式可得:

将这个等式相加可得

,.(3)

再依序以代入(3)式,再将所得的个等式相加,可得

,。

5.试求所有的函数,使得对任意,都有

解:首先注意到f是单射。因若使,则有

,从而,矛盾!

令,则有,故或。

1.当时,取,便有,注意到f是单射,于是,则。取有,从而。

再注意到,于是

从而有,于是,经验证该函数是方程的解。

2.当时,取有,再令有,则。

取有,于是,,

,可解得(舍去)。

但另一方面,又有,矛盾!故此时无解。从而是原方程的唯一解。

本讲从五个角度来讨论了求解函数方程的方法,在解答函数方程的问题时,这几个方法用的较为平凡,希望大家在平时学习中注意总结与归纳,函数方程问题在国内外各级竞赛中要求都比较高,望引起大家重视。

高一数学必修一函数与方程知识梳理

高一数学必修一函数与方程知识梳理 函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,以下是函数与方程知识梳理,请大家学习。 1、函数零点的定义 (1)对于函数)(xfy,我们把方程0)(xf的实数根叫做函数)(xfy 的零点。 (2)方程0)(xf有实根函数()yfx的图像与x轴有交点函数()yfx 有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(xf是否有实数根,有几个实数根。函数零点的求法:解方程0)(xf,所得实数根就是()fx的零点(3)变号零点与不变号零点 ①若函数()fx在零点0x左右两侧的函数值异号,则称该零点为函数()fx的变号零点。②若函数()fx在零点0x左右两侧的函数值同号,则称该零点为函数()fx的不变号零点。 ③若函数()fx在区间,ab上的图像是一条连续的曲线,则 0)()(bfaf是()fx在区间,ab内有零点的充分不必要条件。 2、函数零点的判定 (1)零点存在性定理:如果函数)(xfy在区间],[ba上的图象是连续不断的曲线,并且有()()0fafb,那么,函数)(xfy在区间,ab 内有零点,即存在),(0bax,使得0)(0xf,这个0x也就是方程0)(xf的根。(2)函数)(xfy零点个数(或方程0)(xf实数根的个

数)确定方法 ①代数法:函数)(xfy的零点0)(xf的根; ②(几何法)对于不能用求根公式的方程,可以将它与函数)(xfy的图象联系起来,并利用函数的性质找出零点。(3)零点个数确定 0)(xfy有2个零点0)(xf有两个不等实根; 0)(xfy有1个零点0)(xf有两个相等实根; 0)(xfy无零点0)(xf无实根;对于二次函数在区间,ab上的零点个数,要结合图像进行确定. 3、二分法 (1)二分法的定义:对于在区间[,]ab上连续不断且()()0fafb的函数()yfx,通过不断地把函数()yfx的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法; (2)用二分法求方程的近似解的步骤: ①确定区间[,]ab,验证()()0fafb,给定精确度 ②求区间(,)ab的中点c; ③计算()fc; (ⅰ)若()0fc,则c就是函数的零点; (ⅱ) 若()()0fafc,则令bc(此时零点0(,)xac (ⅲ) 若()()0fcfb,则令ac(此时零点0(,)xcb 宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。至元明清之县学一律循之不变。明朝入选翰林院的进士之师称“教习”。到清末,学堂兴起,各科教师仍沿用“教习”一称。其实“教谕”在明清时还有学官一意,即主管县一级的

高考数学函数与方程的思想方法

高考数学函数与方程的 思想方法 Last revised by LE LE in 2021

第4讲 函数与方程的思想方法 一、知识整合 函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f(x)=0的解就是函数y =f(x)的图像与x 轴的交点的横坐标,函数y =f(x)也可以看作二元方程f(x)-y =0通过方程进行研究。 就中学数学而言,函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。 1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题。 2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程的数学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题。方程思想是动中求静,研究运动中的等量关系. 3.(1) 函数和方程是密切相关的,对于函数y =f(x),当y =0时,就转化为方程f(x)=0,也可以把函数式y =f(x)看做二元方程y -f(x)=0。函数问题(例如求反函数,求函数的值域等)可以转化为方程问题来求解,方程问题也可以转化为函数问题来求解,如解方程f(x)=0,就是求函数y =f(x)的零点。 (2) 函数与不等式也可以相互转化,对于函数y =f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式。 (3) 数列的通项或前n 项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要。 (4) 函数f(x)=n b ax )( (n ∈N *)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题。 (5) 解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元

函数方程的几种解法

解函数方程的几种方法 李素真 摘要:本文通过给出求解函数方程的基本方法,来介绍函数方程,探索通过构造函数方程求解其它问题的方法,以获得新的解题思路。 关键词:函数方程;换元法;待定系数法;解方程组法;参数法 含有未知函数的等式叫做函数方程,能使函数方程成立的函数叫做函数方程的解,求函数方程的解或证明函数方程有无解的过程叫解函数方程。 函数方程的解法有换元法(或代换法)、待定系数法、解方程组法、参数法。 1.换元法 换元法是将函数的“自变量”或某个关系式代之以一个新的变量(中间变量),然后找出函数对中间变量的关系,从而求出函数的表达式。 例1 已知x x f x sin )2(+=,求)(x f 。 解:令u x =2 )(0>u ,则u x log 2=,于是可得,)log sin()log ()(222 u u u f += )(0>u ,以x 代替u ,得)log sin(log 2 )(22u x x f += )0(>x 。 例2 已知x x x x f 212ln )1(+=+ )0(>x ,求)(x f 。 解:令t x x =+1,则11-=t x )1(>t ,于是12ln 112111 2 ln )(+=-+-=t t t t f , 即1 2ln )(+=x x f 。 例3 已知x x f 2cos )cos 1(=+,求)(x f 。 解:原式可以化为 1cos 22cos )cos 1(2+==+x x x f ,令t x =+cos 1,]2,0[∈t ,则换元后有1)1(2)(2 --=x t f ]2,0[∈x 。 2.待定系数法

待定系数法适用于所求函数是多项式的情形。当我们知道了函数解析式的类型及函数的某些特征,用待定系数法来解函数方程较为简单。一般首先确定多项式的次数,写出它的一般表达式,然后由已知条件,根据多项式相等的条件确定待定系数。 例4 已知)(x f 为多项式函数,且422)1()1(2+-=-++x x x f x f ,求)(x f 。 解:由于)1(+x f 与)1(-x f 不改变)(x f 的次数,而它们的和是2次的,所以)(x f 为二次函数,故可设c bx x a x f ++=2)(,从而有 由已知条件得 422)(22222+-=+++x x c a bx x a 根据两个多项式相等的条件得 22=a ,22-=b ,4)(2=+c a ,由此得1=a ,1-=b ,1=c ,故有1)(2+-=x x x f 。 例5 已知)(x f 是x 的二次函数,且x x x f f 242)]([-=,求)(x f 。 解:因为c 是x 的二次函数,故可设c bx x a x f ++=2)(,由此,c c bx x a b c bx x a a c x bf x f a x f f ++++++=++=)()()()()]([2222 将上式化简并代入x x x f f 242)]([-=,得x x c bc c a x b abc x ab c a b a x b a x a 2)()2()2(24222223243-=+++++++++ 比较对应项的系数有 ?????????=++=+-=++==0 0222021222223c bc c a b abc ab c a b a b a a ,解之得?????-===101c b a ,故1)(2-=x x f 。 3.解方程组法 此方法是将函数方程的变量或关系式进行适当的变量代换,得到新的函数方程,然后与原方程联立,解方程组,即可求出所求的函数。

高一数学 函数与方程教案

本小节是高中新课程的新增内容,它是求方程近似解的常用方法,体现了函数的思想以及函数与方程的联系。在内容上衔接了上节函数的零点与方程的根的联系,并为数学3中算法内容的学习做了铺垫。 2.学情分析学生在学习了上小节的内容后,对方程的根的存在性有了一定的了解。在使用计算器上也不会有任何问题。主要的困难在于对这种算法的理解以及对教材中归纳的使用二分法求方程近似解一般步骤和精确度的理解。因此在教学上可设置生动的情境(比如价格竞猜)引入,来帮助学生理解二分法的实质。同时应放慢教学速度,用3课时把这些内容讲清楚。具体课时分布如下:

中学课堂教学设计表

教学手段通过让学生观察、讨论、辨析、画图,亲身实践,在函数与方程的联系中体验数形结合思想、转化思想的意义和价值,发展学生对变量数学的认识,体会函数知识的核心作用. 教学过程设计(详细过程)【环节一:揭示意义,明确目标】揭示本章意义,指明课节目标 教师活动:用屏幕显示第三章函数的应用 3.1.1方程的根与函数的零点 教师活动:这节课我们来学习第三章函数的应用。通过第二章的学习,我们已经认识了指数函数、对数函数、幂函数、分段函数等函数的图象和性质,而这一章我们就 要运用函数思想,建立函数模型,去解决现实生活中的一些简单问题。为此, 我们还要做一些基本的知识储备。方程的根,我们在初中已经学习过了,而我 们在初中研究的“方程的根”只是侧重“数”的一面来研究,那么,我们这节 课就主要从“形”的角度去研究“方程的根与函数零点的关系”。 教师活动:板书标题(方程的根与函数的零点)。 【环节二:巧设疑云,轻松渗透】设置问题情境,渗透数学思想 教师活动:请同学们思考这个问题。用屏幕显示判断下列方程是否有实根,有几个实根? (1);(2). 学生活动:回答,思考解法。 教师活动:第二个方程我们不会解怎么办?你是如何思考的?有什么想法?我们可以考虑将复杂问题简单化,将未知问题已知化,通过对第一个问题的研究,进而来解决 第二个问题。对于第一个问题大家都习惯性地用代数的方法去解决,我们应该打 破思维定势,走出自己给自己画定的牢笼!这样我们先把所依赖的拐杖丢掉,假 如第一个方程你不会解,也不会应用判别式,你要怎样判断其实根个数呢? 学生活动:思考作答。 教师活动:用屏幕显示函数的图象。 学生活动:观察图像,思考作答。 教师活动:我们来认真地对比一下。用屏幕显示表格,让学生填写的实数 根和函数图象与x轴的交点。 学生活动:得到方程的实数根应该是函数图象与x轴交点的横坐标的结论。 教师活动:我们就把使方程成立的实数x称做函数的零点. 【环节三:形成概念,升华认知】引入零点定义,确认等价关系 教师活动:这是我们本节课的第一个知识点。板书(一、函数零点的定义:对于函数y=f(x),使方程f(x)=0的实数x叫做函数y=f(x)的零点)。 教师活动:我可不可以这样认为,零点就是使函数值为0的点? 学生活动:对比定义,思考作答。

解函数方程的几种方法

绪论 在数学研究的许多领域中如代数学、几何学、概率论等都涉及函数方程问题,在计算机科学中迭代理论和方法也涉及函数方程问题,在航空技术、遥感技术、经济学理论、心理学理论等诸多方面也提出了许多函数方程模型.函数方程因此一直受到广泛关注,是当今数学研究的一个十分重要的课题.由于函数方程形式多样,涉及面广,难度大,需要大量的数学基础知识.尤其是在中学数学教学中,函数方程是最基本、最易出现的问题,也是历年高考的重点.在中学教学和国外数学竞赛中,经常遇到函数方程问题.这类题目一般是求解某一给定的函数方程,而数学上尚无一般方法可循.当然,较大一部分中学生在遇到这类问题时,常常没有比较清晰的解题思路.本文就着重以函数与方程的性质来讨论函数方程在中学数学中的应用,及解决问题的途径,并通过实际问题的求解过程来阐述. 首先,我们会给出函数方程的相关概念包括函数方程的定义、函数方程的解以及解函数方程. 其次,利用函数与方程的基本性质,就中学数学中常出现的方法进行归纳并结合相应的例题解析.当然由于中学数学中考查点的不同,我们的讨论也有所侧重.对常见的方法包括换元法(代换法)、赋值法、迭代周期法(递推法)、待定系数法等均会加重笔墨,尤其会给出一些较为典型的例题分析以及巧解的方法,而对于不常用的方法本文也会提到,以让读者了解到比较前全面的函数方程问题的解题策略. 最后,就种种方法进行总结归纳.“法无定法”,关键在于人们对问题的观察、分析,进而选择最优的方法来解决问题.很多情况下,由于解决的途径并不唯一,所以在解决问题的时候一般采用多种方法同步求解,以达到简化求解过程的目的. 1函数方程的一些相关概念 1.1函数方程的定义 含有未知函数的等式叫做函数方程.如()() f x f x -=, =-,()() f x f x +=等,其中() f x即是未知函数. f x f x (1)() 1.2函数方程的解 设某一函数() f x对自变量在其定义域的所有值均满足某已知方程,那么把 f x就叫做函数方程的f x就叫做已知函数方程的解.即能使函数方程成立的() () 解.函数方程的解可能是一个函数,也可能是若干个函数或无穷多个函数或无解.如偶函数、奇函数、()1 =-分别是上述各方程的解. f x x 1.3解函数方程 求函数方程的解或证明函数方程无解的过程就称为解函数方程.即指的是在不给出具体函数形式,只给出函数的一些性质和一些关系式而要确定这个函数,

函数与方程思想在高中的应用

函数与方程思想在高考中的应用 组长:潘云鹏 12033034 组员:夏炎 12304177 杨岑 12304154 张瑶 12304184 孙雪 12304013 高清华 12304196 谭博闻 12304159 郭志岩 12304143 刘春旭 12304009 函数与方程思想在高考中的应用

摘要本文阐述了函数思想与方程思想的概念、二者之间的相互转换及在转换时需要注意的一些问题.用典型的例题阐明用函数与方程思想方法能够轻易解决数学学科中不等式、数列、二项式定理、三角函数、平面向量、解析几何、立体几何、概率与统计、导数、实际问题等难以突破的部分,并且它也应用在其他学科领域中.并结合中学数学教学,提出教师应该在教学中有意培养学生的函数与方程思想,并且给出了具体可行性的建议. 一.函数与方程思想的概念 1.函数思想 函数思想是一种通过构造函数从而应用函数图象、性质解题的思想方法,即用运动变化的思想观点,分析和研究具体问题中的数量关系,通过函数的形式把这种数量关系表示出来,并加以研究其内在的联系,使问题获解.应用函数思想解题的基础是:常见函数的单调性、奇偶性、周期性、最值和图象变换等;熟练掌握一次函数、二次函数、指对数函数等具体特征;应用函数思想解题的关键是:善于观察题目的结构特征,揭示内在联系,挖掘隐含条件,从而恰当地构造函数和利用函数性质去解题.. 2.方程思想 方程思想是若干变量关系是通过解析式表示的,则可以把解析式看成一个等式,然后通过方程的讨论从而使问题获解.许多问题中含有常量、变量和参量,可以通过适当方式,运用方程的观点去观察、

深入分析问题的结构特点,抓住某一个关键变量,构造出这种等式来处理.两种思想方法是相辅相成的,有关方程、不等式、最值等问题,利用函数、方程观点加以分析,常可以使问题“明朗化”,从而易于找到适当解题途径. 3.函数与方程思想的相互转化 很明显,只有在对问题的观察、分析、判断等一系列的思维过程中,具备有标新立异、独树一帜的深刻性、独创性思维,才能构造出函数原型,化归为方程的问题,实现函数与方程的互相转化接轨,达到解决问题的目的. 方程与函数是中学数学的重点内容,占了相当多的份量,其中某些内容既是重点又是难点.例如,列方程(组)解应用题,函数的定义和性质,反函数的概念,平面解几里曲线的方程,方程的曲线的概念等等.方程的思想和函数的思想是处理常量数学与变量数学的重要思想,在解决一般数学问题中具有重大的方法论意义.在中学数学里,对各类代数方程和初等超越方程都作了较为系统的研究.对一个较为复杂的问题,常常先通过分析等量关系,列出一个或几个方程或函数关系式,再解方程(组)或研究这函数的性质,就能很好地解决问题.函数知识涉及到的知识点多,面广,在概念性、应用性、理解性上能达到一定的要求,有利于检测学生的深刻性、独创性思维. 二.函数思想在解题中的应用分析 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的

函数与方程思想简单应用

数学思想方法的简单应用(1) 一、函数与方程思想 函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还需要函数与方程的互相转化、接轨,达到解决问题的目的。 函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:y=f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解决问题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题、集合问题、数列问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。 1.证明:若 则为整数. 解析:若x+y+z+t=0,则由题设条件可得 ,于是此时(1)式的值等于-4. 若x+y+z+t≠0,则 由此可得x=y=z=t.于是(1)式的值等于4. 2.已知:函数g(x)=ax2﹣2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设函数f(x)=. (1)求a、b的值及函数f(x)的解析式; (2)若不等式f(2x)﹣k?2x≥0在x∈[﹣1,1]时恒成立,求实数k的取值范围;

高一数学 必修一 第二章《一元二次函数、方程和不等式》训练题 (18)-200708(解析版)

高一数学 必修一 第二章《一元二次函数、方程和不等式》训练题 (18) 一、选择题(本大题共9小题,共45.0分) 1. 若a >b ,则下列正确的是( ) A. a 2>b 2 B. ac >bc C. ac 2>bc 2 D. a ?c >b ?c 2. 不等式?2x 2+x +3≤0的解集是( ) A. {x|?1≤x ≤3 2} B. {x|x ≤?1或x ≥3 2} C. {x|x ≤?3 2或x ≥1} D. {x|?3 2≤x ≤1} 3. 下列各函数中,最小值为2的是( ) A. y =x +1 x B. y =sinx +1 sin x ,x ∈(0,π 2) C. y =2√x 2+2 D. y =x ?2√x +3 4. 下列四个结论中正确的个数是( ) (1)对于命题p:?x 0∈R 使得x 02?1≤0,则?p:?x ∈R 都有x 2?1>0; (2)已知X ~N(2,σ2),则P(X >2)=0.5 (3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为y ?=2x ?3; (4)“x ≥1”是“x +1 x ≥2”的充分不必要条件. A. 4 B. 3 C. 2 D. 1 5. 已知集合A ={y |y =1 2},B ={x|x 2<4},则A ∪B = A. (0,2) B. (?2,2) C. (?1,+∞) D. (?2,+∞) 6. 函数f(x)=?x 2+3x ?2a ,g(x)=2x ?x 2,若f(g(x))≥0对x ∈[0,1]恒成立,则实数a 的取 值范围为 A. (?∞,?2] B. (?∞,?1] C. (?∞,0] D. (?∞,1] 7. 已知函数f(x)=xe x +1 2x 2+x +a ,g(x)=xlnx +1,若存在x 1∈[?2,2],对任意x 2∈[1 e 2,e], 都有f (x 1)=g (x 2),则实数a 的取值范围是( ) A. [?3?1 e ?2e 2,e ?3?2e 2] B. (?3?1 e ?2e 2,e ?3?2e 2) C. [e ?3?2e 2,3 2] D. (e ?3?2e 2,3 2) 8. 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若a =4,A =π 3,则该三角形面积的最 大值是( ) A. 2√2 B. 3√3 C. 4√3 D. 4√2

函数与方程及解题方法

高三专题复习函数(3)函数与方程 一、基本知识点 1、函数零点:(变号零点与不变号零点) (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。 若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(f ,所以由根的存在性定理可知,函数x x x f 2 )1ln()(-+=的零点所在的大致区间是(1,2),选B (二)求解有关函数零点的个数(或方程根的个数)问题。 函数零点的存在性定理,它仅能判断零点的存在性,不能求出零点的个数。对函数零点的个数问题,我们可以通过适当构造函数,利用函数的图象和性质进行求解。如:

(完整word版)微观经济学各章知识结构图

第二章需求曲线和供给曲线概述 以及有关的基本概念 知识结构图 均衡含义 需求函数 需求曲线需求曲线和需求法则共同作用 供给曲线供给函数决定 供给曲线和供给法则均衡价格 变动 一般含义含义 弹性弧弹性 需求的价格弹性点弹性 需求的价格弹性与厂商的销售收入的关系 需求的收入弹性 弹性概念的扩大需求的交叉价格弹性 供给价格弹性 易腐商品的售卖 价格放开 运用供求曲线的事例限价:最高限价和最低限价 关于农产品的支持价格“谷贱伤农”

第三章效用论 知识结构图 效用论概述 基数效用与序数效用边际效用递减规律 概述货币的边际效用 基数效用论和边际效用分析法消费者均衡 需求曲线的推导 消费者剩余 关于偏好的假定 无差异曲线的特点消费者均衡价格消费曲线 边际替代率 无差异曲线分析无差异曲线的特殊情况价格变化和收入变化 预算线的含义对消费者均衡的影响 预算线 预算线的变动收入消费曲线 含义 正常物品的替代效应和收入效应 替代效应与收入效应正常物品和低档物品的区别与收入效应 低档物品的替代效应和收入效应 吉芬物品的替代效应和收入效应 从单个消费者需求曲线到市场需求曲线 不确定性 不确定性和风险 期望效用和期望值的效用

第四章生产论 知识结构图 生产要素 生产函数生产函数 固定替代比例的生产函数 生产函数的几种具体形式固定投入比例的生产函数 柯布—道格拉斯生产函数 短期生产函数的形式 总产量、平均产量与边际产量 短期生产函数边际报酬递减规律(1)内容;(2)成因 总产量、平均产量和边际产量相互之间的关系 短期生产的三个阶段 长期生产函数的形式 等产量曲线(1)含义;(2)形状及特征长期生产函数含义,表达式 边际技术替代率边际技术替代率递减规律 成因 含义,方程 等成本线 特征 既定成本条件下的产量最大化生产者最优要素投最优的生产要素组合既定产量条件下的成本最小化入组合均衡条件 等斜线、扩展线的含义 规模报酬(1)含义;(2)类型;(3)规律

函数与方程思想总结(很好很全面)

函数与方程思想 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。 1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。 2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程思想是动中求静,研究运动中的等量关系; 3.函数方程思想的几种重要形式 (1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。 (2)函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式; (3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要; (4)函数f(x)=(1+x)^n (n∈N*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题; (5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论; (6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。 【例1】. 关于x的方程(x2-1)2-|x2-1|+k=0,给出下列四个命题: ①存在实数k,使得方程恰有2个不同的实根; ②存在实数k,使得方程恰有4个不同的实根; ③存在实数k,使得方程恰有5个不同的实根; ④存在实数k,使得方程恰有8个不同的实根. 其中真命题是_____________ 解答:根据题意可令|x2-1|=t(t≥0),则方程化为t2-t+k=0,(*) 作出函数t=|x2-1|的图象,结合函数的图象可知①当t=0或t>1时,原方程有两上不

函数方程的柯西解法

4.函数方程的柯西解法 在函数方程的发展史上,许多函数方程的建立和解法都是由柯西首先提出的. 本节我们就来研究函数方程的柯西解法. 在前几节讨论的函数方程中,所涉及的函数大多数是自然数的函数. 而本节中的函数,它的定义域都是在某一区间上的实数. 柯西解法的步骤是:依次求出对于自变量的所有自然数值、整数值、有理数值,直至所有实数值的函数方程的解. 如所周知,一个函数方程的解往往并不是唯一的. 也就是说,可能存在着不同的函数,满足同一个函数方程. 为了保证函数方程的解的唯一性,通常需要给所求的函数附加一些条件,例如要求所求的函数必须是连续的,或者必须是单调的. 在本节里,要求函数方程的解都必须是单调函数. 什么是单调函数呢?如果对于较大的自变量的值,函数值也较大;即当12 x x >时,有 )()(12x f x f >,就是说函数)(x f 单调增加. 如果对于较大的自变量的值,函数值反而较 小;即当12 x x >时,有)()(12x f x f <,就说函数)(x f 单调减小. 单调增加和单调减小 的函数,统称单调函数. 在后面的讨论中,我们还要用到区间套原理. 这个原理是这样的: 设有一个区间序列: ,],[,,],[,],[,],[332211?????????????????n n βαβαβαβα (78) 其中每个区间都包含着后一个区间: ),3,2,1(,],[],[11 ??????i ?? ????i i i i =βα?βα++ (其中?是集的包含符号)形成一个“区间套”,而且区间长度可以任意地小(就是说,不 论我们事先给定一个多么小的正数ε,序列(78)中总存在这样一个区间,从此以后所有的区间的长度都小于ε). 那末,必定存在着唯一的一个点ξ,被所有(无穷多)这些区间所包含. 特别是当ξ是无理数时,如果把n α和n β取作ξ的精确到10-n 的不足近似值和过剩近似值. 那末以ξ的不足近似值和过剩近似值为端点,将构成一个区间套. 相应的区间的长度是10-n . 例如,我们知道,圆周率π是一个无理数: .897931415926535.3?? =π 于是,可以构成区间套 .]142.3,141.3[]15.3,14.3[]2.3,1.3[??????? ??? 区间的长度依次是3.2-3.1=10-1,3.15-3.14=10-2,3.142-3.141=10-3,…. 我们注意到,每个区间的端点n n βα和都是有理数,而只有唯一的一个无理数α=π被包含在所有这些区间之内. 有了这些准备之后,我们转入函数方程的柯西解法的讨论.

函数和方程、数形结合

高中数学思想—函数和方程、数形结合 知识点:函数与方程,数形结合的数学思想 考点:几种常见题型:构造函数,不等式,最值问题,位置关系 能力:变量间关系的理解和分析;数学语言与直观的图像结合 方法:启发式 教学重难点:变量间关系的理解和分析 第一讲函数与方程思想 1.函数的思想 函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决。函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题。经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等。 2.方程的思想 方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题,方程思想是动中求静,研究运动中的等量关系。 3.函数思想与方程思想的联系 函数思想与方程思想是密切相关的,如函数问题可以转化为方程问题来龙去脉解决;方程问题也可以转化为函数问题加以解决,如解方程f(x)=0,就是求函数y=f(x)的零点,解不等式f(x)>0(或f(x)<0),就是求函数y=f(x)的正负区间,再如方程f(x)=g(x)的交点问题,也可以转化为函数y=f(x)-g(x)与x轴交点问题,方程f(x)=a有解,当且公当a属于函数f(x)的值域,函数与方程的这种相互转化关系十分重要。

4.函数与方程思想解决的相关问题 (1)函数思想在解题中的应用主要表现在两个方面: ①借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题; ②在问题研究中通过建立函数关系式或构造中间函数;把研究的问题化为讨论函数的有关性质,达到化难为易,化繁为简的目的。 (2)方程思想在解题中的应用主要表现在四个方面: ①解方程或解不等式; ②带参变数的方程或不等式的讨论,常涉及一元二次方程的判别式、根与系数的关系、区间根、区间上恒成立等知识应用; ③需要转化为方程的讨论,如曲线的位置关系; ④构造方程或不等式求解问题。 5.导数函数在解题中常用的有关结论(需要熟记): 1、曲线()y f x =在0x x =处的切线的斜率等于0()f x ',且切线方程为 000()()()y f x x x f x '=-+。 2、若可导函数()y f x =在 0x x = 处取得极值,则0()0f x '=。反之,不成立。 3、对于可导函数()f x ,不等式()f x '0>0<()的解集决定函数()f x 的递增(减)区间。 4、函数()f x 在区间I 上递增(减)的充要条件是:x I ?∈()f x '0≥(0)≤恒成立(()f x ' 不恒为0). 5、函数()f x (非常量函数)在区间I 上不单调等价于()f x 在区间I 上有极值,则可等价转化为方程()0f x '=在区间I 上有实根且为非二重根。(若()f x '为二次函数且I=R ,则有0?>) 。 6、 ()f x 在区间I 上无极值等价于()f x 在区间在上是单调函数,进而得到()f x '0≥或

高一函数知识结构图

函数知识结构图 设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么称f:A→B为从集合A 到集合 B 的一个函数,记作 y = f (x )① 增函数与减函数:定义:对于函数f(x)的 定义域 I 内某个区间上的任意两个自变 量的值x1,x2, (1)若当x1 < x2时,都有f(x1) < f (x2) , 则说f(x)在这个区间上是增函数。 (2)若当x1 < x2时,都有f(x1) > f(x2) , 则说f(x)在这个区间上是减函数。⑧ 单调性(1)函数最大值首先应该是 某一个函数值,即存在 x0∈ I ,使得 f (x0)= M ; (2)函数最大值应该是所有最函数值中最大的,即对于任 值意的x∈I,都有f(x)≤M⑨ ②区间表示集合: [a,b],(a,b) 函数的基本性[a,b) ,(a,b], 质 (- ∞ ,+ ∞ ) (-∞, a) ?(b, +∞) 函函数 一个函数的构成数及 要素为:定义域, 其 对应关系和值域。 表 如果两个函数的映射定义域相同,并且示 对应关系完全一 致,这两个函数相 定义域 等。③ 和值域函数的表示法奇偶性 对于定义域内任意一 个x,都有(1)f (-x)=f(x), 那么函数f(x)就叫 做偶函数;偶函数图 象关于 y 轴对称。 (2)f(-x)= -f(x), 那么函数f(x)就叫 做奇函数;奇函数图 象关于原点对称。⑩ x的取值范 围叫做函数 y= f ( x)的 定义域;④ 函数值y 的集合叫做函数 y=f(x) 的值域。⑤解析法:用数学表达 式表示两个变量之间 的对应关系。 图象法:用图象表示 两个变量之间的对应 关系。 列表法:列出表格来 表示两个变量之间的 对应关系。⑥ 设A,B是非空的数集,如果按 某一个确定的对应关系f,使 对于集合A中的任意一个数 x ,在集合B中都有唯一确定 的元数y和它对应,那么称对 应f:A→B为从集合A 到集合B的一个映射。⑦

人教版数学必修一函数与方程练习题

人教版数学必修一函数与方程练习题 重点:掌握零点定理的内容及应用 二次函数方程根的分布 学会利用图像进行零点分布的分析 1. 下列函数中,不能用二分法求零点的是() 2. 如果二次函数有两个不同的零点,则的取值范围是() 3. A. B. C. D. 4. 已知函数22)(m mx x x f --=,则)(x f () A .有一个零点 B .有两个零点 C .有一个或两个零点 D .无零点 5. 已知函数)(x f 的图象是连续不间断的,有如下的)(,x f x 对应值表 A .2个 B .3个 C .4个 D .5个 6. 若方程0=--a x a x 有两个根,则a 的取值范围是( ) A .)1(∞+ B .)1,0( C .),0(+∞ D .? 7. 设函数? ??>≤++=,0,3,0,)(2x x c bx x x f 若2)2(),0()4(-=-=-f f f ,则函数x x f y -=)(的零点的个数为( ) A .1 B .2 C .3 D .4 8. 无论m 取哪个实数值,函数)2 3(232--+-=x m x x y 的零点个数都是( ) A .1 B .2 C .3 D .不确定 9. 已知函数).0(42)( 2>++=a ax ax x f 若0,2121=+ B .)()(21x f x f = C .)()(21x f x f < D .)(1x f 与)(2x f 大小不能确定 )3(2+++=m mx x y m ()6,2-[]6,2-{}6,2-()(),26,-∞-+∞

高中数学必修一 函数与方程的思想方法

函数与方程的思想方法 函数与方程的思想是中学数学的基本思想,也是历年高考的重点。 函数的思想,是用运动和变化的观点、集合与对应的思想,去分析和研究数学问题中的数量关系,建立函数关系或构造函数,再利用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。函数思想的精髓就是构造函数。 方程的思想,是分析数学问题中变量间的等量关系,从而建立方程或方程组,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。 方程的思想与函数的思想密切相关,函数与方程的思想方法,几乎渗透到中学数学的各个 领域,在解题中有着广泛的运用。对于函数 ) (x f y=,当0 = y时,就转化为方程0 ) (= x f, 也可以把函数式 ) (x f y=看做二元方程0 ) (= -x f y,函数与方程这种相互转化的关系十 分重要。 函数与表达式也可以相互转化,对于函数 ) (x f y=,当0 > y时,就转化为不等式 ) (> x f,借助与函数的图像与性质可以解决不等式的有关问题,而研究函数的性质,也离不开解不等式。 数列的通项或前n项和时自变量为自然数的函数,用函数观点去处理数列问题也是十分重要。 函数 ) ( ) ( ) (* N n bx a x f n∈ + =与二项式定理密切相关,利用这个函数,用赋值法和比 较系数法可以解决很多有关二项式定理的问题。 解析几何中的许多问题,例如直线与二次曲线的位置关系问题,需要通过解二元方程组才能解决,这都涉及二次方程与二次函数的有关理论。 立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决。建立空间向量后,立体几何与函数的关系就更加密切。 函数思想在解题中的应用主要表现在两个方面:一是借助初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关问题,达到化难为易、化繁为简的目的。 高考中的方程和不等式问题包括方程、不等式的求解及方程、不等式观点的应用,可以分成逐渐提高的四个层次。 第一层次:解方程或不等式,主要是指解代数(一次、二次等)方程或不等式,指数、对数方程或不等式,三角方程或不等式,复数方程等; 第二层次:对带参数的方程或不等式的讨论,常涉及二次方程的判别式、韦达定理、区间根、区间上恒成立的不等式等问题; 第三层次:转化为方程的讨论,如曲线的位置关系(包括点与曲线及直线与曲线的位置关系)、函数的性质、集合的关系等; 第四层次:构造方程或不等式求解问题。 其中第三、四层次(特别是第四层次)已经进入到方程、不等式观点应用的境界,即把方程、不等式作为基本数学工具去解决各个学科中的问题。 纵观中学数学,可谓是以函数为中心,以函数为纲,“纲举目张”,抓住了函数这个“纲”

函数方程的几种解法 (1)

解函数方程的几种方法 李素真 摘要:本文通过给出求解函数方程的基本方法,来介绍函数方程,探索通过构造函数方程求解其它问题的方法,以获得新的解题思路。 关键词:函数方程;换元法;待定系数法;解方程组法;参数法 含有未知函数的等式叫做函数方程,能使函数方程成立的函数叫做函数方程的解,求函数方程的解或证明函数方程有无解的过程叫解函数方程。 函数方程的解法有换元法(或代换法)、待定系数法、解方程组法、参数法。 1.换元法 换元法是将函数的“自变量”或某个关系式代之以一个新的变量(中间变量),然后找出函数对中间变量的关系,从而求出函数的表达式。 例1 已知x x f x sin )2(+=,求)(x f 。 解:令u x =2)(0>u ,则u x log 2=,于是可得,)log sin()log ()(222 u u u f += )(0>u ,以x 代替u ,得)log sin(log 2 )(22u x x f +=)0(>x 。 例2 已知x x x x f 212ln )1(+=+)0(>x ,求)(x f 。 解:令t x x =+1,则11-=t x )1(>t ,于是12ln 112111 2 ln )(+=-+-=t t t t f , 即1 2ln )(+=x x f 。 例3 已知x x f 2cos )cos 1(=+,求)(x f 。 解:原式可以化为 1cos 22cos )cos 1(2+==+x x x f ,令t x =+cos 1,]2,0[∈t ,则换元后有1)1(2)(2 --=x t f ]2,0[∈x 。 2.待定系数法

待定系数法适用于所求函数是多项式的情形。当我们知道了函数解析式的类型及函数的某些特征,用待定系数法来解函数方程较为简单。一般首先确定多项式的次数,写出它的一般表达式,然后由已知条件,根据多项式相等的条件确定待定系数。 例4 已知)(x f 为多项式函数,且422)1()1(2+-=-++x x x f x f ,求)(x f 。 解:由于)1(+x f 与)1(-x f 不改变)(x f 的次数,而它们的和是2次的,所以)(x f 为二次函数,故可设c bx x a x f ++=2)(,从而有 由已知条件得 422)(22222+-=+++x x c a bx x a 根据两个多项式相等的条件得 22=a ,22-=b ,4)(2=+c a ,由此得1=a ,1-=b ,1=c ,故有1)(2+-=x x x f 。 例5 已知)(x f 是x 的二次函数,且x x x f f 242)]([-=,求)(x f 。 解:因为c 是x 的二次函数,故可设c bx x a x f ++=2)(,由此,c c bx x a b c bx x a a c x bf x f a x f f ++++++=++=)()()()()]([2222 将上式化简并代入x x x f f 242)]([-=,得x x c bc c a x b abc x ab c a b a x b a x a 2)()2()2(24222223243-=+++++++++ 比较对应项的系数有 ?????????=++=+-=++==0 0222021222223c bc c a b abc ab c a b a b a a ,解之得?????-===101c b a ,故1)(2-=x x f 。 3.解方程组法 此方法是将函数方程的变量或关系式进行适当的变量代换,得到新的函数方程,然后与原方程联立,解方程组,即可求出所求的函数。

相关文档
最新文档