二次函数培优试题(一)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数
一选择题1、如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是( )
A .m =n ,k >h
B .m =n ,k <h
C .m >n ,k =h
D .m <n ,
k
=h
2、已知二次函数y =ax 2+bx +c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b ﹣2a =0;②abc <0;③a ﹣2b +4c <0;④8a +c >0.其中正确的有( )
3、如图,二次函数2y ax bx c =++的图像与y 轴正半轴相交,其顶点坐标
为(1,12
),下列结论:①0ac <;②0a b +=; ③244ac b a -=;④0a b c ++<.其中正确结论的个数是
A . 1
B . 2
C . 3
D . 4
4、若二次函数c x x y +-=62的图象经过A (-1,y 1)、B (2,y 2)、C
(23+,y 3)三点,则关于y 1、y 2、y 3大小关系正确的是
A .y 1>y 2>y 3
B .y 1>y 3>y 2
C .y 2>y 1>y 3
D .y 3>y 1>y 2
5、如图,一次函数)0(1≠+=k n kx y 与二次函数 )0(22≠++=a c bx ax y 的图象相交于A (1-,5)、B (9,2)两点,则关
于x 的不等式c bx ax n kx ++≥+2
的解集为
A 、91≤≤-x B
、91<≤-x C 、91≤<-x D 、1-≤x 或9≥x
6,如图,已知:正方形ABCD 边长为1,E 、F 、G 、H 分别为各边上的点,且AE =BF =CG =DH ,设小正方形EFGH 的面积为s ,AE 为x ,则s 关于x 的函数图象大致是( )
A B C D
二,填空题
7. 已知实数a 、b 满足等式()2223a b -+=,求b a
的最大值和最小值---------------.
8.求函数2y x =-+--------------------.
9.已知090α︒︒≤≤,求sin y α的最大值和最小值----------------------.
10 设有直线l 过点(1,1)M ,且在第一象限与两坐标轴围城的三角形的面积为最小(如图).求此直线l 的方程-----------------.
11一条抛物线2y ax bx c =++的顶点为(4,11)-,且与x 轴的两个焦点的横坐标为一正一负,则a 、b 、c 中为整数的------------------
12.已知点A 、B 的坐标分别为(1,0)A 、(2,0)B ,若二次函数2(3)3y x a x =+-+的图像与线段AB 恰有一个交点,求a 的取值范围-------------------------------.
三.解答题 13.一幢33层的大楼有一部电梯停在第一层,它一次最多容纳32人,而且只能在第2
层至第33层中某一层停一次,对于每个人来说,他往下走一层楼梯感到1分不满意,往上走一层楼梯感到3分不满意,现在有32个人在第一层,并且他们分别住在第2至第33层的每-层,问:电梯停在哪一层时,可以使得这32个人不满意的总分达到最小?最小值是多少?(有些人可以不乘电梯即直接从楼梯上楼).
14、如图,已知二次函数y=﹣x 2+mx+4m 的图象与x 轴交于A (x 1,0),B (x 2,0)两点
(B 点在A 点的右边),与y 轴的正半轴交于点C ,且(x 1+x 2)﹣x 1x 2=10.
(1)求此二次函数的解析式.
(2)写出B,C两点的坐标及抛物线顶点M的坐标;
(3)连接BM,动点P在线段BM上运动(不含端点B,M),过点P作x轴的垂线,垂足为H,设OH的长度为t,四边形PCOH的面积为S.请探究:四边形PCOH的面积S有无最大值?如果有,请求出这个最大值;如果没有,请说明理由.
15、如图,在一个矩形空地ABC D上修建一个矩形花坛AMPQ,要求点M在AB上,点Q 在AD上,点P在对角线BD上.若AB=6m,AD=4m,设AM的
长为xm,矩形AMPQ的面积为S平方米.
(1)求S与x的函数关系式;
(2)当x为何值时,S有最大值?请求出最大值.
16.如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0.(1)求抛物线的解析式.
(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动.
①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t 的取值范围.
②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
17.如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.
(1)求该抛物线的函数解析式;
(2)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由.
(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移过程中与△COD重叠部分面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.。