材料力学压杆稳定答案
材料力学实验报告参考答案(标准版)
目录一、拉伸实验二、压缩实验三、拉压弹性模量E测定实验四、低碳钢剪切弹性模量G测定实验五、扭转破坏实验六、纯弯曲梁正应力实验七、弯扭组合变形时的主应力测定实验八、压杆稳定实验一、拉伸实验报告标准答案实验目的:见教材。
实验仪器见教材。
实验结果及数据处理:例:(一)低碳钢试件试验前试验后最小平均直径d=10.14mm 最小直径d= 5.70mm 截面面积A=80.71mm 2截面面积A 1=25.50mm 2计算长度L=100mm计算长度L 1=133.24mm试验前草图试验后草图强度指标:P s =__22.1___KN 屈服应力σs =P s /A __273.8___MP a P b =__33.2___KN 强度极限σb =P b /A __411.3___MP a塑性指标:1L -L100%Lδ=⨯=伸长率33.24%1100%A A Aψ-=⨯=面积收缩率68.40%低碳钢拉伸图:(二)铸铁试件试验前试验后最小平均直径d=10.16mm最小直径d=10.15mm截面面积A=81.03mm2截面面积A1=80.91mm2计算长度L=100mm计算长度L1≈100mm 试验前草图试验后草图强度指标:最大载荷Pb=__14.4___KN强度极限σb =Pb/A=_177.7__M Pa问题讨论:1、为何在拉伸试验中必须采用标准试件或比例试件,材料相同而长短不同的试件延伸率是否相同?答:拉伸实验中延伸率的大小与材料有关,同时与试件的标距长度有关.试件局部变形较大的断口部分,在不同长度的标距中所占比例也不同.因此拉伸试验中必须采用标准试件或比例试件,这样其有关性质才具可比性.材料相同而长短不同的试件通常情况下延伸率是不同的(横截面面积与长度存在某种特殊比例关系除外).2、分析比较两种材料在拉伸时的力学性能及断口特征.答:试件在拉伸时铸铁延伸率小表现为脆性,低碳钢延伸率大表现为塑性;低碳钢具有屈服现象,铸铁无.低碳钢断口为直径缩小的杯锥状,且有450的剪切唇,断口组织为暗灰色纤维状组织。
材料力学答案- 压杆稳定
15-1 两端为球铰的压杆,当它的横截面为图示各种不同形状时,试问杆件会在哪个平面内失去稳定(即在失稳时,杆的截面绕哪一根轴转动)?解:(a),(b),(e)任意方向转动,(c),(d),(f)绕图示Z 轴转动。
15-2 图示各圆截面压杆,横截面积及材料都相同,直径d =1.6cm ,杆材A 3钢的弹性模量E =200MPa ,各杆长度及支承形式如图示,试求其中最大的与最小的临界力之值。
解:(a) 柔度: 2301500.4λ⨯== 相当长度:20.30.6l m μ=⨯=(b) 柔度: 1501250.4λ⨯== 相当长度:10.50.5l m μ=⨯=(c) 柔度: 0.770122.50.4λ⨯== 相当长度:0.70.70.49l m μ=⨯=(d) 柔度: 0.590112.50.4λ⨯== 相当长度:0.50.90.45l m μ=⨯=(e) 柔度: 145112.50.4λ⨯== 相当长度:10.450.45l m μ=⨯=由E=200Gpa 及各柔度值看出:各压杆的临界力可用欧拉公式计算。
即:()22cr EIF l πμ=各压杆的EJ 均相同,故相当长度最大的压杆(a)临界力最小,压杆(d)与(e)的临界力最大,分别为:()2948222320010 1.610640.617.6410cr EFF l N πππμ-⨯⨯⨯⨯⨯===⨯()2948222320010 1.610640.4531.3010cr EIF l Nπππμ-⨯⨯⨯⨯⨯===⨯15-3 某种钢材P σ=230MPa ,s σ=274MPa ,E =200GPa ,直线公式λσ22.1338-=cr ,试计算该材料压杆的P λ及S λ值,并绘制1500≤≤λ范围内的临界应力总图。
解:92.633827452.5p s s a λπσλ===--===15-4 6120型柴油机挺杆为45钢制成的空心圆截面杆,其外径和内径分别为,12mm 和10mm ,杆长为383mm ,两端为铰支座,材料的E =210GPa ,P σ=288MPa ,试求此挺杆的临界力cr F 。
2020年材料力学习题册答案-第9章 压杆稳定
作者:非成败作品编号:92032155GZ5702241547853215475102时间:2020.12.13第九章压杆稳定一、选择题1、一理想均匀直杆受轴向压力P=P Q时处于直线平衡状态。
在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( A )。
A、弯曲变形消失,恢复直线形状;B、弯曲变形减少,不能恢复直线形状;C、微弯状态不变;D、弯曲变形继续增大。
2、一细长压杆当轴向力P=P Q时发生失稳而处于微弯平衡状态,此时若解除压力P,则压杆的微弯变形( C )A、完全消失B、有所缓和C、保持不变D、继续增大3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( D )来判断的。
A、长度B、横截面尺寸C、临界应力D、柔度4、压杆的柔度集中地反映了压杆的( A )对临界应力的影响。
A、长度,约束条件,截面尺寸和形状;B、材料,长度和约束条件;C、材料,约束条件,截面尺寸和形状;D、材料,长度,截面尺寸和形状;5、图示四根压杆的材料与横截面均相同,试判断哪一根最容易失稳。
答案:( a )6、两端铰支的圆截面压杆,长1m,直径50mm。
其柔度为 ( C )A.60;B.66.7;C.80;D.507、在横截面积等其它条件均相同的条件下,压杆采用图( D )所示截面形状,其稳定性最好。
8、细长压杆的( A ),则其临界应力σ越大。
A 、弹性模量E 越大或柔度λ越小;B 、弹性模量E 越大或柔度λ越大;C 、弹性模量E 越小或柔度λ越大;D 、弹性模量E 越小或柔度λ越小; 9、欧拉公式适用的条件是,压杆的柔度( C )A 、λ≤、λ≤C 、λ≥π D、λ≥10、在材料相同的条件下,随着柔度的增大( C )A 、细长杆的临界应力是减小的,中长杆不是;B 、中长杆的临界应力是减小的,细长杆不是;C 、细长杆和中长杆的临界应力均是减小的;D 、细长杆和中长杆的临界应力均不是减小的; 11、两根材料和柔度都相同的压杆( A )A. 临界应力一定相等,临界压力不一定相等;B. 临界应力不一定相等,临界压力一定相等;C. 临界应力和临界压力一定相等;D. 临界应力和临界压力不一定相等;12、在下列有关压杆临界应力σe 的结论中,( D )是正确的。
材料力学 压杆稳定答案共5页
9-1(9-2)图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图f所示杆在中间支承处不能转动)?解:对于材料和截面相同的压杆,它们能承受的压力与成反比,此处,为与约束情况有关的长度系数。
(a)=1×5=5m(b)=0.7×7=4.9m(c)=0.5×9=4.5m(d)=2×2=4m(e)=1×8=8m(f)=0.7×5=3.5m故图e所示杆最小,图f所示杆最大。
返回9-2(9-5) 长5m的10号工字钢,在温度为时安装在两个固定支座之间,这时杆不受力。
已知钢的线膨胀系数。
试问当温度升高至多少度时,杆将丧失稳定?解:返回9-3(9-6) 两根直径为d的立柱,上、下端分别与强劲的顶、底块刚性连接,如图所示。
试根据杆端的约束条件,分析在总压力F作用下,立柱可能产生的几种失稳形态下的挠曲线形状,分别写出对应的总压力F之临界值的算式(按细长杆考虑),确定最小临界力的算式。
解:在总压力F作用下,立柱微弯时可能有下列三种情况:(a)每根立柱作为两端固定的压杆分别失稳:(b)两根立柱一起作为下端固定而上端自由的体系在自身平面内失稳失稳时整体在面内弯曲,则1,2两杆组成一组合截面。
(c)两根立柱一起作为下端固定而上端自由的体系在面外失稳故面外失稳时最小返回9-4(9-7)图示结构ABCD由三根直径均为d的圆截面钢杆组成,在点B铰支,而在点A和点C固定,D为铰接点,。
若结构由于杆件在平面ABCD内弹性失稳而丧失承载能力,试确定作用于结点D处的荷载F的临界值。
解:杆DB为两端铰支,杆DA及DC为一端铰支一端固定,选取。
此结构为超静定结构,当杆DB失稳时结构仍能继续承载,直到杆AD及DC也失稳时整个结构才丧失承载能力,故返回9-5(9-9) 下端固定、上端铰支、长m的压杆,由两根10号槽钢焊接而成,如图所示,并符合钢结构设计规范中实腹式b类截面中心受压杆的要求。
材料力学习题册答案第章压杆稳定
第 九 章 压 杆 稳 定一、选择题1、一理想均匀直杆受轴向压力P=P Q 时处于直线平衡状态。
在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆〈A )。
A 、弯曲变形消失,恢复直线形状; B 、弯曲变形减少,不能恢复直线形状; C 、微弯状态不变;D 、弯曲变形继续增大。
2、一细长压杆当轴向力P=P Q 时发生失稳而处于微弯平衡状态,此时若解除压力P ,则压杆的微弯变形<C)A 、完全消失 B 、有所缓和 C 、保持不变 D 、继续增大3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的〈D )来判断的。
A 、长度B 、横截面尺寸C 、临界应力D 、柔度 4、压杆的柔度集中地反映了压杆的〈 A )对临界应力的影响。
A 、长度,约束条件,截面尺寸和形状;B 、材料,长度和约束条件;C 、材料,约束条件,截面尺寸和形状;D 、材料,长度,截面尺寸和形状; 5、图示四根压杆的材料与横截面均相同, 试判断哪一根最容易失稳。
答案:〈 a )6、两端铰支的圆截面压杆,长1m ,直径50mm .其柔度为 ( C 〉A 。
60;B 。
66。
7;C .80;D 。
507、在横截面积等其它条件均相同的条件下,压杆采用图<D )所示截面形状,其稳定性最好.8、细长压杆的<A ),则其临界应力σ越大。
A 、弹性模量E 越大或柔度λ越小;B 、弹性模量E 越大或柔度λ越大;C 、弹性模量E 越小或柔度λ越大;D 、弹性模量E 越小或柔度λ越小; 9、欧拉公式适用的条件是,压杆的柔度〈C )A 、λ≤P E πσB 、λ≤s E πσC 、λ≥PEπσ D 、λ≥sEπσ10、在材料相同的条件下,随着柔度的增大<C )A 、细长杆的临界应力是减小的,中长杆不是;B 、中长杆的临界应力是减小的,细长杆不是;C 、细长杆和中长杆的临界应力均是减小的;D 、细长杆和中长杆的临界应力均不是减小的; 11、两根材料和柔度都相同的压杆〈A )A 。
压杆稳定习题及答案
压杆稳定习题及答案【篇一:材料力学习题册答案-第9章压杆稳定】xt>一、选择题1、一理想均匀直杆受轴向压力p=pq时处于直线平衡状态。
在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( a )。
a、弯曲变形消失,恢复直线形状;b、弯曲变形减少,不能恢复直线形状; c、微弯状态不变; d、弯曲变形继续增大。
2、一细长压杆当轴向力p=pq时发生失稳而处于微弯平衡状态,此时若解除压力p,则压杆的微弯变形( c )a、完全消失b、有所缓和c、保持不变d、继续增大 3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( d)来判断的。
a、长度b、横截面尺寸c、临界应力d、柔度 4、压杆的柔度集中地反映了压杆的( a)对临界应力的影响。
a、长度,约束条件,截面尺寸和形状;b、材料,长度和约束条件;c、材料,约束条件,截面尺寸和形状;d、材料,长度,截面尺寸和形状; 5、图示四根压杆的材料与横截面均相同,试判断哪一根最容易失稳。
答案:( a )6、两端铰支的圆截面压杆,长1m,直径50mm。
其柔度为 ( c )a.60;b.66.7;c.80;d.50 7、在横截面积等其它条件均相同的条件下,压杆采用图( d )所示截面形状,其稳定性最好。
≤?≥?- 1 -10、在材料相同的条件下,随着柔度的增大( c)a、细长杆的临界应力是减小的,中长杆不是;b、中长杆的临界应力是减小的,细长杆不是; c、细长杆和中长杆的临界应力均是减小的; d、细长杆和中长杆的临界应力均不是减小的; 11、两根材料和柔度都相同的压杆( a )a. 临界应力一定相等,临界压力不一定相等;b. 临界应力不一定相等,临界压力一定相等;c. 临界应力和临界压力一定相等;d. 临界应力和临界压力不一定相等;a、杆的材质b、杆的长度c、杆承受压力的大小d、杆的横截面形状和尺寸二、计算题1、有一长l=300 mm,截面宽b=6 mm、高h=10 mm的压杆。
压杆稳定答案.doc
压杆稳定答案_、概念题I.B; 2. A; 3. D; 4. D; 5. C; 6. B; 7. D; 8. A; 9. A; 10. CII.(a) F cri =TT2EI /I2,(b)F cr2 =TT2EI/Q/2)2 >F crX,大8 倍.12.(1)考虑,杆横贯截面面积减少,正应力增加.(2)不考虑,截面局部削弱不会影响整杆的稳定.二、计算题1 .根两端较支的大柔度杆如图,/= 1000mm, E=200GPa,求这两根压杆的临界力。
⑹巧” =丁*200*109 *场67 *10_12/(l2)=3287N(c) P cr = ^2*200*=9141N2.h:b = lA3.BC: F Crl = TV2El /(I2).AB : F Cr2 = /(0.7(0.5Z)2) > F Crl.取小值.F。
=^2EZ/(Z2)4.・皿=2.53/275.由五根d=50mm的圆钢杆制成的正方形结构如图,杆件连接处均为光滑较链,正方形边长a = lm,材料为Q235钢,E=210GPa, o> = 200MPa,试求结构的临界载荷。
1)节点c,^X=0,N CB=N CD=N AB=N AD=-P/42节点B,工Y",N BD=P2)稳定性要求决定结构的临界载荷对四根压杆,2 = 80< 100,P Cr = @_b心虽 /4 = N CD = H/V2结构的临界载荷[P]=595kN6.梁柱结构如图所示,梁采用16号工字钢,柱用两根63X63X10的角钢制成,材料为Q235 钢,强度安全系数“=1.4,加=2,试校核结构的安全性。
己知E=200GPa, bp = 200MPa, a s = 240MPa oyc ~"CD,1)变形条件5ql" /(384E/Z) - M3 /(48E/Z) - Na/(EA)N = 99.3kN一丄™“ □宀bma\ = Mmax7肥-19300/(141 * 10 6) - 136.9AfP«2)校核梁的强度max max Z" = bs/bmax=1.75>"2 = 106 >100P Cr = 406kNn = 406/99.3 = 4.08 > n St3)柱的稳定性结构安全.7.较接支架如图,AB与BC杆的材料AB与BC垂直,截面几何形状相同,且同为大柔度杆。
《材料力学》第9章压杆稳定习题解[整理]
第九章 压杆稳定 习题解[习题9-1] 在§9-2中已对两端球形铰支的等截面细长压杆,按图a 所示坐标系及挠度曲线形状,导出了临界应力公式。
试分析当分别取图b,c,d 所示坐标系及挠曲22l EIP cr π=线形状时,压杆在作用下的挠曲线微分方程是否与图a 情况下的相同,由此所得公cr F cr F 式又是否相同。
解: 挠曲线微分方程与坐标系的y 轴正向规定有关,与挠曲线的位置无关。
因为(b )图与(a )图具有相同的坐标系,所以它们的挠曲线微分方程相同,都是。
(c )、(d)的坐标系相同,它们具有相同的挠曲线微分方程:)("x M EIw -=,显然,这微分方程与(a )的微分方程不同。
)("x M EIw =临界力只与压杆的抗弯刚度、长度与两端的支承情况有关,与坐标系的选取、挠曲线的位置等因素无关。
因此,以上四种情形的临界力具有相同的公式,即:。
22l EIP cr π=[习题9-2] 图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图f 所示杆在中间支承处不能转动)?解:压杆能承受的临界压力为:。
由这公式可知,对于材料和截面相同的压22).(l EI P cr μπ=杆,它们能承受的压力与 原压相的相当长度的平方成反比,其中,为与约束情况有l μμ关的长度系数。
(a )ml 551=⨯=μ(b )ml 9.477.0=⨯=μ(c )ml 5.495.0=⨯=μ(d )ml 422=⨯=μ(e )ml 881=⨯=μ(f )(下段);(上段)m l 5.357.0=⨯=μm l 5.255.0=⨯=μ故图e 所示杆最小,图f 所示杆最大。
cr F cr F[习题9-3] 图a,b 所示的两细长杆均与基础刚性连接,但第一根杆(图a )的基础放在弹性地基上,第二根杆(图b )的基础放在刚性地基上。
试问两杆的临界力是否均为2min2).2(l EI P cr π=为什么并由此判断压杆长因数是否可能大于2。
[材料力学]材料力学试题库精选题解精选题13_压杆稳定.doc
压杆稳定1.图示结构,4B 为刚性杆,其它杆均为直径</=10mm 的细长圆杆,弹性模量E = 200 GPa,屈服极限込=360 MPa,试求此结构的破坏载荷F 值。
心=^N4 = _F N 2 - —F N 3 = 0.507F✓y A由杆 1, 4, F N1 = 0.507F = cr s A , E =^^ = 55.8 kNN1 1 s 10.507兀 2FI F由杆 2, 3, F W =F CV =^^ = 0.673 kN, F, =^- = 1.33 kNN - cr l 2- 0.507结构破坏载荷 1.33 kN 2.图示桁架由5根圆截面杆组成。
已知各杆直径均为6? =30 mm, Z = 1 m □各杆 的弹性模量均为£ = 200 GPa, 2p = 100, 20 = 61 ,直线经验公式系数 a = 304 MPa, b = 1.12 MPa ,许用应力[<r] = 160 MPa ,并规定稳定安全因数 ["Lt =3,试求此结构的许可载荷[F]。
” 解:由平衡条件可知杆1, 2, 3, 4受压,其轴力为 .F按杆5的强度条件:亠三匕],F<A[cr] = 113kN 按杆1, 2, 3, 4的稳定条件 2 = 133 >2 由欧拉公式 F cr =78.48 kNF<37.1kN [F] = 37.1kN 3.钢杆和铜杆截面、长度均相同,都是细长杆。
将两杆的两端分别用餃链并联,如图,此时两杆都不受力。
试计算当温度升高多少度时,将会导致结构失稳?已 知杆长/ = 2 m ,横截血积A = 20 cm 2,惯性矩1: = 40 cm 4 ;钢的弹性模量杆5受拉,其轴力为F N5=FMfax 二十E s = 200 GPa ,铜的弹性模量E c =100 GPa,钢的线膨胀系“ [钢 “数冬=12.5x10" d 铜的线膨系数% =16.5x10" °C 」。
上海理工材料力学习题解答(压杆稳定)
. 某型柴油机的挺杆长为l =257 mm ,圆形横截面的直径d =8 mm 。
所用钢材的E =210 GPa ,σp =240 MPa 。
挺杆所受的最大压力P = kN 。
规定n st =2~5。
试校核挺杆的稳定性。
解:(1) 求挺杆的柔度挺杆的横截面为圆形,两端可简化为铰支座,μ=1,i =d /4 计算柔度91614410.257128.50.0082101092.924010P ll id Eμμλλππσλλ⨯⨯====⨯===⨯∴挺杆是细长压杆,使用欧拉公式计算临界压力 (2) 校核挺杆的稳定性()()4410422910220.008 2.0110 646421010 2.0110 6.3110.257cr d I m EI P KNl ππππμ--⨯===⨯⨯⨯⨯⨯===⨯工作安全系数max 6.313.591.76cr P n P === 所以挺杆满足稳定性要求。
. 图示蒸汽机活塞杆AB 所受压力为P =120 kN ,l =1.8 m ,截面为圆形d =75 mm 。
材料为Q275钢,E =210 GPa ,s =240 MP 。
规定n st =8。
试校核活塞杆的稳定性。
解:(1) 求柔度极限值9162101092.924010PEλπσ⨯===⨯ 压杆的柔度11 1.8960.075/4liμλλ⨯====压杆是大柔度杆 (2) 压杆的临界压力()()44642296220.075 1.55310 646421010 1.55310993 1 1.8cr d I m EI P kNl ππππμ--⨯===⨯⨯⨯⨯⨯===⨯BAPPlp(3) 压杆的稳定性9938.275120cr st P n n P ===压杆稳定。
10.6. 三根圆截面压杆,直径均为d =160 mm 材料为Q235钢,E =200 GPa ,p =200 MPa ,s =240 MPa 。
三杆均为两端铰支,长度分别为l 1、l 2和l 3,且l 1=2l 2=4l 3=5m 。
孙训方《材料力学》(第6版)笔记和课后习题(含考研真题)详解-压杆稳定(圣才出品)
2.压杆分类(见表 9-1-4) 表 9-1-4 压杆分类
3.折减弹性模量理论(见表 9-1-5)
3 / 40
圣才电子书 十万种考研考证电子书、题库视频学习平台
表 9-1-5 折减弹性模量理论
4.压杆的临界应力总图 压杆临界应力 σcr 与柔度 λ 的关系曲线称为压杆的临界应力总图。当压杆的柔度很小时, 以屈服界限 σs 作为临界应力。临界应力总图的绘制如图 9-1-1 所示。
图 9-1-1 临界应力总图
4 / 40
圣才电子书 十万种考研考证电子书、题库视频学习平台
四、实际压杆的稳定因数 实际压杆的稳定许用应力与稳定因数的确定见表 9-1-6。
表 9-1-6 稳定许用应力与稳定因数
五、压杆的稳定计算·压杆的合理截面 1.压杆的稳定计算(见表 9-1-7)
6 / 40
圣才电子书 十万种考研考证电子书、题库视频学习平台
图 9-2-1 令 k2=Fcr/EI,可得:w″+k2w=k2Me/Fcr。则该微分方程的通解:w=Asinkx+ Bcoskx+Me/Fcr。 其一阶导为:w′=Akcoskx-Bksinkx,由边界条件 x=0,w=0,w′=0 可确定积分 常数:A=0,B=-Me/Fcr。故方程的通解:w=-Mecoskx/Fcr+Me/Fcr。 又由 x=l,w=0 得:-Mecoskx/Fcr+Me/Fcr=0,即 coskl=1,kl=2nπ(n=1, 2,3…),取其最小解 kl=2π,则压杆的临界力 Fcr 的欧拉公式 Fcr=4π2EI/l2=π2EI/ (0.5l)2。 9-2 长 5m 的 10 号工字钢,在温度为 0℃时安装在两个固定支座之间,这时杆不受 力。已知钢的线膨胀系数 αl=125×10-7(℃)-1,E=210GPa。试问当温度升高至多少 度时,杆将丧失稳定? 解:设温度升高 Δt 时,杆件失稳。
材料力学作业(压杆稳定)答案
两端为固定端,l 2m, l0 1.8m, b 25mm, h 76mm 。试求压杆的临界力。
2EI
钢制成,均布荷载集度 q=48kN/m。梁和支柱的材料均为 Q235 钢,
=170MPa,E=210GPa,
Pcr Pcr(Pcrl)(22lE()22IlE)2I
稳定安全系数 nst=2.5。试检查梁和支柱是否安全。
q
A
B
2m
C 2m
2m 10
解:(1)xy 平面内失稳,z 为中性轴:=1
D
解:这是一次超静定和压杆稳定综合题, (1) 由一次超静定得:F=5ql/8=120KN
(2)xz 平面内失稳,y 为中性轴:=0.5
(2) 校核梁的强度,Mc=-24KN.m:
材料力学作业(压杆稳定)
Pcr
2EI (l)2
班级:
学号:
姓名:
1.图示各杆均为细长压杆,各杆的材料、截面形状和截面面积均相同,试问杆能承 受的压力(d)图中压杆最大,(b)图中压杆最小
3. 图示的结构中,圆杆 CD 由 Q235 钢制成,C、D 两处均为球铰。已知 d=20mm,E=210GPa,
满足梁的强度安全
(3) 校核支柱的稳定,为小柔度杆按强度计算
不满足支柱的强度,不安全.
p 200 MPa
可荷载。 y
d ,稳定安全因数 nst
3
。试根据
CD
压杆的稳定性确定该ຫໍສະໝຸດ 构的许PAyz
ld
P
A
z
l
BP
x
BP
x
答案:[F]=1.88KN
2.图示压杆,E=210GPa,在主视图(a)平面内,两端为铰支,在俯视图(b)平面内, 4.如图所示结构中的梁 AB 及立柱 CD 分别为 16 号工字钢和连成一体的两根 63×63×5 角
材料力学孙训芳版解答第9章_压杆稳定
Q
&
VLQ
NO
&
FRV NO
0 )
0 )
FRV NO
0 )
FRV NO
NO Q
NO
N
O
N
O
) (, O
)
(, O
)FU
(,
O
P
D O u ( *3D
H
D O '7 O
, $L $L u u u u P
,
>,
$
D
u @
D
>
,
, $
u
@
u u
u
G PP E PP Q
&'
%& %&
)&'
)
0%
)
P ) P
$
&
%
G' E
V
0% :
) u u EK
) EK
d
VV Q
)
d
V VEK Q
u u u u u
1 N1
N1
N1
$% $%
7&
>V @ 03D
,,
¦0&
)$% VLQ $ u
u
&
)$% N1
M >V FU @ u >V @ 03D
$
V $%
材料力学第9章 压杆稳定(土木)
2.1922年冬天下大雪,美国华盛 . 年冬天下大雪, 年冬天下大雪 顿尼克尔卜克尔剧院由于屋顶结 构中的一根压杆超载失稳,造成 构中的一根压杆超载失稳, 一根压杆超载失稳 剧院倒塌, 余人。 剧院倒塌,死98人,伤100余人。 人 余人
3.2000年10月25日 . 年 月 日 上午10时 分 上午 时30分,在南京 电视台演播中心演播厅 屋顶的浇筑混凝土施工 顶的浇筑混凝土施工 中,因脚手架失稳,造 脚手架失稳, 成演播厅屋顶模板倒塌, 成演播厅屋顶模板倒塌, 死5人,伤35人。 人 人
欧拉公式与精确解曲线 精确解曲线
F =1.152F 时,
cr
δ ≈ 0.3l
理想受压直杆 非理想受压直杆
y
适用条件: 适用条件: •理想压杆(轴线为直线,压力与 理想压杆(轴线为直线, 理想压杆 轴线重合,材料均匀) 轴线重合,材料均匀) •线弹性,小变形 线弹性, 线弹性 •两端为铰支座 两端为铰支座
hb3 Iz = = 32cm 4 12
µl
iz =
Iz 32 = = 1.155cm A 4× 6
x
h
µ z = 0.5,
0.5 × 2 λz = = = 86.6 −2 iz 1.155 ×10
A3钢的λs= 61.6, λs<λ< λp,属于中 钢的 , 长压杆稳定问题。 长压杆稳定问题。 由表9-2查得 由表 查得: 查得
挠曲线的近似微分方程 挠曲线的近似微分方程
d w M =− dx EI
2
2
d w Fw =− 2 dx EI
引入记号
2
F w′′ + w = 0 EI
F k = EI
2
w′′ + k w = 0
材料力学-压杆的稳定性
11.5 压杆的稳定计算
一、安全系数法
Fcr F [F ] nst
I A
•临界柔度
s — 屈服极限
2E 1 欧拉公式 (大柔度杆) cr 2 1 2 (中柔度杆) cr a b 直线公式
•临界应力
2
(小柔度杆)
cr s
强度问题
临界应力总图:临界应力与柔度之间的变化关系图。
cr
S P
许可外力 [ P ] 。
a
A
30
0
b
P B
C
D
例题:
11.6 提高压杆稳定性的措施
FPcr
2 EI ( l )2
欧拉公式
FPcr 越大越稳定
1) 减小压杆长度 l 2) 减小长度系数μ(增强约束)
3) 增大截面惯性矩 I(合理选择截面形状)
4) 增大弹性模量 E(合理选择材料)
1) 减小压杆长度 l
(绕哪个轴转动)
对于矩形截面:
y
压杆的稳定性
y
h b z
x h z b
1 3 I z bh , 12
1 3 I y hb 12
hb
Iz Iy
所以该矩形截面压杆应在xz平面内 失稳弯曲;即,绕 y 轴转动。
11.3 其他支座条件下细长压杆的临界压力
对于其他支座条件下细长压杆,求临界压力有两种方法:
工程力学:压杆稳定 习题与答案
一、单选题1、压杆一般分为三种类型,它们是按压杆的()。
A.惯性半径分B.杆长分C.柔度分D.杆端约束情况分正确答案:C2、细长压杆,若其长度系数增加一倍,则()。
A.Pcr增加一倍B.Pcr增加到原来的4倍C.Pcr为原来的二分之一倍D.Pcr为原来的四分之一倍正确答案:D3、下列结论中正确的是()。
①若压杆中的实际应力不大于该压杆的临界应力,则杆件不会失稳;②受压杆件的破坏均由失稳引起;③压杆临界应力的大小可以反映压杆稳定性的好坏;④若压杆中的实际应力大于scr=πE2/λ2,则压杆必定破坏。
A.①+②B.②+④C.①+③D.②+③正确答案:C4、压杆临界力的大小()。
A.与压杆所承受的轴向压力大小有关B.与压杆的柔度大小有关C.与压杆材料无关D.与压杆的柔度大小无关正确答案:B5、两端铰支的圆截面压杆,若λp=100,则压杆的长度与横截面直径之比l/d在时,才能应用欧拉公式()。
A.25B.50C.400D.200正确答案:A6、若两根细长压杆的惯性半径i相等,当()相同时,它们的柔度相等。
①杆长;②约束类型;③弹性模量;④外部载荷A.①+②B.①+②+③C.①+②+④D.①+②+③+④正确答案:A7、a、b两根都是大柔度杆,材料、杆长和横截面形状大小都相同,杆端约束不同。
其中a为两端铰支,b为一端固定,一端自由。
那么两杆临界力之比应为()。
A.4B.1/4C.2D.1/2正确答案:A8、提高水稻抗倒伏性能的可能措施包括()。
A.选用茎秆强壮品种B.选用节间较短的矮秆品种C.使用植物生长调节剂,以调控节间长度与株高等D.以上都是正确答案:D9、圆形压杆和矩形压杆在稳定性校核时有何区别()。
A.圆形压杆不需要考虑失稳方向性,而矩形压杆需要考虑B.圆形压杆需要考虑失稳方向性,而矩形压杆不需要考虑C.两者都不需要考虑D.两者都需要考虑正确答案:A10、压杆合理设计措施包括:①合理选用材料;②合理选择截面;③合理安排压杆约束与杆长()。
材料力学习题压杆稳定
压 杆 稳 定基 本 概 念 题一、选择题1. 如果细长压杆有局部削弱,削弱部分对压杆的影响有四种答案,正确的是( )。
A .对稳定性和强度都有影响B .对稳定性和强度都没有影响C .对稳定性有影响,对强度没有影响D .对稳定性没有影响,对强度有影响2. 图示长方形截面压杆,h /b = 1/2;如果将b 改为h 后仍为细长杆,临界力cr P 是原来的( )倍。
A .2倍B .4倍C .8倍D .16倍3. 细长压杆,若长度系数μ增加一倍,则临界压力cr P 的变化是( )。
题2图A .增加一倍B .为原来的四倍C .为原来的四分之一D .为原来的二分之一4. 图示四根压杆的材料、截面均相同,它们在纸面内失稳的先后次序是( )。
题4图A .(a )、(b )、(c )、(d )B .(d )、(a )、(b )、(c )C .(c )、(d )、(a )、(b )D .(b )、(c )、(d )、(a )5. 正方形截面杆,横截面边长a 和杆长l 成比例增加,它的长细比( )。
A .成比例增加B .保持不变C .按2⎪⎭⎫ ⎝⎛a l 变化D .按2⎪⎭⎫ ⎝⎛l a 变化 6. 如图所示直杆,其材料相同,截面和长度相同,支承方式不同,在轴向压力下,他们的柔度是( )。
A .a λ大,c λ小B .b λ大,d λ小C .b λ大,c λ小D .a λ大,b λ小 -46-7. 若压杆在两个方向上的约束情况不同,且y μ>z μ。
那么该压杆的合理截面应满足的条件是( )。
A .z y I I =B .y I <z IC .y I >z ID .y z λλ=题6图8. 两压杆为管状薄壁容器式的细长杆,管两端封闭,且为铰支承。
(a )杆无内压,(b ) 杆有内压,其它条件相同。
则两杆临界应力的关系是( )。
A .()()b cr a cr σσ=B .()a cr σ>()b cr σC .()a cr σ<()b cr σD .无法比较9. 两根细长杆,直径、约束均相同,但材料不同,且212E E =,则两杆临界应力的关系是( )。
材料力学第11章试题及答案 压杆稳定
11-1
11-5
图示铰接杆系 ABC 由两根截面和材料均相同的细长杆组
成。若由于杆件在 ABC 平面内失稳而引起毁坏,试确定载荷 F 为最 大时的 θ 角(假设 0 < θ < π / 2 )。
FN = F 2 cos 45o = F
(
)
2
手轮
对 CD 杆,由 ∑ M C = 0 : 可得 F = 7 FB 6
500
F d
πd 2 4
E
λp = π
λ0 =
σp
=π
200 × 103 = 99.3 200
查表得: a = 304 MPa ,b = 1.12 MPa , λp = 100 , λ0 = 62 ∴ λ0 < λ < λp ,AB 杆为中柔度压杆, 故有
C
FN
θ
F
a − σ s 304 − 235 = = 61.6 b 1.12 μl μa 1 × 1 × 103 = = 80 λ= = i d 4 50 / 4
i min =
欧拉公式适用于 λmax
I min = A ≥ λp ,即
hb 3 12 = b bh 2 3
E
解: 最合理的情况为 AB、BC 两杆同时失稳,此时 F 最大。 π 2 EI π 2 EI FcrAB = F cosθ = 2 = 2 l AB l AC cos 2 β FcrBC = F sin θ = 两式相除得到
11-8
图示托架,AB 杆的直径 d = 4 cm ,长度 l = 80 cm ,两端铰
支,材料为 Q235 钢。 (1) 试根据杆 AB 的稳定条件确定托架的临界力 Fcr ; (2) 若已知实际载荷 F = 70 kN ,杆 AB 规定的稳定安全因数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9-1(9-2)图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图f所示杆在中间支承处不能转动)?
解:对于材料和截面相同的压杆,它们能承受的压力与成反比,此处,为与约束情况有关的长度系数。
(a)=1×5=5m
(b)=0.7×7=4.9m
(c)=0.5×9=4.5m
(d)=2×2=4m
(e)=1×8=8m
(f)=0.7×5=3.5m
故图e所示杆最小,图f所示杆最大。
9-2(9-5) 长5m的10号工字钢,在温度为时安装在两个固定支座之间,
这时杆不受力。
已知钢的线膨胀系数。
试问当温度升高至多少度时,杆将丧失稳定?
解:
9-3(9-6) 两根直径为d的立柱,上、下端分别与强劲的顶、底块刚性连接,如图所示。
试根据杆端的约束条件,分析在总压力F作用下,立柱可能产生的几种失稳形态下的挠曲线形状,分别写出对应的总压力F之临界值的算式(按细长杆考虑),确定最小临界力的算式。
解:在总压力F作用下,立柱微弯时可能有下列三种情况:
(a)每根立柱作为两端固定的压杆分别失稳:
(b)两根立柱一起作为下端固定而上
端自由的体系在自身平面内失稳
失稳时整体在面内弯曲,则1,2两杆
组成一组合截面。
(c)两根立柱一起作为下端固定而上
端
自由的体系在面外失稳
故面外失稳时最小
=。
9-4(9-7)图示结构ABCD由三根直径均为d的圆截面钢杆组成,在点B铰支,而在点A和点C固定,D为铰接点,。
若结构由于杆件在平面ABCD内弹性失稳而丧失承载能力,试确定作用于结点D处的荷载F的临界值。
解:杆DB为两端铰支,杆DA及DC为一端铰支一端固定,选取。
此结构为超静定结构,当杆DB失稳时结构仍能继续承载,直到杆AD及DC也失稳时整个结构才丧失承载能力,故
9-5(9-9) 下端固定、上端铰支、长m的压杆,由两根10号槽钢焊接而成,如图所示,并符合钢结构设计规范中实腹式b类截面中心受压杆的要求。
已知杆的材料为Q235钢,强度许用应力,试求压杆的许可荷载。
解:
m
9-6(9-10)如果杆分别由下列材料制成:
(1)比例极限,弹性模量的钢;
(2),,含镍3.5%的镍钢;
(3),的松木。
试求可用欧拉公式计算临界力的压杆的最小柔度。
解:(1)
(2)
(3)
9-7(9-11)两端铰支、强度等级为TC13的木柱,截面为150mm×150mm的正方形,长度m,强度许用应力。
试求木柱的许可荷载。
解:
由公式(9-12a),
9-8(9-13)一支柱由4根80mm×80mm×6mm的角钢组成(如图),并符合钢结构设计规范中实腹式b类截面中心受压杆的要求。
支柱的两端为铰支,柱长
l=6m,压力为450。
若材料为Q235钢,强度许用应力,试求支柱横截面边长a的尺寸。
解:
(查表:,)。