有机化学中用来研究反应机理的方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有机反应机制的研究方法
有机化学中用来解释反应机理的传统方法主要集中在Kinetics和Dynamics两方面,即理解势能面、深入研究分子运动和碰撞、测定活化参数、测定速率常数、确定某个反应机理中一系列化学步骤的顺序、确定反应限速步骤和决速步骤。
研究机理的关键目的是反应机理知识可以对如何在原子或分子水平上操纵物质给出最快速的洞察,而不是依靠运气来获得偶然性的变化从而获得想要的结果。由于动力学在辨别机理方面起着关键作用,所以动力学是整个有机反应机理研究领域中最重要的分支之一。
传统的反应机理研究方法除了动力学分析之外,还有同位素效应、结构-功能分析等。这些都是研究有机反应机理的标准实验工具,然后实验化学家可以根据其想象力和化学创造性,设计出一些完全不同于之前出现过的研究方法。因此,本文总结了一些最为常见的方法。首先分析最简单的实验,例如产物和中间体的鉴定。但也会分析一些更为微妙、精细的实验,如交叉和同位素置乱(cross-over and isotope scrambling)实验。
1.改变反应物结构以转变或捕获预想的中间体
有时可以通过合成一种类似于所研究的反应物的新反应物来破译中间体的性质,但是这需要所预测的中间体能以一种可预想的方式进行反应。没有标准的方式来处理这一类实验,所以实验者必须根据具体实验情况来设计实验。下面以酶反应作为此方法的应用实例。
Lin[1]等人设计了一种转变中间体的方法。扁桃酸消旋化酶可使扁
桃酸根离子的对映体(2-羟基苯甲酸)互换。位于羧酸跟α位的碳负离子被认为是中间体。为了测试此中间体是否存在,作者合成设计了扁桃酸跟离子的类似物i,并用酶对其进行了外消旋化。其过程是首先形成碳负离子,然后经过溴化物的1,6-消除,最后经过互变异构化,分离得到产物ii。此结果支持了在扁桃酸根离子路径中碳负离子中间体iii的存在。
2.捕获实验和竞争实验
鉴定中间体的一种常见方法是通过加入额外的试剂来捕获中间体。目前存在着几种自由基不伙计,许多好的亲核试剂是半衰期很短的亲电试剂(如碳正离子)的可行的捕获剂。必须以自己的化学知识来设计捕获中间体(如碳正离子、卡宾等)的捕获剂。但是活泼中间体的半衰期很短,所以捕获剂必须是具有很高的活性,并能与活泼中间体的标准反应路径进行竞争。同样,因为捕获反应是典型的双分子反应,所以要求捕获剂具有高的浓度。另外,还可以将捕获剂与反应物共价结合,以便更容易地捕获活泼中间体。
与捕获反应所不同的另一种反应是竞争反应。在一般的动力学实
验的分析中,除了决速步意外的其他步骤对动力学没有显著影响,因此关于这些其他步骤的数据都不能得到。这种缺乏动力学依赖性常常使得在动力学分析中,很大一部分的机理没能弄清楚。一种解决这个问题的有效办法是运用竞争性实验,竞争性实验包含了两种或者多种试剂来竞争与一个或多个中间体反应。这是捕获反应的一种派生办法,它所用的捕获剂不止一种。不同的捕获剂所得到的产物的比率代表了不同的捕获剂与中间体反应速率常数的比率。根据这一比率,可以得到有关中间体的性质。只有在捕获反应遵循动力学控制时,实验才是可行的。
Sarma[2]等人报道的实验中捕获了正膦以证明它的存在。五配位物种(正膦)被认为是RNA和DNA水解过程的中间体。这一物种在被广泛接受前,化学家研究了磷酸酯作为模型体系的化学性质,磷酸能够环化生成正膦,但是室温下根本观察不到中间体的存在。但是往反应溶液中加入乙酰氯后,就可能分别将两种中间体捕获。
3.核对共同中间体
通常,相类似的
[1].Lin,D.T.,J.Am.Chem.Soc.,110,323(1988).
[2].Sarma,R.J.Am.Chem.Soc.,100,5391(1978).
反应历程(机理):Reaction Mechanism
有机反应按化学反应所经历的全部过程:即为反应机理。反应机理是由反应物转变为产物的途径,若为基元反应,则为一步反应得到产物;若不为基元反应,则可以分解为多步基元反应过程。
反应机理(或反应历程)就是对反应物到产物所经历过程的详细描述和理论解释,特别是对中间体杂化状态、能量变化等的描述。
目前关于反应机理的描述主要是根据一些实验结果及观察到的实验现象和模型而做出的合理的理论假设和判断。限于检测手段及理论研究的局限,迄今为止,尚未有一个反应机理被真正证明过。
依据的实验事实越多,则由此作出的理论解释越可靠。一个反应的历程应经得起实验事实的考验,并应有一定的预见性。
b)反应类型:按反应机理分为自由基反应(自由基加成、自由基
取代)、离子型反应(亲电加成、亲电取代、消除反应、亲核加成、亲核取代)、协同反应;按反应底物和产物的因果关系
分类:取代反应(亲核取代、亲电取代、自由基取代)、加成反应(亲核加成、亲电加成、自由基加成)、消除反应、氧化还原反应
北京大学的徐光宪院士总结了20世纪化学的三大理论成就:
1.化学热力学。
它可以判断化学反应的方向,提出化学平衡和相平衡理论,可以预见化学反应的可能性,为合成化学指明方向。
2.量子化学和化学键理论,以及结构和性能关系的初步规律。这
对设计合成具有优良性能的化合物是至关重要的。
3.化学动力学和分子反应动态学的研究,特别是催化理论的发展
和计算机设计合成方法的推广,大大推动了合成化学。
热力学:解决反应进行的方向和程度,即反应可进行到哪里的问题。
动力学:解决反应进行快慢的问题,对反应速率的处理。研究主要有碰撞理论和过渡态理论两种学说。
3.3 有机反应的热力学控制和动力学控制
在一定反应条件下,一个从同一反应物出发的反应可能由于竞争反应而产生不同产物,此时应分析出生成目的产物途径的诸因素,以便控制反应条件,使反应趋向目的产物而获得最佳收率。
如果两个反应都不可逆,则速率快的反应生成的产物多,即C的产量较多。这种反应产物的比率决定于反应速率的过程称之为动力学控制。