甘肃西北师范大学附属中学高三复数复习专题doc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、复数选择题
1.已知复数1=-i
z i
,其中i 为虚数单位,则||z =( )
A .
12
B .
2
C D .2
2.i =( )
A .i -
B .i
C i -
D i
3.已知i 是虚数单位,复数2z i =-,则()12z i ⋅+的模长为( )
A .6
B
C .5
D 4.已知i 为虚数单位,则复数23i
i -+的虚部是( ) A .35
B .35i -
C .15
-
D .1
5
i -
5.
))
5
5
11--
+=( )
A .1
B .-1
C .2
D .-2
6.已知i 是虚数单位,则复数41i
i
+在复平面内对应的点在( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限
7.已知i 为虚数单位,复数12i
1i
z +=-,则复数z 在复平面上的对应点位于( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限
8.若复数z 满足()322i
z i i -+=+,则复数z 的虚部为( ) A .
35
B .35
i -
C .
35
D .35
i
9.若复数2i
1i
a -+(a ∈R )为纯虚数,则1i a -=( )
A 3
B C .3
D .5
10.在复平面内,复数z 对应的点是()1,1-,则1
z
z =+( ) A .1i -+
B .1i +
C .1i --
D .1i -
11.设复数z 满足41i
z i
=+,则z 的共轭复数z 在复平面内的对应点位于( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限
12.3
( )
A .i -
B .i
C .i
D .i -
13.设a +∈R ,复数()()()
2
4
2
121i i z ai ++=-,若1z =,则a =( )
A .10
B .9
C .8
D .7
14.复数12z i =-(其中i 为虚数单位),则3z i +=( )
A .5
B
C .2
D 15.在复平面内,复数z 对应的点的坐标是(1,1),则z
i
=( ) A .1i - B .1i --
C .1i -+
D .1i +
二、多选题
16.已知复数2020
11i z i
+=
-(i 为虚数单位),则下列说法错误的是( )
A .z 的实部为2
B .z 的虚部为1
C .z i =
D .||z =17.若复数351i
z i
-=-,则( )
A .z =
B .z 的实部与虚部之差为3
C .4z i =+
D .z 在复平面内对应的点位于第四象限
18.已知复数z 满足2
20z z +=,则z 可能为( ). A .0
B .2-
C .2i
D .2i+1-
19.下面关于复数的四个命题中,结论正确的是( ) A .若复数z R ∈,则z R ∈ B .若复数z 满足2z ∈R ,则z R ∈ C .若复数z 满足
1
R z
∈,则z R ∈ D .若复数1z ,2z 满足12z z R ∈,则12z z =
20.已知复数12z =-+(其中i 为虚数单位,,则以下结论正确的是( ). A .2
0z
B .2z z =
C .31z =
D .1z =
21.若复数z 满足(1i)3i z +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则
( )
A .|z |=
B .z 的实部是2
C .z 的虚部是1
D .复数z 在复平面内对应的点在第一象限
22.已知1z ,2z 为复数,下列命题不正确的是( ) A .若12z z =
,则12=z z B .若12=z z ,则12z z =
C .若12z z >则12z z >
D .若12z z >,则12z z >
23.已知复数122,2z i z i =-=则( ) A .2z 是纯虚数 B .12z z -对应的点位于第二象限
C .123z z +=
D .12z z =24.设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( ) A .若z 为纯虚数,则实数a 的值为2
B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)1
22
-
C .实数1
2
a =-
是z z =(z 为z 的共轭复数)的充要条件 D .若||5()z z x i x R +=+∈,则实数a 的值为2
25.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( )
A .||z =
B .复数z 的共轭复数为z =﹣1﹣i
C .复平面内表示复数z 的点位于第二象限
D .复数z 是方程x 2+2x +2=0的一个根 26.以下命题正确的是( )
A .0a =是z a bi =+为纯虚数的必要不充分条件
B .满足210x +=的x 有且仅有i
C .“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件
D .已知()f x =()1
878
f x x '=
27.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( )
A .1
B .4-
C .0
D .5
28.给出下列命题,其中是真命题的是( ) A .纯虚数z 的共轭复数是z -
B .若120z z -=,则21z z =
C .若12z z +∈R ,则1z 与2z 互为共轭复数
D .若120z z -=,则1z 与2z 互为共轭复数 29.已知复数z ,下列结论正确的是( ) A .“0z z +=”是“z 为纯虚数”的充分不必要条件 B .“0z z +=”是“z 为纯虚数”的必要不充分条件 C .“z z =”是“z 为实数”的充要条件 D .“z z ⋅∈R ”是“z 为实数”的充分不必要条件
30.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( )
A .z 不可能为纯虚数
B .若z 的共轭复数为z ,且z z =,则z 是实
数
C .若||z z =,则z 是实数
D .||z 可以等于
12
【参考答案】***试卷处理标记,请不要删除
一、复数选择题 1.B 【分析】
先利用复数的除法运算将化简,再利用模长公式即可求解. 【详解】 由于, 则. 故选:B 解析:B 【分析】
先利用复数的除法运算将1=-i
z i
化简,再利用模长公式即可求解. 【详解】 由于()(1i)(1i)111(1i)222
i i i i z i i ++=
===-+--+,
则||2z ===
. 故选:B
2.B 【分析】
由复数除法运算直接计算即可. 【详解】 . 故选:B.
解析:B 【分析】
由复数除法运算直接计算即可. 【详解】
(
)
2
1
1i
i
i i
+
+
==
--
.
故选:B.
3.C
【分析】
利用复数代数形式的乘除运算化简,再由复数模的公式得答案.【详解】
,
,
所以,,
故选:C.
解析:C
【分析】
利用复数代数形式的乘除运算化简,再由复数模的公式得答案.
【详解】
2
z i
=-,
(12)(2)(12)43
z i i i i
∴⋅+=-+=+,
所以,5
z=,
故选:C.
4.A
【分析】
先由复数的除法运算化简复数,再由复数的概念,即可得出其虚部. 【详解】
因为,所以其虚部是.
故选:A.
解析:A
【分析】
先由复数的除法运算化简复数
2
3
i
i
-
+
,再由复数的概念,即可得出其虚部.【详解】
因为
22(3)2613
3(3)(3)1055
i i i i
i
i i i
-----
===--
++-
,所以其虚部是
3
5
.
故选:A.
5.D
【分析】
先求和的平方,再求4次方,最后求5次方,即可得结果.
【详解】
∵,, ∴,, ∴, , ∴, 故选:D.
解析:D 【分析】
先求
)1-和
)
1+的平方,再求4次方,最后求5次方,即可得结果.
【详解】
∵
)2
11-=--,
)
2
+1=-,
∴)()4
2
117-=--=-+,)()4
2
+17=-=--,
∴)()5
1711-=-+-=--, )()5
1711+=--+=-,
∴))55
121-+=--,
故选:D.
6.A 【分析】
利用复数的乘除运算化简复数的代数形式,得到其对应坐标即知所在象限. 【详解】
,所以复数对应的坐标为在第一象限, 故选:A
解析:A 【分析】
利用复数的乘除运算化简复数的代数形式,得到其对应坐标即知所在象限. 【详解】
44(1)2(1)12i i i i i -==++,所以复数对应的坐标为(2,2)在第一象限, 故选:A 7.C 【分析】
利用复数的除法法则化简,再求的共轭复数,即可得出结果. 【详解】 因为
所以,
所以复数在复平面上的对应点位于第三象限, 故选:C.
解析:C 【分析】
利用复数的除法法则化简z ,再求z 的共轭复数,即可得出结果. 【详解】 因为2
12(12)(1)
11i i i z i i +++=
=-- 13
22
i =-+,
所以13
22
z i =-
-, 所以复数z 在复平面上的对应点13(,)22
--位于第三象限, 故选:C.
8.A 【分析】
由复数的除法法则和乘法法则计算出,再由复数的定义得结论. 【详解】 由题意,得, 其虚部为, 故选:A.
解析:A 【分析】
由复数的除法法则和乘法法则计算出z ,再由复数的定义得结论. 【详解】 由题意,得()
()()()()2
334331334343455
2i i i
i z i
i i i i ----=
=
==-++-+, 其虚部为35
, 故选:A.
9.B 【分析】
把给出的复数化简,然后由实部等于0,虚部不等于0求解a 的值,最后代入模的公式求模. 【详解】
复数()为纯虚数,则 ,则 所以 故选:B
解析:B 【分析】
把给出的复数化简,然后由实部等于0,虚部不等于0求解a 的值,最后代入模的公式求模. 【详解】 由
()()()()
()()21i 2221112a i a a i
a i i i i ----+-==++- 复数2i
1i a -+(a ∈R )为纯虚数,则2
02202
a a -⎧=⎪⎪⎨+⎪≠⎪⎩ ,则2a =
所以112ai i -=-=故选:B
10.A 【分析】
由得出,再由复数的四则运算求解即可. 【详解】 由题意得,则. 故选:A
解析:A 【分析】
由()1,1-得出1i z =-+,再由复数的四则运算求解即可. 【详解】
由题意得1i z =-+,则1i 1i i 111i 1i i i 1
z z -----+==⋅==-++-. 故选:A
11.D 【分析】
先对化简,从而可求出共轭复数,再利用复数的几何意义可得答案 【详解】 解:因为, 所以,
所以共轭复数在复平面内的对应点位于第四象限,
故选:D
解析:D 【分析】
先对41i
z i
=+化简,从而可求出共轭复数z ,再利用复数的几何意义可得答案 【详解】
解:因为244(1)4(1)=2(1)22221(1)(1)2
i i i i i z i i i i i i i i --=
==-=-=+++-, 所以22z i =-,
所以共轭复数z 在复平面内的对应点位于第四象限, 故选:D
12.B 【分析】
首先,再利用复数的除法运算,计算结果. 【详解】 复数. 故选:B
解析:B 【分析】
首先3i i =-,再利用复数的除法运算,计算结果. 【详解】
3133i i i +====. 故选:B
13.D 【分析】
根据复数的模的性质求模,然后可解得. 【详解】 解:,解得. 故选:D . 【点睛】
本题考查复数的模,掌握模的性质是解题关键.设复数,则, 模的性质:,,.
解析:D 【分析】
根据复数的模的性质求模,然后可解得a . 【详解】
解:()()(
)
(
)
2
4
24
24
2
2
2
2
121250
1111i i i i a
ai ai
++++=
=
=
=+--,解得7a =. 故选:D . 【点睛】
本题考查复数的模,掌握模的性质是解题关键.设复数(,)z a bi a b R =
+∈,则
z =
模的性质:1212z z z z =,(*)n
n
z z n N =∈,
11
22
z z z z =. 14.B 【分析】
首先求出,再根据复数的模的公式计算可得; 【详解】 解:因为,所以 所以. 故选:B.
解析:B 【分析】
首先求出3z i +,再根据复数的模的公式计算可得; 【详解】
解:因为12z i =-,所以31231z i i i i +=-+=
+
所以3z i +==
故选:B .
15.A 【分析】
根据复数对应的点的坐标是,得到,再利用复数的除法求解. 【详解】
因为在复平面内,复数对应的点的坐标是, 所以, 所以, 故选:A
解析:A 【分析】
根据复数z 对应的点的坐标是(1,1),得到1z i =+,再利用复数的除法求解. 【详解】
因为在复平面内,复数z 对应的点的坐标是(1,1), 所以1z i =+,
所以
11i i i z i +==-, 故选:A
二、多选题 16.AC 【分析】
根据复数的运算及复数的概念即可求解. 【详解】 因为复数, 所以z 的虚部为1,, 故AC 错误,BD 正确. 故选:AC
解析:AC 【分析】
根据复数的运算及复数的概念即可求解. 【详解】
因为复数2020450511()22(1)
11112
i i i z i i i i +++=====+---,
所以z 的虚部为1,||z = 故AC 错误,BD 正确. 故选:AC
17.AD 【分析】
根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出. 【详解】 解:, ,
z 的实部为4,虚部为,则相差5,
z 对应的坐标为,故z 在复平面内对应的点位于第四象限,所以AD 正
解析:AD 【分析】
根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出. 【详解】
解:()()()()
351358241112i i i i
z i i i i -+--====---+,
z ∴==
z 的实部为4,虚部为1-,则相差5,
z 对应的坐标为()41-,,故z 在复平面内对应的点位于第四象限,所以AD 正确, 故选:AD.
18.AC 【分析】
令,代入原式,解出的值,结合选项得出答案. 【详解】 令,代入, 得,
解得,或,或, 所以,或,或. 故选:AC 【点睛】
本题考查复数的运算,考查学生计算能力,属于基础题.
解析:AC 【分析】
令()i ,z a b a b R =+∈,代入原式,解出,a b 的值,结合选项得出答案. 【详解】
令()i ,z a b a b R =+∈,代入2
20z z +=,
得222i 0a b ab -+=,
解得00a b =⎧⎨=⎩,或02a b =⎧⎨=⎩,或0
2a b =⎧⎨=-⎩
,
所以0z =,或2i z =,或2i z =-. 故选:AC 【点睛】
本题考查复数的运算,考查学生计算能力,属于基础题.
19.AC 【分析】
根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果. 【详解】
A 选项,设复数,则,因为,所以,因此,即A 正确;
B 选项,设复数,则,
因为,所,若,则;故B 错; C 选项,设
解析:AC 【分析】
根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果. 【详解】
A 选项,设复数(,)z a bi a b R =+∈,则(i ,)z a b a b =-∈R ,因为z R ∈,所以0b =,因此z a R =∈,即A 正确;
B 选项,设复数(,)z a bi a b R =+∈,则()2
2222z a bi a b abi =+=-+, 因为2z ∈R ,所0ab =,若0,0a b =≠,则z R ∉;故B 错; C 选项,设复数(,)z a bi a b R =+∈,则222222
11a bi a b i z a bi a b a b a b -===-++++, 因为
1R z
∈,所以2
20b
a b =+,即0b =,所以z a R =∈;故C 正确; D 选项,设复数1(,)z a bi a b R =+∈,2(,)z c di c d R =+∈, 则()()()()12
z z a bi c di ac bd ad bc i =++=-++,
因为12z z R ∈,所以0ad bc +=,若11a b =⎧⎨=⎩,2
2c d =⎧⎨=-⎩
能满足0ad bc +=,但12z z ≠,故D 错误. 故选:AC. 【点睛】
本题主要考查复数相关命题的判断,熟记复数的运算法则即可,属于常考题型.
20.BCD 【分析】
计算出,即可进行判断. 【详解】 ,
,故B 正确,由于复数不能比较大小,故A 错误; ,故C 正确; ,故D 正确. 故选:BCD. 【点睛】
本题考查复数的相关计算,属于基础题.
解析:BCD 【分析】
计算出2
3
,,,z z z z ,即可进行判断.
【详解】
122
z =-+,
2
2
1313
i i=2222z z ,故B 正确,由于复数不能比较大小,故A 错误; 3
3
131313i i i 12
2
2
2
2
2
z ,故C 正确;
2
2
1312
2
z
,故D 正确.
故选:BCD. 【点睛】
本题考查复数的相关计算,属于基础题.
21.ABD 【分析】
把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数,根据共轭复数概念得到,即可判断. 【详解】 , ,
,故选项正确,
的实部是,故选项正确, 的虚部是,故选项错误, 复
解析:ABD 【分析】
把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数z ,根据共轭复数概念得到z ,即可判断. 【详解】
(1i)3i z +=+,
()()()()3134221112
i i i i
z i i i i +-+-∴=
===-++-,
z ∴==,故选项A 正确,
z 的实部是2,故选项B 正确, z 的虚部是1-,故选项C 错误,
复数2z i =+在复平面内对应的点为()2,1,在第一象限,故选项D 正确.
故选:ABD . 【点睛】
本题主要考查的是复数代数形式的乘除运算,考查了复数的代数表示及几何意义,是基础题.
22.BCD 【分析】
根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案. 【详解】
因为两个复数之间只有等与不等,不能比较大小
解析:BCD 【分析】
根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案. 【详解】
因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确; 当两个复数的模相等时,复数不一定相等,
比如11i i -=+,但是11i i -≠+,所以B 项是错误的; 因为当两个复数相等时,模一定相等,所以A 项正确; 故选:BCD. 【点睛】
该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.
23.AD 【分析】
利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确. 【详解】
利用复数的相关概念可判断A 正确; 对于B 选项,对应的
解析:AD 【分析】
利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确. 【详解】
利用复数的相关概念可判断A 正确;
对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;
对于C 选项,122+=+z z i ,则12z z +=
=,故C 错;
对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z ==D 正确.
故选:AD 【点睛】
本题考查复数的相关概念及复数的计算,较简单.
24.ACD 【分析】
首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误 【详解】
∴选项A :为纯虚数,有可得,故正确 选项B
解析:ACD 【分析】
首先应用复数的乘法得2(12)z a a i =-++,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误 【详解】
()(12)2(12)z a i i a a i =++=-++
∴选项A :z 为纯虚数,有20
120a a -=⎧⎨
+≠⎩
可得2a =,故正确
选项B :z 在复平面内对应的点在第三象限,有20120
a a -<⎧⎨+<⎩解得1
2a <-,故错误
选项C :12a =-时,52z z ==-;z z =时,120a +=即1
2
a =-,它们互为充要条件,故正确
选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确 故选:ACD 【点睛】
本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围
25.ABCD 【分析】
利用复数的除法运算求出,再根据复数的模长公式求出,可知正确;根据共轭复数的概念求出,可知正确;根据复数的几何意义可知正确;将代入方程成立,可知正确.
【详解】 因为(1﹣i )z =
解析:ABCD 【分析】
利用复数的除法运算求出1z i =-+,再根据复数的模长公式求出||z ,可知A 正确;根据共轭复数的概念求出z ,可知B 正确;根据复数的几何意义可知C 正确;将z 代入方程成立,可知D 正确. 【详解】
因为(1﹣i )z =2i ,所以21i z i
=
-2(1)221(1)(1)2i i i i i i +-+===-+-+,所以
||z ==A 正确;
所以1i z =--,故B 正确;
由1z i =-+知,复数z 对应的点为(1,1)-,它在第二象限,故C 正确; 因为2
(1)2(1)2i i -++-++22220i i =--++=,所以D 正确. 故选:ABCD. 【点睛】
本题考查了复数的除法运算,考查了复数的模长公式,考查了复数的几何意义,属于基础题.
26.AC 【分析】
利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式
解析:AC 【分析】
利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程210x +=可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式可判断D 选项的正误.综合可得出结论. 【详解】
对于A 选项,若复数z a bi =+为纯虚数,则0a =且0b ≠, 所以,0a =是z a bi =+为纯虚数的必要不充分条件,A 选项正确; 对于B 选项,解方程210x +=得x i =±,B 选项错误;
对于C 选项,当(),x a b ∈时,若()0f x '>,则函数()f x 在区间(),a b 内单调递增, 即“在区间(),a b 内()0f x '>”⇒“()f x 在区间(),a b 内单调递增”.
反之,取()3f x x =,()2
3f x x '=,当()1,1x ∈-时,()0f x '≥,
此时,函数()y f x =在区间()1,1-上单调递增,
即“在区间(),a b 内()0f x '>”⇐/“()f x 在区间(),a b 内单调递增”.
所以,“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件. C 选项正确;
对于D 选项,()111
7248
8
f x x
x ++===,()1
8
78f x x -'∴=,D 选项错误.
故选:AC. 【点睛】
本题考查命题真假的判断,涉及充分条件与必要条件的判断、实系数方程的根以及导数的计算,考查推理能力与计算能力,属于中等题.
27.ABC 【分析】
设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案. 【详解】 设,∴, ∴,
∴,解得:, ∴实数的值可能是. 故选:ABC. 【点
解析:ABC 【分析】
设z x yi =+,从而有22
2()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方
程,利用判别式大于等于0,从而求得a 的范围,即可得答案. 【详解】
设z x yi =+,∴22
2()3x y i x yi ai ++-=+,
∴2222
23,23042,
x y y a y y x a ⎧++=⇒++-=⎨
=⎩, ∴2
44(3)04
a ∆=--≥,解得:44a -≤≤,
∴实数a 的值可能是1,4,0-.
故选:ABC. 【点睛】
本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.
28.AD
【分析】
A .根据共轭复数的定义判断.B.若,则,与关系分实数和虚数判断.C.若,分可能均为实数和与的虚部互为相反数分析判断.D. 根据,得到,再用共轭复数的定义判断. 【详解】 A .根据共轭
解析:AD 【分析】
A .根据共轭复数的定义判断.B.若120z z -=,则12z z =
,1z 与2z 关系分实数和虚数判
断.C.若12z z +∈R ,分12,z z 可能均为实数和1z 与2z 的虚部互为相反数分析判断.D. 根据
120z z -=,得到12z z =,再用共轭复数的定义判断.
【详解】
A .根据共轭复数的定义,显然是真命题;
B .若120z z -=,则12z z =
,当12,z z 均为实数时,则有21z z =,当1z ,2z 是虚数
时,21≠z z ,所以B 是假命题;
C .若12z z +∈R ,则12,z z 可能均为实数,但不一定相等,或1z 与2z 的虚部互为相反数,但实部不一定相等,所以C 是假命题; D. 若120z z -=,则12z z =,所以1z 与2z 互为共轭复数,故
D 是真命题.
故选:AD 【点睛】
本题主要考查了复数及共轭复数的概念,还考查了理解辨析的能力,属于基础题.
29.BC 【分析】
设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论. 【详解】 设,则,
则,若,则,,若,则不为纯虚数, 所以,“”是“为纯虚数”必要不充分
解析:BC 【分析】
设(),z a bi a b R =+∈,可得出z a bi =-,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论. 【详解】
设(),z a bi a b R =+∈,则z a bi =-,
则2z z a +=,若0z z +=,则0a =,b R ∈,若0b =,则z 不为纯虚数, 所以,“0z z +=”是“z 为纯虚数”必要不充分条件;
若z z =,即a bi a bi +=-,可得0b =,则z 为实数,“z z =”是“z 为实数”的充要条件;
22z z a b ⋅=+∈R ,z ∴为虚数或实数,“z z ⋅∈R ”是“z 为实数”的必要不充分条件.
故选:BC. 【点睛】
本题考查充分条件、必要条件的判断,同时也考查了共轭复数、复数的基本概念的应用,考查推理能力,属于基础题.
30.BC 【分析】
根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项. 【详解】
当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由
解析:BC 【分析】
根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项. 【详解】
当0a =时,1b =,此时z
i 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则
a bi a bi +=-,因此0
b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1||2
z =
得221
4
a b +=
,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于
1
2
,D 错误. 故选:BC 【点睛】
本小题主要考查复数的有关知识,属于基础题.。