小学数学例题的开放

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学例题的开放

数学学习过程是一个不断地探索和思考的过程。在数学教学中,是单纯地给学生现成的知识,还是为学生创设一定的问题情景,使学生有更多的机会去探索和思考,以便发挥其潜在能力,这是数学教学改革的核心问题,是要应试教育”还是要素质教育的大问题。一般地说,数学教科书中的例题是学习的范例,学生要通过例题的学习,了解例题所代表的一类知识的规律和理解方法。但这并不是说,只要学生学会了书本上的例题就可以自然而然地解决与之相似的问题。要能举一反三,就还需要学生有一个深入思考的过程,甚至要经过若干次错误与不完善的思考,这样才能达到一定的熟练程度。这更需要学生把书本上的知识内化为自己的知识。要达到这样的目的,教师在教学中要结合具体的教学内容,为学生提供独立思考的机会,给学生留有充分的思考余地,让学生根据自己对问题的理解和思维发展水平,提出自己对问题的看法,不同学生的不同方法反映出学生对一个问题的认识水平。学生学习时说出自己的方法,表面上看课堂教学缺乏统一性,但教师从学生的不同回答中可以了解学生是怎样思考的,哪些学生处于较高的理解层面,哪些学生理解得还不够深入或不够准确,并从中调整教学的内容和方法,以恰当地解决学生学习中存在的问题。在这样的教学过程中,学生能够养成一种善于思考、勇于提出自己想法的习惯,这对学生学习新内容、研究新问题是非常重要的。相反地,在教学中,教师如果不给学生提供独立思考的机会,只是让学生跟着教师的思路走,一步一步引导学生说出正确的解题方法,虽然这样可以比较顺利地完成教学任务,但长此以往,学生就会养成惰性。所以,教师在课堂教学中要特别注意为学生创造更多的思考

机会,充分激发学生的内在动机,努力发展学生的潜在能力,使学生在认识所学的知识、理解所学知识的同时,智力水平也不断提高。“旧教材”中的部分例题,脱离学生的生活实际,形式单一,激发不起学生的学习兴趣。而教材又是重要的教学资源,我从开发教学资源的效益考虑,开放教材例题,使例题更富有课改气息,更富有挑战性,也激活了教材。

一、例题形式的开放例题形式单一、陈旧,不利于学生的有效参与。例题形式的开放,特别是让学生用自己喜欢的形式呈现,学生就会兴趣盎然踊跃参与。如教学“解比例”一课后,我设计了一道这样的例题:

判断下面的两个比能否组成比例?你是怎样判断的?

6 : 3 禾口8 : 5

学生肯定它们不能够组成比例。我接着说:你们能从 6 : 3和8: 5这两个比中换掉其中的一个项,使这两个比组成比例吗?学生自由讨论发言,而且说得很好。我又接着说:如果指定把“3换”掉,使这两个比能组成一个比例,可以用怎么样的形式出这道题?提出你们各自的建议。

学生讨论后汇报:

学生甲:我设这个数为X,求解6:X=8:5。

学生乙:我出的是问答题,说一说6比几与8比5能组成比例?学生丙:我出填空题,6:()=8:5。

学生丁:我出的是选择题,若6:()=8:5。①4 ②3 ③334

我对他们的建议给予充分的肯定和表扬。从学生的表现可以看出,他们的学

习兴趣很高,比再被老师牵着鼻子走;学得更加自主了,思考量也更大了,还培养了创新思维。

二、例题条件的开放

开放例题的条件,可以激发学生的思维兴趣,提高学生分析问题、解决问题的能力。一般有三种方式:(1)条件有余,可以防止学生滥用题目条件,提高分析处理信息的能力;(2)条件不足,让学生补充条件分析解答,使不同解法应运而生,学生的创新思维得到训练;(3)条件可用可不用,有利于培养学生的分析能力。

在教学“工程问题”的时候我是这样设计的:一段公路,甲队单独修10 天完成,乙队单独修15天完成。两队合修,几天可以完成?请同学们思考讨论后说出你们的建议。

学生1:我认为题目是求合修天数,可以用工作总量坯作效率二工作时间”计算。

学生2:好象题目条件不够,缺这段公路的长度。

针对学生2的建议,我让他自己补充一个公路长度后再列式计算。再

让全班同学独立解答,然后同桌互相说说列式理由。最后展示:

解法一:假如公路长30千米。

30-(30- 10+30 -)15=6 (天)

解法二:公路长用单位“1表”示。

1-(1-10+1-)15=6(天)

解法三:设公路长为600千米。

600-(600-10+600-)15=6(天)

我接着说:看了这些解答过程和结果,你们发现了什么吗?请你们讨论一下。学生很快就发现用单位“ 1表”示工作总量比用假设公路长度法更简单。

学生用原有的知识,发现条件不足。补充条件列式计算,使得不同条件的多种列式纷呈出来。这样,既能让学生用自己喜欢的数字当作公路总长,又在探索中巩固了已知,更为新知识的探索作了丰富的铺垫。

三、例题思路的开放

让学生用自己的解题思路从不同的角度去思考例题,便会得到不同的解题方法,这有利于培养学生思维的发散性和灵活性。

如在教学“解比例”时,我让学生自己独立解答,再汇报:

(1) 6׃x=8׃5)2( 6׃x=8׃5

解:6׃ x =1.6解: 6׃x=85

x =1.6 —6 x =6—85

x =3.75&n

[1][2] 下一页

相关文档
最新文档