风电机组齿轮箱轴承常见问题及解决方案

合集下载

风电齿轮箱高速轴轴承温度高处理方案

风电齿轮箱高速轴轴承温度高处理方案

风电齿轮箱高速轴轴承温度高处理方案摘要:本文针对现场出现的齿轮箱高速轴轴承的高温报警情况进行了科学研究。

首先,讨论了如何针对这种情况检查和分析常见故障,并将问题锁定在高速轴轴承的润滑油通道上。

随后,对高速轴轴承所需的总润滑流量进行了详细的计算和分析。

通过将高速轴轴承基本理论的总润滑流量与评估的总流量进行比较,可以弄清齿轮箱是在超低温自然环境下运行的。

总润滑流量太少是高速轴轴承出现高温警报的主要原因。

最后,现场提出整改意见。

它显示了一种合理的方法,可对高速轴的轴承进行全润滑,并对特定油路进行全润滑。

这也是现场检查和处理高速轴承高温报警常见故障的重要途径。

关键词:风电齿轮箱;高速轴轴承;油温高;处理方案引言:由于使用风力发电减速齿轮箱的独特工作条件,每个组件不仅必须承受轴向力,而且还必须承受轴向力,因此所有传动齿轮通常都采用锥齿轮设计。

对于高速轴系统,由于具有较高的速比,为了更好地在工作过程中平稳地传递力和扭矩,经常采用圆柱高速轴轴承和圆锥滚子轴承的设计方案。

由于结构设计的原因,通常圆锥形滚子轴承在顺风方向是所有高速轴轴承中最高的温度分量。

在设计方案中考虑了圆锥滚子轴承高速轴轴承的安装方便性,为圆锥滚子轴承高速轴承选择了零距离相互匹配的方法轴轴承。

高速轴高速轴轴承的内部设计结构包括上风向、下风向、箱体、端盖等结构。

一、高速轴轴承响高温影因素分析(一)摩擦力矩增大在高速轴轴承的特定安装中,摩擦扭矩将受到多种因素的限制。

在高速轴轴承的整个操作过程中,高速轴联轴器的对准误差和成品油的清洁度很可能会增大滑动摩擦力,并且温度会升高。

为了更好地确保风力发电减速箱的高速轴与发电机组驱动端之间的平行度,应使用联轴器进行连接。

如果平行度差大,联轴器和旋转轴的高速轴轴承将产生非常大的载荷,这将在高速轴轴承的中间引起过大的摩擦,从而导致上升温度。

为了更好地减少高速联轴器的对中误差,可以使用激光对中仪进行精确的标定,以消除额外产生的负荷量,减少负荷。

关于风机齿轮箱常见故障的分析与改进

关于风机齿轮箱常见故障的分析与改进
2 . 4 油 温 过 高
【 关键 词】风机齿轮
Hale Waihona Puke 漏油油温高改进 冷却 不足 的情 况下 油温 过高 ,使 高速轴 承温度不能有效的卸去 ,导致轴承温度过高 。
2 . 5 油 温 过 低
1齿轮箱油温过高的可能原因
情 况:一对 齿 轮副 的两个 齿 轮上 各有 ~ 个齿 出现长条状锈蚀痕迹 ,其余齿完好 ; 原 因:齿 轮箱 长期 停放 造 成齿 面锈 蚀 , 运行不平稳产生异响 ; 处理 :该锈 蚀 无法 彻底 消 除,只 能先 用 油石抛光 ,再后续跟踪 ;
案 例 : 华 创 太 阳 山 风 电 场 、 甘 肃 昌 马 油温 过低 也容 易造 成高 速轴 轴承 温度 过 2 3 9 4。 高 ,润滑油在低温 的情 况下粘度 很大 ,通过进 F 1 . i风 冷 器 可 能 故 障 油孔的油会变得很少 ,而且粘度 高的油液流动 3 . 6非齿轮箱 自身原 因的异响 性很差 ,导热的能力也会 差很 多,导致轴承温 1 . 1 . 1风 冷 器 自身 故 障 度 越 来 越 高 ,造 成 恶 性 循 环 。 该 情 况 主 要 反 映 情况 :响声出现在低速 端主轴或高速 端刹 如 电线短 路 、断路 、电机 烧坏 等导 致 风 在冬季 以及水冷润滑 系统 的齿 轮箱上 ,例如海 车盘附近 ,经检查齿 轮箱各部 件完好仍有 异响 扇 不 运 转 装辉腾锡勒的 F L 2 0 0 0 H轴承温度高 的案例 。 的情况 , 或者响声频率不与转速成正比; 原因: 1 . 1 . 2灰尘影响风冷器散热 低速端有可能是轮毂或者主轴轴 承出现问题 , 散热 片上 大量 的灰 尘 覆盖会 影响 风冷 器 2 . 6 轴 承 损 坏 高速段可能是联轴器或者 电机 找正偏 差所 致 ; 的散热 ,导致润滑油冷却不足 轴 承的损 坏 会使 滚子 运行 不平 稳 ,特 别 处理 :在反复查找齿轮箱确认 没有 问题 的情 况 I . 1 . 3风 冷 器 的 接 线 错 误 下 ,可 以判断是其他部件 出了问题 ,可以要求 接线 错误 会 导致 风扇 反转 ,会导 致风 向 是高速轴轴承转速很高 的情 况下会大量 发热 。 整机厂家对可能发生问题的部件进行查找。 相 反 ,影 响 散 热 2 . 7摩擦 或盘根过 紧 3 . 7 漏 油 故 障 分 析 i . 2润滑 系统到油分配 器、冷却 器的油管接反 零件 干涉 摩擦 以及盘根 安 装过 紧都会 产 漏 油是齿 轮箱 传动 系 统 中常见 故 障,漏 过 滤器 的两 个出 口分别 标 示 了到 齿 轮箱 生大量的摩擦热 ,使轴承温度升高 。 油会影响齿轮 、轴承等箱 的润 滑效 果 , 使 得各 或者到冷却器 , 温度较低时直接进入油分配器 , 3齿轮箱存在的 问题分析及对策 运动副零配件之 间摩擦 加剧 ,减少各 零件 的使 温度较高 时进入冷 却器 。如油管接反则高温油 用寿命。 严 重的漏 油将使齿 轮箱 无法正常工作。 经过冷却器冷却 ,必 然会产生油温过高。将 3 . 1齿轮齿 面上有磕碰伤造成响 声 齿轮箱漏油 问题牵涉 的方 面很多,如设计、工 油管按正确要求安装 即可解决 艺 、加 工 、装 配 、铸 造 等 ,产 生 漏 油 的原 因 很 情 况 :该 问题 主要 反映 在整 机生 产厂 家 1 . 3润 滑 系统 的 压 力 阀或 温 控 阀错 误 多 ,在实 际设备维护 中,要根据具 体情 况分析 的总装厂试验 台,该种异响的特点 :响声频率 原 因,再 采取相应 的排 除方法 。根据企业大量 在过 滤器 与 齿轮箱 油 管连接 无误 的情 况 稳定 ,单 向有异 响,反 向旋转 无异响 ,可 以通 实 际维修经验 ,齿 轮箱漏油 主要是 因为以下几 下 ,当油温 超过 5 5 。 C过滤 器到 油分配器 的管 过计算低速轴 的转 速和异响的频率关系来确定 个原 因:1 . 密封件损坏 或装反导致接合面密封 子仍有流油 的情 况下 ( 判断方法 :摸该油管 , 异响发生 的具体位置原 因:装配过程 中出现磕 不 严 ;2 . 相 对 运 动 零 件 尺寸 配 合 间 隙 过 大 ,或 碰 ,由于公 司在试验质量 把关上存在纰漏 ,有 如温度与分配器 的温度 一致或者有油流动的振 是 因为 长期运动磨损使 得间隙过大 ;3 . 箱体铸 动感则说 明该油管有 油流过) ,说明过滤器的 极少量的齿轮箱可 能会 出现这样 的问题 。 处理 件有气孑 L 、砂 眼等缺 陷 ;4 . 工作温度 太高或润 温控 阀存在 问题 。可以像 润滑系统厂家或技术 根据分析结果仔 细寻找相 关齿轮齿面上的碰伤 滑油粘度太低 ;5 . 润滑 油管变 形或存在裂痕导 部进行 咨询 ,更换 温控 阀。如果是英德诺曼的 处 ,寻找 时应将齿 面上的油擦拭干净 ,以免影 致油管漏油 。 压力 阀问题会 比较 困难 ,需要几方共 同解决 。 响手感 。碰伤主要存在于齿顶及齿廓两侧 。 案例 :2 0 1 1 年集 宁风 电总装厂及 2 0 1 0年 1 . 4 溢 流 阀 问题 参考文献 国 电保 定 总 装厂 。 [ 1 ] 杨龙 .多功 能散 热加 油装 置在 氨分 解 罗 溢 流 阀作 为泄压 元件 ,应 在齿 轮箱 油温 茨风 机 上 的 应 用 … .通 用 机 械 , 2 O 1 0 . 3 . 2齿轮 自身周 节误 差过大造 成的异 响 低 、压力高 的时候 才会发生作用。 目前发现有 [ 2 】 王昕平 .恢复 R 3 6 3罗茨风机的使用 [ J 】 . 情 况 :该 问题 同样反 映在 整机 生产 厂 家 油温高溢 流阀仍 然流油的情况 ,这样经过冷却 有 色冶金节 能 , 2 0 0 3 . 的油量会减少 ,部 分的油未经冷却直接 回齿轮 的总装厂 ,该种异响的特点 :响声频率稳定 , 【 3 ] 王多强 . T R F 3 0 0 E型 罗 茨 风机 维 修 与 维 护 箱 ,导致整 体冷却不足 ,油温偏高。遇到油温 双 向旋转均异响 ;原 因:齿轮加工造成 的相邻 [ J ] . 新 疆 有 色金 属 , 2 0 1 1 . 高 、压 力低 而溢 流阀又开启的情况 ,应及早与 齿 周节变化过大产生的异响 。可 以通过速 比关 【 4 ] 李世 颖 .关于 M G G A型 罗茨风机故障排 除 系查找问题齿轮的齿轮检测报告 ; 润滑 系统 厂家联 系解决 。 及 参数 调整等有关 问题的探讨 … . 粮食 处理 :除 可取 出的 高速轴 外现 场 无法 处 与食 品 工 业 , 1 9 9 5 . 2高速轴轴 承温度过高原因分析 理 ,只能回公司进行更换返修 。 【 5 ] 陈金 英 , 常 清峰 , 马卫 东 , 李献 平 . R A S 罗茨风机 修 复 及技 术 改进 … . 冶金 动

风电机组齿轮箱常见故障及防护措施

风电机组齿轮箱常见故障及防护措施

第30卷 第10期2023年10月仪器仪表用户INSTRUMENTATIONVol.302023 No.10风电机组齿轮箱常见故障及防护措施郭阿童(国电电力湖南新能源开发有限公司,长沙 410000)摘 要:齿轮箱是风电机组中的重要部件,由于风电场环境影响,加上运行维护不当,导致齿轮箱故障发生率比较高,影响机组的安全运行。

为了降低齿轮箱故障发生率,在总结几种常见故障的基础上,提出相应的防护措施。

通过加强对齿轮箱的日常运行维护,应用监测技术监控齿轮箱重要设备部件的运行状态,并建立齿轮箱管理档案,实现对齿轮箱运行的全过程管理,能大大降低其故障发生率。

因此,风电机组齿轮箱运行维护要遵循预防为主、防治结合的原则,科学制定防护措施,提高运行管理水平,降低故障发生率及维护成本,提高风电场经济效益。

关键词:风电机组;齿轮箱;常见故障中图分类号:TM614 文献标志码:AWind Turbine Gearbox Common Faults and Protection MeasuresGuo A tong(Hunan New Energy Development Co., Ltd., Changsha, 410000,China )Abstract:Gearbox is an important component of wind turbine. Due to the influence of wind farm environment and improperoperation and maintenance, the gearbox fault rate is high, affecting the safe operation of the unit. In order to reduce the occurrence rate of gearbox fault, on the basis of summing up several common faults, the corresponding protective measures are put forward. Through strengthening the daily operation and maintenance of the gearbox, monitoring technology is applied to monitor the run-ning status of the important equipment parts of the gearbox, and the management files of the gearbox are established to realize the whole process management of the gearbox operation, can greatly reduce its failure rate. Therefore, the operation and maintenance of wind turbine gearbox should follow the principle of prevention-oriented and combination of prevention and control, formulate protective measures scientifically, improve the level of operation and management, and reduce the failure rate and maintenance cost, improve the economic benefits of wind farms.Key words:wind turbine ;gear box ;common faults收稿日期:2023-06-29作者简介:郭阿童(1993-),男,湖南监利市人,本科,助理工程师,研究方向:风力发电。

浅谈风力发电机主轴轴承失效分析及解决办法

浅谈风力发电机主轴轴承失效分析及解决办法

浅谈风力发电机主轴轴承失效分析及解决办法风力发电机主轴轴承是风能转换装置中的重要组成部分,其正常运转与否直接影响风力发电机的性能和寿命。

然而,在运行过程中,由于各种原因,风力发电机主轴轴承存在失效的风险。

本文将从失效原因、失效分析及解决办法等方面进行论述。

首先,风力发电机主轴轴承失效原因多种多样,主要包括以下几方面:1.过载与负荷不均匀:由于发电机长期工作在高速旋转状态下,风力过大或过小都会导致主轴轴承受到不同程度的负载,使其过载或负荷不均匀,从而引起失效。

2.润滑不良:风力发电机主轴轴承工作环境恶劣,尘埃多,容易导致润滑油污染,进而引发润滑不良,造成主轴轴承失效。

3.轴承偏心和振动:由于安装和使用不当,风力发电机主轴轴承可能出现偏心磨损,同时,振动也会在一定程度上加剧轴承失效。

常见的轴承失效形式主要包括以下几种:1.疲劳失效:轴承长期在复杂动载荷下工作,容易导致疲劳失效,主要表现为轴承表面的磨损和龟裂。

2.磨损失效:因为润滑不良、杂质进入轴承等原因,主轴轴承可能出现磨损失效,主要表现为表面磨损、脱落和腐蚀等现象。

3.弯曲失效:过载或负荷不均匀都会导致主轴弯曲变形,造成主轴轴承失效。

为了解决风力发电机主轴轴承失效问题1.加强检查和维护:定期对风力发电机主轴轴承进行检查,确保其润滑状态良好,及时更换磨损严重的轴承。

2.提高轴承负荷承载能力:采用高强度材料制造轴承,增加轴承的负荷承载能力以及寿命。

3.减小振动幅度:通过优化设计和加强安装质量,降低风力发电机的振动幅度,减少对主轴轴承的影响。

4.加强润滑管理:严格控制风力发电机主轴轴承的润滑油品质和污染控制,确保轴承良好润滑,减少摩擦磨损。

总之,风力发电机主轴轴承的失效对风力发电机的性能和寿命具有重要影响。

通过加强检查和维护、提高轴承负荷承载能力、减小振动幅度、加强润滑管理等措施,可以有效预防和解决风力发电机主轴轴承失效问题,提高风力发电机的可靠性和经济性。

风力发电机齿轮箱常见故障及预防措施

风力发电机齿轮箱常见故障及预防措施

风力发电机齿轮箱常见故障及预防措施风力发电机齿轮箱是风力发电机的核心部件之一、在运行过程中,由于受到风能变化、运行负载和磨损等因素的影响,齿轮箱会出现一些常见的故障。

为了保障风力发电机的正常运行,必须及时识别和处理这些故障,并采取相应的预防措施。

常见的风力发电机齿轮箱故障主要包括齿轮磨损、齿轮断裂和轴承故障等。

下面将就这些故障进行详细介绍,并提出相应的预防措施。

1.齿轮磨损:齿轮磨损是由于齿轮啮合过程中的冲击、疲劳和磨擦等原因引起的。

如果齿轮磨损过多,将会导致齿轮箱的运行不稳定和效率下降。

为了预防齿轮磨损,必须注意以下几点:-优化齿轮设计,提高齿轮的承载能力和寿命。

-定期检查齿轮啮合情况,发现问题及时进行维修或更换。

-加强润滑,保持齿轮箱的润滑油清洁,并根据实际情况定期更换润滑油。

-控制齿轮箱的运行温度,过高的温度将加速齿轮磨损。

2.齿轮断裂:齿轮断裂是由于齿轮受到过大的冲击或疲劳载荷导致的。

齿轮断裂会导致齿轮箱损坏,甚至造成风力发电机的停机。

为了预防齿轮断裂,必须注意以下几点:-优化齿轮设计,提高齿轮的承载能力和疲劳寿命。

-加强齿轮的制造质量检验,确保齿轮的材料和工艺符合要求。

-加强齿轮箱的运行监测,及时发现齿轮断裂的预警信号。

3.轴承故障:轴承故障是由于轴承受到过大的力、振动和摩擦等因素引起的。

如果轴承出现故障,将会导致齿轮箱的运行不稳定和寿命降低。

为了预防轴承故障,必须注意以下几点:-选择优质的轴承,提高其承载能力和寿命。

-加强轴承的润滑,保持润滑油清洁并定期更换。

-加强轴承的运行监测,及时发现轴承故障的预警信号。

除了以上常见的故障,风力发电机齿轮箱还可能出现其他问题,如油封泄漏、齿轮间隙无法调整等。

为了预防这些问题,必须加强对齿轮箱的维护和监测,定期进行检查和维修,及时处理问题。

总之,风力发电机齿轮箱的常见故障主要包括齿轮磨损、齿轮断裂和轴承故障等。

为了预防这些故障,必须采取相应的预防措施,包括优化齿轮设计、加强润滑、加强轴承的检测和维护等。

浅谈风力发电机组齿轮箱常见故障分析及检测方法

浅谈风力发电机组齿轮箱常见故障分析及检测方法

浅谈风力发电机组齿轮箱常见故障分析及检测方法摘要:随着科技的不断发展,齿轮箱相关技术也在不断完善,混沌诊断识别法、油液分析法以及振动法等都是较为有效的故障诊断方式。

齿轮箱内部的诸多零部件,如轴承、齿轮、轴等,在齿轮运转的过程中都会以一定的频率振动,在这种情况下,点蚀就会出现在轴承上,或者由于一些其他因素,如磨损、高温等都会对轴承产生影响,不仅会造成轴承的过度消耗,还会抑制发电机组的运转。

故而,针对风力发电机组齿轮存在的故障展开分析与检测具有重要的现实意义。

关键词:风力发电机;齿轮箱;常见故障分析;检测前言:近些年来,我国风力发电范围不断增加,但是风电机组齿轮箱仍然存在一定的故障,影响了风电机组的正常运转。

为了有效降低风电机组的故障率,必须要做好风力发电机组齿轮箱轴承故障诊断,并探索可行的防控举措,进而保障风力发电机组齿轮箱的正常运行。

1风力发电机组齿轮箱结构轴承、传动部件、箱体以及润滑系统是齿轮箱的主要结构组成。

对于传动部件而言,其中同样有较多组成部件:输入轴、中间轴、输出轴、内齿圈、行星轮、行星架等。

齿轮箱会根据不同的使用需求采用不同的动力传动方式,主要有三类,分别为行星齿轮传动、定轴齿轮传动以及二者结合的组合传动。

齿圈轴通过箱体的支撑可以为输出轴提供叶轮的转动力,所以箱体必须要有较高的强度才可以承受住来自设备内外的载荷。

2齿轮箱故障分析方法齿轮箱含有较多零部件,其故障原因通常较为复杂,这就对工作人员的水平提出了较高的要求,工作人员不仅要具备较高的技术能力,还要在故障排查工作中足够细心,对转轴弯曲、轴面磨损、点蚀、共振等加以分析。

在深入了解故障特征的过程中,故障分析标准也是不可或缺的内容,工作人员应当根据相关标准采用合适的方法,最大程度地将振动过程中的数据收集起来,并且要对其中的重要参数如时域峰值、平均振动能量进行分析,这样才可以精确找到齿轮箱的故障问题所在。

频谱分析方法,实际上就是要求工作人员在齿轮箱振动过程中准确检测齿轮的外环固有频率、加速度信号以及啮合频率,通过这些参数来确定齿轮箱的问题。

风电齿轮箱常见故障及处理办法

风电齿轮箱常见故障及处理办法

主齿轮箱常见故障
主齿轮箱设计使用寿命为20年,但是这是在理想条 件下。现实情况下,实际使用寿命可能与设计寿命会存在 差异,而且由于使用方法、实际工况、维护条件等的不同, 在齿轮箱运行过程中可能会出现故障。
Page 8
南京安维士传动技术股份有限公司
NANJING AVIS TRANSMISSION TECHNOLOGY CO., LTD.
Page 24
南京安维士传动技术股份有限公司
NANJING AVIS TRANSMISSION TECHNOLOGY CO., LTD.
外部元器件损坏 更换原则:一般情况下,在液位以上的元器件、接头等, 停泵后直接更换;液位以下的,须将齿轮箱内部的油液放 干净之后,再开始更换。对于采用密封垫圈密封、位置在 液位以下的可在不放油的情况下进行更换,但需做好接油 的工作,更换动作要快。
典型故障处理办法
Page 22
南京安维士传动技术股份有限公司
NANJING AVIS TRANSMISSION TECHNOLOGY CO., LTD.
1、平行级盖板漏油 (1)拆下漏油的盖板,并将盖板与箱体结合面的胶层清洗 干净; (2)检查盖板止口尺寸是否超差,若超差需研究确定是否 需要更换盖板,再进行下一步骤; (3)重新在密封面打胶,并且要求盖板打胶时,利用小铲 刀将胶层轻轻的刮平,保证胶层平整、均匀; (4)按照规定力矩扳紧盖板螺栓; 2、行星架透盖处漏油(碳素纤维) (1)将齿轮箱内部润滑油放至风电齿轮箱要求的最高油位, 并观察低速级盖板处是否漏油; (2)按照规定力矩重新扳紧所有螺栓。
1pt100是否正常工作2喷油是否正常3高速轴对中有无问题4观测运行时齿轮箱的振动及噪音5检查温控阀是否损坏6检查冷却风扇清洁情况7检查齿轮箱内部情况南京安维士传动技术股份有限公司nanjingavistransmissiontechnologyco

风力发电机组轴承的典型故障模式及原因分析

风力发电机组轴承的典型故障模式及原因分析

风力发电机组轴承的典型故障模式及原因分析摘要:风力发电是一种可再生能源,近年来在全球范围内得到了广泛应用和发展。

然而,由于风力发电机组长期运行、恶劣环境条件和振动等因素的作用,其各个部件容易出现故障,其中轴承是最常见的故障部件之一。

本文将针对风力发电机组轴承的典型故障模式进行分析,并提出相关原因分析,以期对轴承故障的预防和维修提供参考。

一、引言风力发电是一种利用风能产生电能的技术,其具有环保、可再生和经济等诸多优势,因此在全球范围内得到了广泛应用。

然而,由于风力发电机组长期运行、复杂的工作环境以及高速旋转的转子和叶片等因素的作用,其各个部件容易出现故障,其中轴承是最常见的故障部件之一。

二、风力发电机组轴承的典型故障模式经过对大量风力发电机组实际应用数据的收集和故障统计分析,可以总结出以下几种典型的轴承故障模式:1. 疲劳失效疲劳失效是轴承故障中最常见的一种模式。

在风力发电机组运行过程中,轴承承受频繁的载荷和振动,导致轴承内部产生微裂纹。

随着时间的推移,这些微裂纹逐渐扩展,最终导致轴承的疲劳失效。

2. 磨损故障由于风力发电机组长期运行,轴承表面会因为摩擦而产生磨损。

如果机组的润滑系统不够完善,或者存在润滑油质量不合格等问题,轴承表面的磨损会加剧,最终导致轴承的失效。

3. 弹性变形故障风力发电机组运行过程中,轴承会承受大量的载荷和振动,从而引起轴承的弹性变形。

当弹性变形超出轴承的可承受范围时,轴承会出现形状变形和功能损失,进而导致故障。

4. 渣滓沉积故障风力发电机组运行环境通常存在大量的沙尘和颗粒物,这些物质会随风进入轴承内部,形成渣滓沉积。

过多的渣滓会导致轴承不正常运转,甚至造成卡死等严重故障。

三、风力发电机组轴承故障原因分析针对以上几种典型的轴承故障模式,可以进行如下原因分析:1. 运行时间和振动风力发电机组长时间运行会导致轴承频繁承受载荷和振动,轴承内部可能产生微裂纹,进而引起疲劳失效。

因此,合理控制机组的运行时间和振动水平,可以有效预防轴承故障。

风力发电组轴承的常见失效形式及故障分析

风力发电组轴承的常见失效形式及故障分析

xx职业技术学院毕业设计题目:风力发电组轴承的常见失效形式及故障分析系别:机电信息系专业:机械制造与自动化班别:13机械一班姓名:xx指导老师:xx 日期:2015年7月1日至2016年5月1日内容摘要随着全球经济的发展和人口的增长,人类正面临着能源利用和环境保护两方面的压力,能源问题和环境污染日益突出。

风能作为一种蕴藏量丰富的自然资源,因其使用便捷、可再生、成本低、无污染等特点,在世界范围内得到了较为广泛的使用和迅速发展。

风力发电己成为世界各国更加重视和重点开发的能源之一。

随着大型风力发电机组装机容量的增加,其系统结构也日趋复杂,当机组发生故障时,不仅会造成停电,而且会产生严重的安全事故,造成巨大的经济损失。

本论文先探讨了课题的实际意义以及风力发电机常见的故障模式,在这个基础上对齿轮箱故障这种常见故障做了详尽的阐述,包括引起故障的原因、如何识别和如何改进设计。

通过对常见故障的分析,给风力发电厂技术维护提供故障诊断帮助,同时也给风电设备制造和安装部门提供理论研究依据。

关键词风力发电机;故障模式;齿轮箱;故障诊断Common Faults And Their AnalysisOf The Wind TurbineAbstractWith the global economic development and population growth, humanity is facing with the pressure from two sides of the energy use and environmental protection, the energy problem and environmental pollution has become an increasingly prominent issue. Wind power as a abundant reserves of natural resources, because of its convenient use, renewable, low cost, no pollution, has been more widely used and rapid development in the world. Wind power has been taken as one of the priority development energy sources in the world.The increase of wind power capacity and complicated system structure will not only cause power outage,but also raise serious accidents when the set is at fault.In the beginning, the dissertation introduces the practical significance of project and the common failure mode of wind turbines, then researches and describes the failure of gearbox in detail, including the cause of failure, how to identify and how to improve the design. Based on the analysis of common failures, not only provide assistance for fault diagnosis to the technicalmaintenance of wind power plants, but also provide a theoretical basis to the wind power equipment manufacturing and installation departments.Key WordsWind Turbines; Failure Mode; Gear Box; Fault Diagnosis目录第一章绪论 (1)1.1 风力发电的背景 (1)1.2 风力发电机故障诊断的意义 (2)第二章风力发电机常见故障模式及机理分析 (5)2.1 风力发电机结构 (5)2.2 常见故障模式及机理分析 (7)2.2.1 叶片故障及机理 (7)2.2.2 变流器故障及机理 (8)2.2.3 发电机故障及机理 (10)2.2.4 变桨轴承故障及机理 (13)2.2.5 偏航系统故障及机理 (16)2.3 本章小结 (21)第三章风力发电机齿轮箱故障诊断 (22)3.1 风力发电机齿轮箱常见故障模式及机理分析 (22)3.2 齿轮箱典型故障振动特征与诊断策略 (28)3.3 针对齿轮箱不同故障的改进措施 (32)第四章结论 (36)致谢 (37)参考文献 (38)风力发电机常见故障及其分析第一章绪论1.1 风力发电的背景随着全球人口数量的上升和经济规模的不断增长,世界范围内对能源需求持续增加,化石能源、生物能源等常规能源使用带来的环境问题日益突出。

风力发电机齿轮箱常见故障分析与预防措施

风力发电机齿轮箱常见故障分析与预防措施
1、齿轮断齿损坏
图1
齿轮是一种复杂的机械零件,它的制造工艺、安装以及运行维护都是较为复杂的,而这一系列工作过程控制得是否严格,都对齿轮的寿命有很大的影响。造成齿轮损坏的主要原因如下:
1)风机在高转速运转时,突然紧急停机,高速刹车动作,风机传动链振动晃动较大,轴承串动,齿轮咬合间隙变小,受力瞬间增大,造成齿轮断齿。
4、油化验
齿轮和轴承在转动过程中它们实际都是非直接接触,这中间是靠润滑油建成油膜,使其形成非接触式的滚动和滑动,这时油起到了重要的润滑、冷却作用。
齿轮油主要化验项目:外观分析、40℃粘度、总酸值TAN测试、含水量状况,对检测正常的油品定期进行过滤,对严重超标的油品进行换油。
6)、齿轮箱中速齿轮轴承磨损,导致齿轮箱齿轮咬合间隙不均匀,长时间存在齿面局部受力过大,造成断齿。
7)、齿轮箱弹性支撑固定螺栓松动,造成齿轮箱高速运转时振动较大,与发电机轴承不同轴,齿轮受到应力较大,造成断齿。
2、轴承失效
滚动轴承在使用过程中,由于很多原因造成其性能指标达不到使用要求时,就产生了失效或损坏.常见的失效形式有疲劳剥落、磨损、保持架损坏等。造成轴承失效的主要原因如下:
一、齿轮箱的结构
我风电场1MW、1.5 MW风力发电机齿轮箱由一级行星齿轮和两级平行轴齿轮传动组成,是一种典型的传动装置。齿轮箱利用其前箱盖上的两个突缘孔内的弹性套支撑在支架上。齿轮箱低速级的行星架通过涨紧套与机组的大轴连接,三个一组的行星轮将动力传至太阳轮,再通过内齿联轴节传至位于后箱体内的第一级平行轴齿轮,再经过第二级平行轴齿轮传至高速级的输出轴,通过柔性联轴节与发电机相联。齿轮箱输出轴端装有制动法兰供安装系统制动器用。
3、箱体开裂
箱体开裂部位
齿轮箱箱体开裂的主要部位为齿轮箱齿圈。导致齿轮箱开裂原因有:

风力发电机组齿轮箱故障分析及检修讲解

风力发电机组齿轮箱故障分析及检修讲解

风力发电机组齿轮箱故障分析及检修讲解风力发电机组是利用风能转化为电能的设备,其中齿轮箱是发电机组中重要的传动部件。

齿轮箱负责将风力转换为旋转力,并将其传递给发电机,使发电机能够产生电能。

然而,由于长时间的运转以及风力的影响,齿轮箱存在着一定的故障风险。

因此,了解齿轮箱的故障原因、分析方法以及检修技巧对于保障风力发电机组的正常运行非常重要。

齿轮箱故障的分析可以从以下几个方面展开:1.齿轮箱噪音异常:齿轮箱在运行时会产生一定的噪音,但如果噪音异常变大或频率异常变化,则可能是齿轮磨损或断齿的表现。

此时可以通过检查齿轮箱中的润滑油是否正常,通过观察润滑油中是否有金属颗粒,来判断齿轮是否磨损严重。

2.齿轮箱温升过高:齿轮箱在运行时会产生一定的热量,但如果温升过高,则可能是因为油温过高或润滑不良,导致齿轮磨损加剧。

此时可以通过检查润滑系统是否正常工作,及时更换润滑油并增加润滑剂的供给,以降低齿轮箱的温升。

3.齿轮箱振动异常:齿轮箱在运行时会产生一定的振动,但如果振动异常明显,则可能是因为齿轮箱本身结构松动或齿轮配合不良,导致振动加剧。

此时可以通过检查齿轮箱的固定结构是否稳固,及时修复松动的部件,并进行齿轮的重新配合。

4.齿轮箱漏油:齿轮箱在运行时会消耗一定的润滑油,但如果漏油现象明显或周期过短,则可能是油封密封不良或油封磨损导致的。

此时可以通过检查油封是否正常工作,并及时更换磨损严重的油封。

针对齿轮箱故障的检修,可以按照以下步骤进行:1.停机检查:当发现齿轮箱存在异常故障时,首先应该停止风力发电机组的运行,以免故障进一步恶化。

2.润滑油更换:检查润滑油的油质和量,如有必要可以进行润滑油更换。

同时,检查润滑系统是否正常工作,确保润滑油的供给正常。

3.齿轮箱分解:将齿轮箱的外壳拆除,仔细检查各个部件的磨损情况和结构是否松动。

对于严重磨损或断齿的齿轮,应及时更换。

4.润滑系统维护:对润滑系统进行维护,包括检查和更换润滑油、清洗油路、更换油封等。

风力发电齿轮箱机械设计存在的问题及应对策略探究

风力发电齿轮箱机械设计存在的问题及应对策略探究

风力发电齿轮箱机械设计存在的问题及应对策略探究风力发电齿轮箱是风力发电机组中的重要部件,它承担着将风轮机的转速提升到发电机需要的转速,并将风轮机旋转的不规则运动转化为发电机稳定的旋转运动的重要作用。

在实际的运行过程中,齿轮箱机械设计存在着不少问题,这些问题对风力发电机组的正常运行产生了一定的影响。

本文将对风力发电齿轮箱机械设计存在的问题进行探究,并提出相应的应对策略。

一、齿轮箱机械设计存在的问题1. 超载运行问题风力发电机组在运行过程中,受到了来自风力的不稳定性影响,使得齿轮箱在某些情况下可能会发生超载运行的问题。

超载运行会导致齿轮箱的受力增大,从而造成齿轮的磨损加剧,甚至导致齿轮断裂的情况发生。

2. 润滑不良问题齿轮箱在运行过程中需要保持良好的润滑状态,以减小齿轮之间的摩擦和磨损。

但是由于风力发电机组通常设置在风能资源较为丰富的地区,这些地区的气候条件可能会对齿轮箱的润滑造成一定的影响,使得润滑不良的问题可能会发生。

3. 疲劳载荷问题风力发电机组在长时间运行过程中,由于受到了复杂的气象和环境条件的影响,齿轮箱机械组件可能会受到疲劳载荷的作用,导致齿轮箱的寿命缩短,甚至出现断裂的情况。

4. 转速不匹配问题风力发电机组中的风轮机和发电机的转速并不完全匹配,因此齿轮箱在将两者的转速匹配的过程中可能会存在问题,可能会导致齿轮的过早磨损或者噪音增大的情况。

二、应对策略探究1. 加强齿轮箱设计的强度分析针对超载运行和疲劳载荷问题,应加强齿轮箱的设计强度分析,确保齿轮箱在受到外界不稳定因素的影响时依然能够保持稳定的运行状态。

可以通过采用高强度材料、优化结构设计等方式来提高齿轮箱的承载能力,从而延长齿轮箱的使用寿命。

2. 改进齿轮箱的润滑系统针对润滑不良问题,可以改进齿轮箱的润滑系统,采用更为智能化的润滑设备,并根据具体的气象条件设计相应的润滑方案,以确保齿轮箱在各种气候条件下能够保持良好的润滑状态,减小摩擦和磨损。

风力发电齿轮箱常见的故障

风力发电齿轮箱常见的故障

风力发电齿轮箱常见的故障风力发电齿轮箱是风力发电机组中非常重要的组成部分,其功能是将风轮的转动速度提高并传递给发电机,从而产生电能。

然而,由于长期运行和外部环境的影响,齿轮箱经常出现一些常见的故障,影响发电机组的正常运行。

本文将介绍风力发电齿轮箱常见的故障。

一、齿轮损伤齿轮损伤是风力发电齿轮箱最常见的故障之一。

齿轮工作时承受着较大的载荷和摩擦,长时间的工作会导致齿轮表面磨损,甚至出现齿面断裂、齿根断裂等故障。

齿轮损伤会导致齿轮箱噪音增大、振动加剧,并且会影响齿轮传动的精度和效率,严重时会导致齿轮箱完全失效。

二、轴承故障风力发电齿轮箱中的轴承是支撑齿轮和转子的重要部件,其工作条件较为恶劣。

长期运行和外部环境的影响会导致轴承磨损、损坏甚至断裂。

轴承故障会导致齿轮箱的振动增大、噪音变大,严重时还会造成齿轮箱的卡死,影响整个风力发电机组的正常运行。

三、油封泄漏风力发电齿轮箱中的油封起到密封和润滑的作用,保证齿轮箱内部的润滑油不泄漏,并防止外部灰尘和水分进入。

长期运行和外部环境的影响会导致油封老化、磨损,甚至出现泄漏现象。

油封泄漏会导致齿轮箱内部润滑油的减少,加速齿轮的磨损和故障,并可能引起齿轮箱的过热,严重时还会导致齿轮箱的失效。

四、润滑油污染风力发电齿轮箱中的润滑油起到润滑、冷却和减震的作用,保证齿轮和轴承的正常工作。

然而,长期运行和外部环境的影响会导致润滑油中混入金属粉末、水分和其它杂质,使润滑油变质、失去润滑性能。

润滑油污染会导致齿轮和轴承的磨损加剧,增加齿轮箱的摩擦和能量损耗,影响发电机组的效率和寿命。

五、齿轮箱过热风力发电齿轮箱在运行过程中会产生大量的摩擦热,需要通过润滑油来冷却。

然而,长期运行和外部环境的影响会导致润滑油的减少、质量下降,使齿轮箱无法有效地散热,导致齿轮箱温度升高。

齿轮箱过热会使齿轮和轴承的磨损加剧,降低齿轮传动的精度和效率,严重时甚至会引发火灾等安全事故。

风力发电齿轮箱常见的故障包括齿轮损伤、轴承故障、油封泄漏、润滑油污染和齿轮箱过热等。

风力发电机组齿轮箱故障分析及检修

风力发电机组齿轮箱故障分析及检修

风力发电机组齿轮箱故障分析及检修齿轮箱是风力发电机组中非常重要的一个组成部分,它起到传递风机机组运动和与发电机连接的作用。

由于齿轮箱工作环境的特殊性和长期工作的高负荷,它可能会遇到各种各样的故障。

本文将分析几种常见的齿轮箱故障以及相应的检修方法。

1.齿轮箱振动过大:振动过大是齿轮箱故障中最常见和最重要的问题之一、当齿轮箱振动过大时,会导致齿轮磨损加剧,同时也会对其他部件造成损害。

另外,振动过大还会影响系统的运行效率和可靠性。

检修方法:-检查齿轮箱支撑结构是否完好,并进行必要的修复或更换。

-检查齿轮箱内部的齿轮轴承是否磨损,如有需要及时更换。

-检查齿轮箱油液的质量和量是否符合要求,并及时更换。

-检查齿轮箱的齿轮间隙是否过大,如有需要及时调整。

2.齿轮磨损:齿轮箱中的齿轮长期工作,会导致齿轮表面磨损。

齿轮磨损不仅会影响齿轮传动的可靠性和效率,还会增加设备的噪音和振动。

检修方法:-检查齿轮箱内部的齿轮和齿轮轴承是否磨损严重,如有需要及时更换。

-检查齿轮箱的润滑系统是否正常工作,及时添加润滑剂。

-检查齿轮箱的齿轮间隙是否适当,如不适当需进行调整。

3.轴承故障:齿轮箱中的轴承是支撑齿轮和传递力的重要部件,长期工作会导致轴承磨损和损坏。

检修方法:-检查齿轮箱中的轴承是否磨损或损坏,如有需要及时更换。

-检查轴承安装是否正确,确保轴承在运行期间不会发生偏移或过紧。

4.油液问题:齿轮箱中的油液起到润滑和冷却作用,长期使用会导致油液老化和污染。

油液老化和污染会影响齿轮、轴承和密封件的寿命。

检修方法:-检查齿轮箱内部的油液质量和量是否正常,如有需要及时更换。

-定期清洗和更换油液过滤器,避免油液中的杂质对齿轮箱的影响。

5.密封问题:齿轮箱中的密封件是避免油液泄漏和防止外部杂质进入的重要部件,长期使用会导致密封件老化和损坏。

检修方法:-定期检查和更换齿轮箱的密封件,确保密封性能正常,避免油液泄漏和杂质进入。

总结:齿轮箱是风力发电机组中一个重要的组成部分,其故障会直接影响整个系统的运行效率和可靠性。

风力发电机组齿轮箱故障诊断

风力发电机组齿轮箱故障诊断

风力发电机组齿轮箱故障诊断风力发电机组是利用风能转换成机械能或电能的设备,其中齿轮箱是风力发电机组的重要组成部分之一。

齿轮箱承担着将风车旋转产生的低速大扭矩转换成高速小扭矩,从而满足发电机的运行要求。

由于齿轮箱处于高负荷、恶劣环境工作状态下,往往容易出现故障。

及时准确地诊断齿轮箱故障,对于风力发电机组的稳定运行和维护至关重要。

一、齿轮箱故障类型1.1 齿轮箱过热齿轮箱过热是风力发电机组常见故障之一,原因可能有:(1)润滑油温度过高;(2)齿轮轴承磨损导致摩擦力过大;(3)风能过大导致齿轮箱工作负荷过重;(4)冷却系统故障。

1.2 齿轮箱振动齿轮箱振动可能是由于以下原因导致的:(1)齿轮箱内部零部件松动;(2)齿轮损伤、断齿、磨损严重;(3)齿轮箱装配误差;(4)齿轮箱轴承损坏。

1.4 齿轮箱漏油齿轮箱漏油往往是由于以下原因造成:(1)密封件老化;(2)零部件损坏;(3)冷却系统故障。

二、齿轮箱故障诊断方法2.1 观察法通过观察齿轮箱的外部表面进行故障诊断,如果发现齿轮箱有明显的油渍、磨损痕迹、裂纹等现象,就说明齿轮箱出现了问题,需要进行进一步的维修或更换。

2.2 听声法借助听觉观察齿轮箱的运行状态,判断是否有异常的噪音。

如果发现齿轮箱有异常噪音,就说明齿轮箱可能存在故障,需要进一步检查或维修。

2.3 测振法利用振动仪对齿轮箱进行振动测试,通过振动信号的分析判断齿轮箱的状态。

如果发现齿轮箱振动异常,就需要进一步排除故障原因,进行维修或更换。

2.4 润滑油分析定期对齿轮箱中的润滑油进行化验分析,检测其中的金属颗粒、酸值、碱值、水分等指标,判断齿轮箱是否存在异常磨损、腐蚀、水分等问题,并及时采取相应的措施。

2.5 热像法利用热像仪对齿轮箱进行热像测试,观察齿轮箱在运行过程中的热量分布情况,判断齿轮箱是否存在过热或磨损等问题。

2.6 拆解检查当以上方法无法明确齿轮箱的故障原因时,可以进行拆解检查,仔细检查齿轮箱内部的各个部件,找出故障原因并进行修理或更换。

风力发电机组齿轮箱故障分析及检修分解

风力发电机组齿轮箱故障分析及检修分解

风力发电机组齿轮箱故障分析及检修分解齿轮箱是风力发电机组的核心部件之一,其主要功能是将风轮通过传动装置传递给发电机,以产生电能。

由于齿轮箱在长时间运转中承受着大负荷,容易出现故障,因此对于齿轮箱的故障分析及检修分解非常重要。

一、故障分析1.齿轮磨损:由于齿轮箱长时间高速运转,容易导致齿轮之间的磨损,如果磨损过大,会导致齿轮箱传动不稳,产生异响。

2.轴承损坏:齿轮箱中的轴承承受着极大的压力和摩擦,如果润滑不良或者长时间运转,会导致轴承损坏,从而导致齿轮箱工作不正常。

3.油封漏油:齿轮箱中的油封容易因为长时间使用或者质量问题导致漏油,这会导致齿轮箱内部润滑油减少,影响齿轮的润滑和工作效果。

4.齿轮箱内部异物:在齿轮箱长期运转过程中,由于各种原因,容易进入异物,如金属粉尘、灰尘等,这些异物会加剧齿轮磨损和轴承损坏。

二、检修分解1.卸下齿轮箱:首先需要将风力发电机组的叶片停止转动,并释放动力系统的压力,然后使用专业工具将齿轮箱卸下。

2.拆卸齿轮箱壳体:将齿轮箱的壳体螺栓依次松开,小心拆下齿轮箱壳体,避免损坏内部零件。

3.检查齿轮磨损情况:清洁齿轮箱内部,使用专业工具检查齿轮的磨损情况,如果磨损严重,需要更换新的齿轮。

4.检查轴承情况:拆卸齿轮箱内部的轴承,清洗并检查轴承的磨损情况,如果磨损严重,需要更换新的轴承。

5.更换油封:检查齿轮箱油封的密封情况,如果发现漏油,需要将旧的油封拆下并更换新的油封。

6.清理异物:彻底清理齿轮箱内的异物,包括金属粉尘、灰尘等,以保证齿轮箱的正常运转。

7.组装齿轮箱:将清洗过的齿轮、轴承重新组装到齿轮箱内,并按照正确的工装和顺序进行安装,最后紧固螺栓,确保齿轮箱的完整性和稳定性。

8.完善润滑系统:重新注入适量的润滑油,并确保油封的良好密封,防止油漏。

总结:对于风力发电机组的齿轮箱故障分析及检修分解,需要细致入微地检查齿轮、轴承、油封和异物等情况,及时进行更换和清理。

只有确保齿轮箱的正常运转,才能保证风力发电机组的高效工作。

风电齿轮箱的各部分失效与故障分析

风电齿轮箱的各部分失效与故障分析

风电齿轮箱的各部分失效与故障分析引言:随着可再生能源的快速发展,风能逐渐成为全球范围内的一种重要的可再生能源,而风电齿轮箱作为风力发电机组的核心部件,具有承担巨大负荷和高速旋转的特点。

然而,由于操作环境恶劣且长期运行,齿轮箱容易出现各种失效和故障。

一、齿轮失效1. 疲劳失效疲劳失效是由于重复应力作用下齿轮金属材料的疲劳断裂引起的。

这种失效通常发生在齿轮接触区域,在长时间高速旋转和不可预测的加载条件下,会在齿根处形成疲劳裂纹,最终导致齿轮断裂。

2. 磨损失效磨损是齿轮箱常见的一种失效形式,主要分为表面磨损和微观磨损。

表面磨损通常由于载荷过大、润滑不良或者颗粒污染引起,而微观磨损则是由于齿面摩擦和接触疲劳引起的。

3. 腐蚀失效腐蚀是由于介质中存在酸、碱或者其他化学物质,导致齿轮表面与润滑油发生化学反应而损坏的失效形式。

腐蚀会破坏齿轮的表面硬度,导致齿轮表面变薄,减小载荷传输能力,并可能引发其他类型的失效。

二、轴承失效1. 疲劳失效轴承疲劳失效是由于反复的加载引起轴承材料的裂纹形成和扩展。

这种失效通常在负荷高、转速快的情况下发生,长期运行会导致轴承表面的疲劳裂纹逐渐扩展,最终导致轴承失效。

2. 磨损失效轴承磨损是由于齿轮箱工作时产生的颗粒污染、不良润滑或由于杂质引起的磨损。

磨损会导致轴承零件间的摩擦增加,从而引发轴承的过早失效。

3. 温度失效高温会导致轴承材料的变形和热膨胀,进而损坏轴承的内部结构。

过高温度使轴承的润滑脂失效,从而导致轴承的寿命缩短。

三、油封失效油封是齿轮箱中非常关键的部件,主要用于防止润滑油泄漏以及防止灰尘和污染物进入齿轮箱。

油封失效通常由封口材料老化、密封面损坏或过度磨损引起。

失效的油封会导致润滑油泄漏和外界污染物进入齿轮箱,进而引发齿轮、轴承等更严重的故障。

四、齿轮箱振动失效振动是齿轮箱失效的重要标志,它可以预示齿轮、轴承和其它部件的故障。

齿轮箱振动失效可能由于不平衡、松动、轴承故障、齿轮磨损等原因引起。

风电齿轮箱轴承产生伪布氏压痕的原因分析及预防措施

风电齿轮箱轴承产生伪布氏压痕的原因分析及预防措施

Sheji yu Fenxi!设计与分析风电齿轮箱轴承产生伪布氏压痕的原因分析及预防措施杨扩岭#赵爱龙!(1.(东中车风电有限公司,山东济南250022;2.山东诚泰安全技术咨询有限公司,山东济南250022)摘要:齿轮箱是风力发电机组的关键部件之一,而轴承是齿轮箱中的关键部件。

风电齿轮箱的长期放置和运输振动过程,容易使轴承产生伪布氏压痕,严重的伪布氏压痕将引起轴承滚动体和套圈应力集中,降低滚动体和轴承套圈的断裂强度,导致轴承损伤,损伤会进一步导致齿轮箱产生噪声,引起齿轮箱振动,存在使机组产生振的风险。

过对风电齿轮箱轴承产生伪布氏压痕的进析,指出了伪布氏压痕的产生原因,并提供了和。

关键词:风电齿轮箱;轴承;伪布氏压痕0引言齿轮箱是风发电机组中的关键部件,和强风的,轴承是齿轮箱中的之一。

轴承损坏的原因有,伪布氏压痕中&过损Q中,伪布氏压痕是一的导致轴承损伤的因素,伪布氏压痕的产生将导致轴承压痕产生应力集中,,轴承会产生损,严重了轴承使凹。

齿轮箱产生伪布氏压痕的,伪布氏压痕的产生进行了原因析,并提供了和1轴承布式压痕案例1■1齿轮箱结构形式及轴承介绍风力发电机组齿轮箱是-轴混合传动的冈,随着机组,齿轮箱断,的齿轮箱一一轴,的一一轴。

齿轮箱输低速重,一的]滚子轴承。

轴承主要承受径向载荷和部分轴向,输端轴承需要承主轴传递的扭矩和架组件身的重,承的中间和高速级轴承。

中间和一般滚个锥轴承,滚子轴承承受径向,锥滚子轴承承受轴向和径向[4]o1.2布式压痕案例介绍有一批库5年以上的某型号风发电机组齿轮箱,一轴。

由于齿轮箱一直放在库房中,确认齿轮箱内部轴承和齿轮的状态,齿轮箱重新进了型试验及拆箱查。

齿轮箱拆解过程中发现齿轮箱部轴承的外圈和滚动体接触处出条亮线,且部分亮线指甲划过有明显的触感,这些亮线即伪布氏压痕。

拆后轴承产生压痕的情进行了比,发现齿轮箱一架上风向的圆柱滚子轴承滚和轴承内圈均存在压痕,压痕有明显触感。

风力发电机主轴轴承失效分析

风力发电机主轴轴承失效分析

风力发电机主轴轴承失效分析摘要:近年来,随着我国整体经济建设的快速发展,人们生活水平和生活质量的不断提高,使得我国对于能源的需求越来越大。

我国风电行业比较严重和普遍存在的问题是大型双馈型风力发电机主轴轴承的磨损,已成为风力发电机组研发和重点排除的故障。

关键词:风力发电机;主轴轴承;失效分析引言:时代的进步,科技的发展使我国各行业发展非常迅速,推动我国提前进入现代化发展阶段。

风力发电机组中主轴连接轮毂和齿轮箱,是低速重载轴承,可靠性方面要求较高,也极易出现故障。

为了解决故障多发现象,需要系统的对现场轴承运转状况及失效形式进行分析和研究。

1以双馈异步低温型风电机组为例进行说明以某风电场为例,安装了100套1.5MW双馈异步低温型风电机组,其单机容量为1.5MW,总装机容量为15万kW。

2风电轴承常见问题分析目前问题概况:从风机轴承运行情况来看,各类轴承在运行过程中的问题集中体现在:过载、疲劳导致保持架、内外圈出现断裂或剥落现象;润滑性能不好、游隙不合理导致的滚动体、滚道,出现磨损、擦伤现象;过热导致轴承游隙过小,出现咬死现象;保护、维护不当,导致锈蚀、磕碰等现象,图一。

图一3主轴轴承在正常情况下失效的主要原因1)兆瓦级风力发电机的主轴轴承用的是双列调心滚子轴承,它必须承受轴向和径向的载荷,所以出现故障次数也比较多。

这是因为具有较大的间隙的双列调心滚子轴承,上风向侧的轴承承受较小的载荷,而下风向轴承要承受很多径向载荷和轴向力,这导致滚子过度滑动,如果润滑不良会导致材料腐蚀并剥落,使座圈,滚子和保持架受力不均出现变形的情况,导致座圈和轴承座之间出现不协调,引起常见故障,如位移和卡住。

2)在设计新的传动系统时,很少使用调心轴承作为主轴轴承。

一般建议使用圆锥滚子轴承,其有很强的径向和轴向承载力,通过预紧可以均匀地加载滚轮,滚轮不易滑动摩擦。

然而,在装置过程,由于安装精度和技术要求,轴承间隙如果调整不当会导致半干滚动摩擦,就会导致轴承失效。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风电机组齿轮箱轴承常见问题及解决方案
1. 引言
风电机组齿轮箱是连接机组主轴和发电机的传动部件,其主要功能是将主轴的低速运转输入,转化成中速或高速发电机所需的输出,是风力发电机中的重要部件之一。

由于风力发电机齿轮箱的复杂工况及对可靠性等方面的高要求,风力发电机齿轮箱的设计及应用,尤其是作为关键零部件的轴承的选型、安装及使用显得尤为重要。

不恰当的轴承选型或是不当的安装和使用,会导致轴承的各种损伤和失效模式,甚至还可能会损伤到齿轮箱里其他的零部件。

这些损伤和失效都会直接或间接的导致机组停机,不但影响生产率,还会产生计划外的更换和维护成本。

铁姆肯公司可针对多种常见失效模式提供有效解决方案。

2. 风电机组齿轮箱轴承常见失效模式及解决方案风力发电机齿轮箱设计多种多样,但是基本上都是由行星级和平行级组成。

本文以目前比较常见的一种以行星架为输入,内齿圈固定,太阳轮输出并传递到平行级的设计为例,分析说明常见的轴承失效模式及相应的解决方案。

2.1 行星架轴承
2.1.1 常见失效模式 行星架轴承的选型和应用是和主轴的设计相关的。

目前常见的行星架轴承是满装滚子的圆柱滚
子轴承。

如果主轴轴承选用调心滚子轴承,不论是单个调心滚子主轴轴承的3
点支承设计还是两个调心滚子主轴轴承的4 点支承设计,由于调心滚子轴承径向和轴向游隙的存在(如图1 所示),当风力发电机在刹车或是其他出现轴向载荷交替变换方向的工况时,主轴及其后面连接的行星架在轴向可能会有窜动。

此时如果使用圆柱滚子轴承作为行星架轴承,由于其内外圈在轴向方向上有一定的相对错位空间,因此来自主轴的轴向窜动会传递到行星架的圆柱滚子轴承,而如果窜动量足够大,则对圆柱滚子轴承会造成冲击。

而且,由于内齿圈和齿轮箱箱体是连成一体的,所以行星轮和行星架一起轴向窜动还会对行星轮造成齿面磨损(如图2 所示)。

2.1.2 解决方案 铁姆肯公司推荐选用单列圆
锥滚子轴承跨装,通过对圆锥滚子轴承预紧来解决
主轴轴向窜动对行星轮的影响。

而且预紧的圆锥滚风电材料设备
子轴承的承载区得到优化,减少了滚道应力,提高风电材料设备
了行星轮系的刚性,并可以承受外部传入齿轮箱行星架端的额外轴向力(如图3 所示)。

2.2 行星轮轴承
2.2.1 常见失效模式 常见的一种行星轮轴承是由一对双列圆柱滚子轴承组成(如图4 所示)。

在轴承外圈和行星轮内孔之间过盈配合量不足或是由于齿轮变形而使两者接触面积减少的情况下,会出现外圈跑圈和磨损。

对于斜齿行星轮设计而言,由于行星轮与内齿圈和太阳轮同时啮合的时候受到大小相同、方向相反的轴向力,所产生的倾覆力矩使得外侧的两列滚子承载较大,中间两列滚子承载较小。

四列滚子之间的载荷分布不均匀使得实际使用寿命有一定差别,在相同设计寿命的前提下,外侧两列会提前出现疲劳剥落。

2.2.2 解决方案 Timken 集成式柔性销行星轮组件(如图5 所示)是提高行星级可靠性的最佳方案之一。

齿轮和轴承
外圈集成于一体,杜绝了外圈跑圈的可能性,同时有更多的内部空间设计更多、更大的滚子来提高承载能力。

通过预紧两列圆锥滚子使其承载区得到优化,降低了应力和滚子打滑的几率,使载荷更均匀的分布在两列。

柔性销设计允许行星轮组件在运行中产生柔性的偏移,保证齿面有很高的啮合率,特别是对多个行星轮的设计,使得各行星轮之间的载荷分布更均匀,而且还可以降低加工和装配的精度要求。

2.3 高速轴轴承
2.3.1 常见失效模式 圆柱滚子轴承及四点接触球轴承组合在高速级的应用中是较为常见的一种。

在高速和低载的情
况下,圆柱滚子轴承容易出现滚子打滑和滚道滑伤,而球轴承可能会出现滑伤和微剥落的损伤。

2.3.2 解决方案 铁姆肯公司推出带抗磨涂层的圆柱滚子轴承和单列圆锥滚子定位轴承(如图6所示)。

带抗磨涂层的圆柱滚子轴承在整个寿命周期的运行中既能持续地防止滑伤,也可以防止由于润滑剂里含杂质而造成滚道伤害以及润滑不良的情况。

单列圆锥滚子定位轴承可以承受径向及双向的轴向载荷,其纯滚动的特性将滑伤的可能性降至最小。

3. 总结
随着风力发电装备行业的迅猛发展,特别是大功率风力发电机日趋主流,风力发电机及零部件的可靠性将是研发中关注的重点。

本文介绍的齿轮箱轴承常见失效模式及其解决方案,旨在帮助设备制造商选取更适合风力发电机齿轮箱应用的轴承解决方案,力求不断优化齿轮箱的设计,使齿轮箱乃至整机的可靠性得到大幅的提升。

原文地址:/tech/6672.html。

相关文档
最新文档