第十二章动能定理习题解答
新教材高中物理第十二章电能能量守恒定律习题课闭合电路欧姆定律的应用课后练习含解析新人教版必修第三册
习题课:闭合电路欧姆定律的应用合格考达标练1.欧姆表电路及刻度盘如图所示,现因表头损坏,换用一个新表头。
甲表头满偏电流为原来表头的2倍,内阻与原表头相同;乙表头满偏电流与原表头相同,内阻为原表头的2倍,则换用甲表头和换用乙表头后刻度盘的中值电阻分别为()A.100 Ω,100 ΩB.200 Ω,100 ΩC.50 Ω,100 ΩD.100 Ω,200 Ω,甲表头满偏电流为原表头的2倍,内阻与原表头相同,在电动势不变的情况下,其中值电阻变为原来的,即50Ω;乙表头满偏电流与原表头相同,内阻为原表头的2倍,在电动势不变的情况下,其中值电阻不变,即100Ω,则C正确,A、B、D错误。
2.如图所示,电源电动势为E、内阻为r,电流表、电压表均为理想电表,当开关闭合后,三个小灯泡均能正常发光,当滑动变阻器的触头P向右移动时,关于灯泡的亮度和电表示数变化情况,下列说法正确的是(小灯泡不会烧坏)()A.L1变亮,L2变暗,L3变暗B.L1变暗,L2变暗,L3变亮C.电流表A的示数变大,电压表V的示数变小D.电流表A的示数变小,电压表V的示数变小P向右移动,阻值增大,总阻值增大,根据闭合电路欧姆定律可知,干路电流减小,路端电压增大,故电流表示数变小,电压表示数变大,故C、D错误;干路电流减小,则灯泡L1两端电压减小,变暗,路端电压增大,则并联电路电压增大,灯泡L3两端电压增大,变亮,流过灯泡L2的电流减小,变暗,故A错误,B正确。
3.如图所示的U-I图像中,Ⅰ是电源的路端电压随电流变化的图线,Ⅱ是某电阻两端的电压随电流变化的图线,该电源向该电阻供电时,电阻消耗的功率和电源的效率分别为()A.4 W和33.3%B.2 W和66.7%C.2 W和33.3%D.4 W和66.7%,电阻的阻值大小为R=Ω=1Ω,电源的电动势大小为E=3V,内阻为r=0.5Ω,电源的效率η=×100%=66.7%,电阻消耗的功率P=IU=2×2W=4W,故选项D正确。
第十二章动能定理习题解答
第十二章动能定理习题解答习题12–1一刚度系数为k的弹簧,放在倾角为的斜面上。
弹簧的上端固定,下端与质量为m的物块A相连,图12-23所示为其平衡位置。
如使重物A从平衡位置向下沿斜面移动了距离,不计摩擦力,试求作用于重物A上所有力的功的总和。
图12-23Wmgink2(t(t)2)2kmginkt22k2212–2如图12-24所示,在半径为r的卷筒上,作用一力偶矩M=a+b2,其中为转角,a和b为常数。
卷筒上的绳索拉动水平面上的重物B。
设重物B的质量为m,它与水平面之间的滑动摩擦因数为不计绳索质量。
当卷筒转过两圈时,试求作用于系统上所有力的功的总和。
图12-244π0WMMd(a+b2)d8aπ2643bπ3WFmg4πr4πmgr644W8aπ2bπ34πmgrπ(6πa16π2b3mgr)3312–3均质杆OA长l,质量为m,绕着球形铰链O的铅垂轴以匀角速度转动,如图12-25所示。
如杆与铅垂轴的夹角为,试求杆的动能。
图12-2511mmdEk(dm)v2(d某)(某in)2(in2)某2d某22l2llm1Ek(2in2)某2d某ml22in202l612–4质量为m1的滑块A沿水平面以速度v移动,质量为m2的物块B沿滑块A以相对速度u滑下,如图12-26所示。
试求系统的动能。
图12-26Ek11m1v2m2[(uco30v)2(uin30)2]22-1-11m1v2m2(u2v22uvco30)2211m1v2m2(u2v23uv)2212–5如图12-27所示,滑块A质量为m1,在滑道内滑动,其上铰接一均质直杆AB,杆AB长为l,质量为m2。
当AB杆与铅垂线的夹角为时,滑块A的速度为vA,杆AB的角速度为试求在该瞬时系统的动能。
图12-27EkEkAEkAB11ll112m1vAm2[(vAco)2(in)2](m2l2)22222212111122m1vAm2(vAl22l vAcol22)2241211122m1vAm2(vAl22lvAco)22312–6椭圆规尺在水平面内由曲柄带动,设曲柄和椭圆规尺都是均质细杆,其质量分别为m1和2m1,且OC=AC=BC=l,如图12-28所示。
工程力学——动能定理习题及解答
动能定理习题及解答P314 13-1:已知圆盘半径r=0.5m, m A =3kg, m B =2kg ,力偶矩M=4ϕ, 绳与盘之间无相对滑动; 求:ϕ由0至2π时,力偶M 与物块重力所作功的总和。
解:W=⎰πϕϕ20d 4+ (m A – m B )g • 2πr= 109.7JP314 13-4:已知长为l ,质量为m 的均质杆OA 以球铰链O 固定,并以等角速度ω绕铅直线转动,杆与铅直线的交角为θ; 求:杆的动能。
解:此杆绕铅直轴作定轴转动,杆的转动惯量为J z =θχθχ2222l0sin l 3m d sin l m =⎰杆的动能为 T = 2z J 21ω = θω222sin ml 61P316 13-11: 已知均质杆AB 的质量m=4kg,长l=600mm,均质圆盘B 的质量为6kg ,半径r=100mm,作纯滚 动。
弹簧刚度k=2N/mm,不计套筒A 及弹 簧的质量。
连杆在30º角无初速释放; 求:(1)当AB 杆达水平位置而接触弹簧 时,圆盘与连杆的角速度;(2)弹簧的最大压缩量δmax 。
解:(1)该系统初始静止,动能为0;AB 杆达水平位置时,B 点是AB 杆的速度瞬心,圆盘的角速度ωB =0,设杆的角速度为ωAB ,由动能定理,得2230sin 203121lmg ml AB ⋅=-⋅ω解得连杆的角速度 ωAB = 4.95 rad/s(2)AB 杆达水平位置接触弹簧时,系统的动能为T 1,弹簧达到最大压缩量δmax 的瞬时,系统再次静止,动能T 2=0,由T 2 - T 1 = W 12得22610max2max 22δδωmg k ml AB +-=- 解得 δmax =87.1mmP316 13-12:已知均质轮B 和C 的质量均为m 2,半径均为r,轮B 上的力偶矩M=常量,物A 的质量为m 1;求: 物A 由静止上移距离s 时的速度和加速度。
解:该系统初动能为零,设物A 移动距离s 时速度为υ,有θϕωυsin 0)2121221(122221g sm M r m m -=-⋅⋅⋅+式中r s =ϕ, r υω= (a)解得sm m r gr m M )(sin (2211+-=θυ (b)将式(a)(或式(b ))对时间求一阶导数,注意υ=.s ,解得)(sin 211m m r gr m M a +-=θP317 13-13: 已知动齿轮半径为r ,质量为m 1, 可看成均质园盘;均质曲柄OA 质量为m 2; 定齿轮半径为R 。
(物理)高考必备物理动能定理的综合应用技巧全解及练习题(含答案)及解析
(物理)高考必备物理动能定理的综合应用技巧全解及练习题(含答案)及解析一、高中物理精讲专题测试动能定理的综合应用1.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =25017N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x =175m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求:(1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小;(3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度.【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】(1)小球从A 到B 过程,由动能定理得:212B Fx mv = 解得:v B =10 m/s(2)在C 点,由牛顿第二定律得mg +F N =2c v m R又据题有:F N =2.6mg 解得:v C =6 m/s.(3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =221122c B mv mv - 解得克服摩擦力做的功:W f =12 J(4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h =12gt 2由小球垂直打在斜面上可知:cgtv =tan 45° 联立解得:h =0.2 m 【点睛】本题关键是对小球在最高点处时受力分析,然后根据向心力公式和牛顿第二定律求出平抛的初速度,最后根据平抛运动的分位移公式列式求解.2.如图所示,人骑摩托车做腾跃特技表演,以1.0m/s 的初速度沿曲面冲上高0.8m 、顶部水平的高台,若摩托车冲上高台的过程中始终以额定功率1.8kW 行驶,经过1.2s 到达平台顶部,然后离开平台,落至地面时,恰能无碰撞地沿圆弧切线从A 点切入光滑竖直圆弧轨道,并沿轨道下滑.A 、B 为圆弧两端点,其连线水平.已知圆弧半径为R =1.0m ,人和车的总质量为180kg ,特技表演的全过程中不计一切阻力(计算中取g =10m/s2,sin53°=0.8,cos53°=0.6).求:(1)人和车到达顶部平台的速度v ;(2)从平台飞出到A 点,人和车运动的水平距离x ; (3)圆弧对应圆心角θ;(4)人和车运动到圆弧轨道最低点O 时对轨道的压力. 【答案】(1)3m/s (2)1.2m (3)106°(4)7.74×103N 【解析】 【分析】 【详解】(1)由动能定理可知:221011Pt mgH mv 22mv -=- v =3m/s (2)由2221H gt ,s vt 2==可得:2H s v 1.2m g== (3)摩托车落至A 点时,其竖直方向的分速度y 2v gt 4m /s ==设摩托车落地时速度方向与水平方向的夹角为α,则4tan 3yv v α==,即α=53° 所以θ=2α=106°(4)在摩托车由最高点飞出落至O 点的过程中,由机械能守恒定律可得:2211mg[H R(1cos )]mvmv 22α'+-=-在O 点:2v N mg m R-= 所以N =7740N由牛顿第三定律可知,人和车在最低点O 时对轨道的压力为7740N3.为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角为θ=60°、长为L 1=23m 的倾斜轨道AB ,通过微小圆弧与长为L 2=32m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道上D 处,如图所示.现将一个小球从距A 点高为h =0.9m 的水平台面上以一定的初速度v 0水平弹出,到A 点时小球的速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ=3,g 取10m/s 2.(1)求小球初速度v 0的大小; (2)求小球滑过C 点时的速率v C ;(3)要使小球不离开轨道,则竖直圆弧轨道的半径R 应该满足什么条件? 【答案】(16m/s (2)6m/s (3)0<R ≤1.08m 【解析】试题分析:(1)小球开始时做平抛运动:v y 2=2gh代入数据解得:22100.932/y v gh m s =⨯⨯==A 点:60y x v tan v ︒=得:032/6/603yx v v v s m s tan ==︒== (2)从水平抛出到C 点的过程中,由动能定理得:()2211201122C mg h L sin mgL cos mgL mv mv θμθμ+---=代入数据解得:36/C v m s =(3)小球刚刚过最高点时,重力提供向心力,则:21mv mg R =22111 222C mv mgR mv += 代入数据解得R 1=1.08 m当小球刚能到达与圆心等高时2212C mv mgR = 代入数据解得R 2=2.7 m当圆轨道与AB 相切时R 3=BC•tan 60°=1.5 m 即圆轨道的半径不能超过1.5 m综上所述,要使小球不离开轨道,R 应该满足的条件是 0<R≤1.08 m . 考点:平抛运动;动能定理4.如图所示,竖直平面内的轨道由直轨道AB 和圆弧轨道BC 组成,直轨道AB 和圆弧轨道BC 平滑连接,小球从斜面上A 点由静止开始滑下,滑到斜面底端后又滑上一个半径为=0.4m R 的圆轨道;(1)若接触面均光滑,小球刚好能滑到圆轨道的最高点C ,求斜面高h ;(2)若已知小球质量m =0.1kg ,斜面高h =2m ,小球运动到C 点时对轨道压力为mg ,求全过程中摩擦阻力做的功.【答案】(1)1m ;(2) -0.8J ; 【解析】 【详解】(1)小球刚好到达C 点,重力提供向心力,由牛顿第二定律得:2v mg m R=从A 到C 过程机械能守恒,由机械能守恒定律得:()2122mg h R mv -=, 解得:2.5 2.50.4m 1m h R ==⨯=;(2)在C 点,由牛顿第二定律得:2Cv mg mg m R+=,从A 到C 过程,由动能定理得:()21202f C mgh R W mv -+=-, 解得:0.8J f W =-;5.如图所示,一质量为m 的小球从半径为R 的竖直四分之一圆弧轨道的顶端无初速释放,圆弧轨道的底端水平,离地面高度为R 。
高中物理动能定理的综合应用及其解题技巧及练习题(含答案)及解析
高中物理动能定理的综合应用及其解题技巧及练习题(含答案)及解析一、高中物理精讲专题测试动能定理的综合应用1.一种氢气燃料的汽车,质量为m =2.0×103kg ,发动机的额定输出功率为80kW ,行驶在平直公路上时所受阻力恒为车重的0.1倍。
若汽车从静止开始先匀加速启动,加速度的大小为a =1.0m/s 2。
达到额定输出功率后,汽车保持功率不变又加速行驶了800m ,直到获得最大速度后才匀速行驶。
求:(g =10m/s 2) (1)汽车的最大行驶速度。
(2)汽车从静止到获得最大行驶速度所用的总时间。
【答案】(1)40m/s ;(2)55s 【解析】 【详解】(1)设汽车的最大行驶速度为v m .汽车做匀速直线运动,牵引力等于阻力,速度达到最大,即有:F =f根据题意知,阻力为:f =0.1mg =2000N 再根据公式 P=Fv 得:v m =P /f =40m/s ; 即汽车的最大行驶速度为40m/s(2)汽车匀变速行驶的过程中,由牛顿第二定律得F f ma -=得匀变速运动时汽车牵引力4000N F =则汽车匀加速运动行驶得最大速度为020/Pv m s F== 由a 1t 1=v 0,得汽车匀加速运动的时间为:t 1=20s汽车实际功率达到额定功率后到速度达到最大的过程,由动能定理W F +W f =△E k ,即得: Pt 2-0.1mgs 2=2201122m mv mv - 得:t 2=35s所以汽车从静止到获得最大行驶速度所用的总时间为:t =t 1+t 2=55s2.如图所示,位于竖直平面内的轨道BCDE ,由一半径为R=2m 的14光滑圆弧轨道BC 和光滑斜直轨道DE 分别与粗糙水平面相切连接而成.现从B 点正上方H=1.2m 的A 点由静止释放一质量m=1kg 的物块,物块刚好从B 点进入14圆弧轨道.已知CD 的距离L=4m ,物块与水平面的动摩擦因数μ=0.25,重力加速度g 取10m/s 2,不计空气阻力.求:(1)物块第一次滑到C 点时的速度; (2)物块第一次滑上斜直轨道DE 的最大高度; (3)物块最终停在距离D 点多远的位置. 【答案】(1) 8m/s (2) 2.2m (3) 0.8m 【解析】 【分析】根据动能定理可求物块第一次滑到C 点时的速度;物块由A 到斜直轨道最高点的过程,由动能定理求出物块第一次滑上斜直轨道DE 的最大高度;物块将在轨道BCDE 上做往返运动,直至停下,设物块在水平轨道CD 上通过的总路程为S ,根据动能定理求出. 【详解】解:(1)根据动能定理可得21()2mg H R mv += 解得8/v m s =(2)物块由A 到斜直轨道最高点的过程,由动能定理有:()0mg H R mgL mgh μ+--=解得: 2.2h m =(3)物块将在轨道BCDE 上做往返运动,直至停下,设物块在水平轨道CD 上通过的总路程为S ,则:()0mg H R mgS μ+-= 解得:12.8S m =因: 30.8S L m =+,故物块最终将停在距离D 点0.8m 处的位置.3.如图所示,一质量为m 的滑块从高为h 的光滑圆弧形槽的顶端A 处无初速度地滑下,槽的底端B 与水平传送带相接,传送带的运行速度恒为v 0,两轮轴心间距为L ,滑块滑到传送带上后做匀加速运动,滑到传送带右端C 时,恰好加速到与传送带的速度相同,求:(1)滑块到达底端B 时的速度大小v B ; (2)滑块与传送带间的动摩擦因数μ;(3)此过程中,由于克服摩擦力做功而产生的热量Q. 【答案】(12gh 2)2022v gh gl μ-=(3)(2022m v gh-【解析】试题分析:(1)滑块在由A 到B 的过程中,由动能定理得:2102B mgh mv -=,解得:2B gh ν=;(2)滑块在由B 到C 的过程中,由动能定理得:μmgL =12mv 02−12mv B 2, 解得,2022v ghgLμ-=;(3)产生的热量:Q=μmgL 相对,()2200(2)2Bgh L g相对=νννμ--=(或200(2) gh L ν-), 解得,201(2)2Q m gh ν-=; 考点:动能定理【名师点睛】本题考查了求物体速度、动摩擦因数、产生的热量等问题,分析清楚运动过程,熟练应用动能定理即可正确解题.4.为了研究过山车的原理,某同学设计了如下模型:取一个与水平方向夹角为37°、长为L =2.5 m 的粗糙倾斜轨道AB ,通过水平轨道BC 与半径为R =0.2 m 的竖直圆轨道相连,出口为水平轨道DE ,整个轨道除AB 段以外都是光滑的。
动能与动能定理经典习题及答案(免费》
1.关于做功和物体动能变化的关系,不正确的是().A.只有动力对物体做功时,物体的动能增加B.只有物体克服阻力做功时,它的功能减少C.外力对物体做功的代数和等于物体的末动能和初动能之差D.动力和阻力都对物体做功,物体的动能一定变化2.下列关于运动物体所受的合外力、合外力做功和动能变化的关系正确的是().A.如果物体所受的合外力为零,那么合外力对物体做的功一定为零B.如果合外力对物体所做的功为零,则合外力一定为零C.物体在合外力作用下作变速运动,动能一定变化D.物体的动能不变,所受的合外力必定为零3.两个材料相同的物体,甲的质量大于乙的质量,以相同的初动能在同一水平面上滑动,最后都静止,它们滑行的距离是().A.乙大B.甲大C.一样大D.无法比较4.一个物体沿着高低不平的自由面做匀速率运动,在下面几种说法中,正确的是().A.动力做的功为零B.动力做的功不为零C.动力做功与阻力做功的代数和为零D.合力做的功为零5.放在水平面上的物体在一对水平方向的平衡力作用下做匀速直线运动,当撤去一个力后,下列说法中错误的是().A.物体的动能可能减少B.物体的动能可能增加C.没有撤去的这个力一定不再做功D.没有撤去的这个力一定还做功平面上做匀速圆周运动,拉力为某个值F时,转动半径为B,当拉力逐渐减小到了F/4时,物体仍做匀速圆周运动,半径为2R,则外力对物体所做的功大小是().A、FR/4B、3FR/4C、5FR/2D、零7. 一物体质量为2kg,以4m/s的速度在光滑水平面上向左滑行。
从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s,在这段时间内,水平力做功为()A. 0B. 8JC. 16JD. 32J8.质量为5×105kg的机车,以恒定的功率沿平直轨道行驶,在3minl内行驶了1450m,其速度从10m/s增加到最大速度15m/s.若阻力保持不变,求机车的功率和所受阻力的数值.9. 一小球从高出地面Hm 处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h米后停止,求沙坑对球的平均阻力是其重力的多少倍。
动能定理功能关系练习题142题含答案
动能定理练习稳固根底一、不定项选择题〔每题至少有一个选项〕1.以下关于运动物体所受合外力做功和动能变化的关系,以下说法中正确的选项是〔〕A.如果物体所受合外力为零,那么合外力对物体所的功一定为零;B.如果合外力对物体所做的功为零,那么合外力一定为零;C.物体在合外力作用下做变速运动,动能一定发生变化;D.物体的动能不变,所受合力一定为零。
2.以下说法正确的选项是〔〕A.某过程中外力的总功等于各力做功的代数之和;B.外力对物体做的总功等于物体动能的变化;C.在物体动能不变的过程中,动能定理不适用;D.动能定理只适用于物体受恒力作用而做加速运动的过程。
3.在光滑的地板上,用水平拉力分别使两个物体由静止获得一样的动能,那么可以肯定〔〕A.水平拉力相等 B.两物块质量相等C.两物块速度变化相等 D.水平拉力对两物块做功相等4.质点在恒力作用下从静止开场做直线运动,那么此质点任一时刻的动能〔〕A.与它通过的位移s成正比B.与它通过的位移s的平方成正比C.与它运动的时间t成正比D.与它运动的时间的平方成正比5.一子弹以水平速度v射入一树干中,射入深度为s,设子弹在树中运动所受的摩擦阻力是恒定的,那么子弹以v/2的速度射入此树干中,射入深度为〔〕A.s B.s/2 C.2/s D.s/4 6.两个物体A、B的质量之比m A∶m B=2∶1,二者动能一样,它们和水平桌面的动摩擦因数一样,那么二者在桌面上滑行到停顿所经过的距离之比为〔〕A.s A∶s B=2∶1 B.s A∶s B=1∶2 C.s A∶s B=4∶1 D.s A∶s B=1∶47.质量为m的金属块,当初速度为v0时,在水平桌面上滑行的最大距离为L,如果将金属块的质量增加到2m,初速度增大到2v0,在同一水平面上该金属块最多能滑行的距离为〔〕A.L B.2L C.4L D.8.一个人站在阳台上,从阳台边缘以一样的速率v0,分别把三个质量一样的球竖直上抛、竖直下抛、水平抛出,不计空气阻力,那么比拟三球落地时的动能〔〕A.上抛球最大 B.下抛球最大 C.平抛球最大 D.三球一样大9.在离地面高为h处竖直上抛一质量为m的物块,抛出时的速度为v0,当它落到地面时速度为v,用g表示重力加速度,那么此过程中物块克制空气阻力所做的功等于〔 〕A .2022121mv mv mgh --B .mgh mv mv --2022121 C .2202121mv mv mgh -+ D .2022121mv mv mgh -- 10.水平抛出一物体,物体落地时速度的方向与水平面的夹角为θ,取地面为参考平面,那么物体刚被抛出时,其重力势能与动能之比为〔 〕A .sin 2θB .cos 2θC .tan 2θD .cot 2θ11.将质量为1kg 的物体以20m/s 的速度竖直向上抛出。
完整版)高中物理动能定理典型练习题(含答案)
完整版)高中物理动能定理典型练习题(含答案)1.正确答案是D。
对于一个物体来说,只有在速度大小(速率)发生变化时,它的动能才会改变。
速度的变化是一个矢量,它可以完全由于速度方向的变化而引起,例如匀速圆周运动。
速度变化的快慢是指加速度,加速度大小与速度大小之间没有必然的联系。
2.一个物体从高度为H的地方自由落体,落到高度为h的沙坑中停止。
假设物体的质量为m,重力加速度为g,根据动能定理,当物体速度为v时,mgH = 1/2mv^2,因此v =sqrt(2gH)。
在沙坑中,重力做正功,阻力做负功,根据动能定理,1/2mv^2 - Fh = mgh,其中F为物体在沙坑中受到的平均阻力。
解方程得到F = (H + h)mg / (gh)。
3.一个物体沿一曲面从A点无初速度滑下,滑至曲面的最低点B时,下滑高度为5m,物体质量为1kg,速度为6m/s。
假设物体在滑行过程中克服了摩擦力,设摩擦力为F,根据动能定理,mgh - W = 1/2mv^2,其中W为物体克服阻力所做的功。
解方程得到W = 32J。
课后创新演练:1.滑块的质量为1kg,初速度为4m/s,水平力方向向左,大小未知。
在一段时间内,水平力方向变为向右,大小不变为未知。
根据动能定理,水平力所做的功等于滑块动能的变化量,即1/2mv^2 - 1/2mu^2,其中v和u分别为滑块在水平力作用下的末速度和初速度。
根据题意,v = u = 4m/s,解方程得到水平力所做的功为16J。
2.两个物体的质量之比为1:3,高度之比也为1:3.根据动能定理,物体的动能等于1/2mv^2,其中v为物体的速度。
假设两个物体在落地时的速度分别为v1和v2,则v1 : v2 =sqrt(h1) : sqrt(h2),其中h1和h2分别为两个物体的高度。
因此,v1^2 : v2^2 = h1 : h2 = 1 : 9,即它们落地时的动能之比为1:9.3.物体沿长为L的光滑斜面下滑,速度达到末速度的一半时,物体沿斜面下滑的距离为L。
第12章动能定理(删——新)
P 刚体的平面运动动能就等于随质心C的平动动能与绕质心 C转动的动能之和。
思考:图示圆轮只滚不滑,此瞬时轮心速度为vO,则园 轮的动能T=?
1 1 2 T M O + J O 2 2 2 1 1 3 2 2 2 = M O + M O = M O 2 4 4
O
vO
思考:图示圆轮边缘B点绞接杆AB,A端放在水平地面 上,轮与地面只滚不滑,此瞬时A端速度为vA,B点位 于轮上最高点,则系统的动能T=? 1 1 1 2 2 T M A + M O + J O 2 2 2 2 1 1 1 11 2 2 2 2 = M A + M A + M A = M A 2 8 16 16 B vB AB杆瞬时平动
ω
3、平面运动刚体的动能
该瞬时瞬心为P,角速度为ω ,
· v· · v m ·· C · ·
i
i
c
1 2 2 T J P J P=J C+Md 2 1 1 2 2 2 T J P = (J C+Md ) 2 2 1 1 2 = J C + Md 2 2 2 2 1 1 2 2 = J C + M C 2 2
aA
P M
练习题:长为l、重为Q的均质杆AB的A端与一半径为 R、重为P 的均 质圆轮的轮心 绞接在一起,轮与地面间只滚不滑,墙与杆间无摩擦, 系统初始静止,θ0=450,而后自由下落,求轮心A在初瞬时的加速 度。 B D 解: T1 0
1 1 1Q 2 2 2 T2 J P P J C C vC 2 2 2 g 3 P 2 1 1 Q 2 vA 2 vA l ( ) 4g 2 12 g l sin vA 1 Q l vA 2 ( ) 2 g 2 l sin 1 2 3 P 1Q 1 v A[ ] 2 2 2 g 3 g sin l W Q (sin 0 sin ) 2
动能定理习题及解答
动能定理习题及解答P314 13-1:已知圆盘半径r=0.5m, m A =3kg, m B =2kg ,力偶矩M=4ϕ, 绳与盘之间无相对滑动; 求:ϕ由0至2π时,力偶M 与物块重力所作功的总和。
解:W=⎰πϕϕ20d 4+ (m A – m B )g • 2πr= 109.7JP314 13-4:已知长为l ,质量为m 的均质杆OA 以球铰链O 固定,并以等角速度ω绕铅直线转动,杆与铅直线的交角为θ; 求:杆的动能。
解:此杆绕铅直轴作定轴转动,杆的转动惯量为J z =θχθχ2222l0sin l 3m d sin l m =⎰杆的动能为 T = 2z J 21ω = θω222sin ml 61P316 13-11: 已知均质杆AB 的质量m=4kg,长l=600mm,均质圆盘B 的质量为6kg ,半径r=100mm,作纯滚 动。
弹簧刚度k=2N/mm,不计套筒A 及弹 簧的质量。
连杆在30º角无初速释放; 求:(1)当AB 杆达水平位置而接触弹簧 时,圆盘与连杆的角速度;(2)弹簧的最大压缩量δmax 。
解:(1)该系统初始静止,动能为0;AB 杆达水平位置时,B 点是AB 杆的速度瞬心,圆盘的角速度ωB =0,设杆的角速度为ωAB ,由动能定理,得2230sin 203121lmg ml AB ⋅=-⋅ω解得连杆的角速度 ωAB = 4.95 rad/s(2)AB 杆达水平位置接触弹簧时,系统的动能为T 1,弹簧达到最大压缩量δmax 的瞬时,系统再次静止,动能T 2=0,由T 2 - T 1 = W 12得22610max2max 22δδωmg k ml AB +-=- 解得 δmax =87.1mmP316 13-12:已知均质轮B 和C 的质量均为m 2,半径均为r,轮B 上的力偶矩M=常量,物A 的质量为m 1;求: 物A 由静止上移距离s 时的速度和加速度。
解:该系统初动能为零,设物A 移动距离s 时速度为υ,有θϕωυsin 0)2121221(122221g sm M r m m -=-⋅⋅⋅+式中r s =ϕ, r υω= (a)解得sm m r gr m M )(sin (2211+-=θυ (b)将式(a)(或式(b ))对时间求一阶导数,注意υ=.s ,解得)(sin 211m m r gr m M a +-=θP317 13-13: 已知动齿轮半径为r ,质量为m 1,可看成均质园盘;均质曲柄OA 质量为m 2; 定齿轮半径为R 。
高中物理动能定理的综合应用及其解题技巧及练习题(含答案)
高中物理动能定理的综合应用及其解题技巧及练习题(含答案)一、高中物理精讲专题测试动能定理的综合应用1.小明同学根据上海迪士尼乐园游戏项目“创极速光轮”设计了如图所示的轨道。
一条带有竖直圆轨道的长轨道固定在水平面上,底端分别与两侧的直轨道相切,其中轨道AQ 段粗糙、长为L 0=6.0m ,QNP 部分视为光滑,圆轨道半径R =0.2m ,P 点右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.5m 。
一玩具电动小车,通电以后以P =4W 的恒定功率工作,小车通电加速运动一段时间后滑入圆轨道,滑过最高点N ,再沿圆轨道滑出。
小车的质量m =0.4kg ,小车在各粗糙段轨道上所受的阻力恒为f =0.5N 。
(重力加速度g =10m/s 2;小车视为质点,不计空气阻力)。
(1)若小车恰能通过N 点完成实验,求进入Q 点时速度大小; (2)若小车通电时间t =1.4s ,求滑过N 点时小车对轨道的压力; (3)若小车通电时间t≤2.0s ,求小车可能停在P 点右侧哪几段轨道上。
【答案】(1)22m/s ;(2)6N ,方向竖直向上;(3)第7段和第20段之间 【解析】 【分析】 【详解】(1)小车恰能过N 点,则0N v =,Q →N 过程根据动能定理2211222N mg R mv mv -⋅=- 代入解得22m/s v =(2)A →N 过程2011202Pt fL mg R mv --⋅=- 代入解得15m/s v =在N 点时21N mv mg F R+= 代入解得N 6N F =根据牛顿第三定律可得小汽车对轨道压力大小6N ,方向竖直向上。
(3)设小汽车恰能过最高点,则0020Pt fL mg R --⋅=代入解得0 1.15s 2s t =<此时小汽车将停在12mg R n fL ⋅=代入解得1 6.4n =因此小车将停在第7段; 当通电时间 2.0s t =时020Pt fL n fL --=代入解得220n =因此小车将停在第20段;综上所述,当t ≤2.0s 时,小汽车将停在第7段和第20段之间。
南华大学理论力学第12章练习答案
质量为m1的均质细杆。圆盘作纯滚动。已知圆盘中心的速度
为v0。求系统的动能。
解:
T T盘 T杆
T盘 1 2 1 1 2 v0 3 2 m v0 m r m v0 2 2 2 4 r
2
v0
O
q
A
A
得
G 2 P1 3g sinq G 3P1 l
对(a)求导得 G 2 P1 3g cosq G 3P1 l
aC R m A gR( R r ) m( 2 R 2 ) m A ( R r )
(2)研究塔轮
maC FD Fs
m( 2 R 2 ) FD ( R r )
r R C mg
D
得
m( 2 R 2 ) FD Rr
m( 2 Rr) FS Rr
vK vA cosj r cosj
vA
A
M
vK Dv
A
B
j
O
vr
K
C
1 1 G1 2 2 1 G2 2 1 G3 2 G1 2G2 2G3 cos2 j 2 2 T2 r r 2 g v AB 2 g v K 2 2 g 4 g
由动能定理 T2 T1 Mj 得
4 gMj r 2 (G1 2G2 2G3 cos2 j )
12-4. 图示机构,各构件的质量均为m,曲柄OA=l在不变力偶 矩M作用下绕O轴从图示位置开始转n圈后,求此时曲柄OA的 角速度。 解:由 T2 T1 W ,得
11 2 2 1 3 ml OA m(lOA ) 2 m(lOA ) 2 M 2 πn 23 2 4
(完整版)动能定理习题(附答案)
A1、一质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,求: (1)物体克服重力做功. (2)合外力对物体做功. (3)手对物体做功. 解:(1) m 由A 到B : G 10J W mgh =-=-克服重力做功1G G 10J W W ==克(2) m 由A 到B ,根据动能定理2:2102J 2W mv ∑=-=(3) m 由A 到B :G F W W W ∑=+ F 12J W ∴=2、一个人站在距地面高h = 15m 处,将一个质量为m = 100g 的石块以v 0 = 10m/s 的速度斜向上抛出. (1)若不计空气阻力,求石块落地时的速度v .(2)若石块落地时速度的大小为v t = 19m/s ,求石块克服空气阻力做的功W .解:(1) m 由A 到B :根据动能定理:2201122mgh mv mv =-20m/s v ∴= (2) m 由A 到B ,根据动能定理3:22t 01122mgh W mv mv -=- 1.95J W ∴=3a 、运动员踢球的平均作用力为200N ,把一个静止的质量为1kg 的球以10m/s 的速度踢出,在水平面上运动60m 后停下. 求运动员对球做的功? 3b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少? 解: (3a)球由O 到A ,根据动能定理4:201050J 2W mv =-=(3b)球在运动员踢球的过程中,根据动能定理5:2211022W mv mv =-=1 不能写成:G10J W mgh ==. 在没有特别说明的情况下,G W 默认解释为重力所做的功,而在这个过程中重力所做的功为负.2 也可以简写成:“m :A B →:k W E ∑=∆Q ”,其中k W E ∑=∆表示动能定理.3 此处写W -的原因是题目已明确说明W 是克服空气阻力所做的功.4踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功.5 结果为0,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能,然后其他形式的能又转化为动能,而前后动能相等.v mv 'O A →A B →4、在距离地面高为H 处,将质量为m 的小钢球以初速度v 0竖直下抛,落地后,小钢球陷入泥土中的深度为h 求:(1)求钢球落地时的速度大小v . (2)泥土对小钢球的阻力是恒力还是变力? (3)求泥土阻力对小钢球所做的功. (4)求泥土对小钢球的平均阻力大小. 解:(1) m 由A 到B :根据动能定理:2201122mgH mv mv =-v ∴(2)变力6. (3) m 由B 到C ,根据动能定理:2f 102mgh W mv +=-()2f 012W mv mg H h ∴=--+(3) m 由B 到C : f cos180W f h =⋅⋅o()2022mv mg H h f h++∴=5、在水平的冰面上,以大小为F =20N 的水平推力,推着质量m =60kg 的冰车,由静止开始运动. 冰车受到的摩擦力是它对冰面压力的0. 01倍,当冰车前进了s 1=30m 后,撤去推力F ,冰车又前进了一段距离后停止. 取g = 10m/s 2. 求:(1)撤去推力F 时的速度大小. (2)冰车运动的总路程s .解: (1) m 由1状态到2状态:根据动能定理7: 2111cos0cos18002Fs mgs mv μ+=-o o3.74m/s v ∴==(2) m 由1状态到3状态8:根据动能定理: 1cos0cos18000Fs mgs μ+=-o o100m s ∴=6此处无法证明,但可以从以下角度理解:小球刚接触泥土时,泥土对小球的力为0,当小球在泥土中减速时,泥土对小球的力必大于重力mg ,而当小球在泥土中静止时,泥土对小球的力又恰等于重力mg . 因此可以推知,泥土对小球的力为变力.8也可以用第二段来算2s ,然后将两段位移加起来. 计算过程如下: m 由2状态到3状态:根据动能定理: 221cos18002mgs mv μ=-o270m s ∴=则总位移12100m s s s =+=.v t v vfA6、如图所示,光滑1/4圆弧半径为0.8m ,有一质量为1.0kg 的物体自A 点从静止开始下滑到B 点,然后沿水平面前进4m ,到达C 点停止. 求: (1)在物体沿水平运动中摩擦力做的功. (2)物体与水平面间的动摩擦因数.解:(1) m 由A 到C 9:根据动能定理:f 00mgR W +=-f 8J W mgR ∴=-=-(2) m 由B 到C :f cos180W mg x μ=⋅⋅o0.2μ∴=7、粗糙的1/4圆弧的半径为0.45m ,有一质量为0.2kg 的物体自最高点A 从静止开始下滑到圆弧最低点B 时,然后沿水平面前进0.4m 到达C 点停止. 设物体与轨道间的动摩擦因数为0.5 (g = 10m/s 2),求:(1)物体到达B 点时的速度大小.(2)物体在圆弧轨道上克服摩擦力所做的功.解:(1) m 由B 到C :根据动能定理:2B 1cos18002mg l mv μ⋅⋅=-oB 2m/s v ∴=(2) m 由A 到B :根据动能定理:2f B 102mgR W mv +=- f 0.5J W ∴=- 克服摩擦力做功f 0.5J W W ==克f8、质量为m 的物体从高为h 的斜面上由静止开始下滑,经过一段水平距离后停止,测得始点与终点的水平距离为s ,物体跟斜面和水平面间的动摩擦因数相同,求:摩擦因数证:设斜面长为l ,斜面倾角为θ,物体在斜面上运动的水平位移为1s ,在水平面上运动的位移为2s ,如图所示10.m 由A 到B :根据动能定理: 2cos cos180cos18000mgh mg l mgs μθμ+⋅⋅+⋅=-o o又1cos l s θ=Q 、12s s s =+ 则11:0h s μ-= 即: hsμ=9也可以分段计算,计算过程略.10 题目里没有提到或给出,而在计算过程中需要用到的物理量,应在解题之前给出解释。
动能定理 大学 习题及答案
1. 在图示滑轮组中悬挂两个重物,其中M 1的质量为m 1,M 2的质量为m 2。
定滑轮O 1的半径为r 1,质量为m 3;动滑轮O 2的半径为r 2,质量为m 4。
两轮都视为均质圆盘。
如绳重和摩擦略去不计,并设4122m m m ->。
求重物m 2由静止下降距离h 时的速度。
解:以整个系统为对象,由题意4122m m m ->知,M 2由静止向下运动,可应用动能定理确定M 2的速度。
设M 2下降h 距离时的速度为v ,则动滑轮O 2的角速度22r v =ω 定滑轮O 1的角速度112r v =ω 根据动能定理W 12=T 2-T 1即212121322224242142)2(24422v m r m r m v m m ghm gh m gh m ++++=-+ωω 故 43124123482)2(4m m m m m m m gh v ++++-=2. 两均质杆AC 和BC 的质量均为m,长均为l,在点C 由铰链相接放在光滑的水平面上3. 力偶矩M 为常量,作用在绞车的鼓轮上,使轮转动,如图所示。
轮的半径为r ,质量为m 1。
绳子上系一质量为m 2的重物A ,使其沿倾角为θ的斜面上升。
重物A 与斜面间的滑动摩擦系数为f ,绳子质量不计,鼓轮对转轴的回转半径为ρ。
在开始时,此系统处于静止,求鼓轮转过角度φ时的重物A 的速度和加速度。
解:受力分析2222212212121110,()()222v T T m v m m m v r rρρ==+=+122222sin cos (sin cos )Wm g r m g r f M M m gr m grf θϕθϕϕθθϕ=--+=--∑222122222222121()(sin cos ),22(sin cos )()m m v M m gr m grf rM m gr m grf v m m rρθθϕθθϕρ∴+=----=+v =对上式求导:2222122(sin cos )2()M m gr m grf va m m rθθωρ--=+222221(sin cos )r M m gr m grf a m r m θθρ--=+4.已知 质量为m 1、长为l 的均质杆OA 绕水平轴O 转动,杆的A 端铰接一质量为m 2半径为R 的均质圆盘,初始时OA 杆水平。
动能定理习题及答案
动能定理习题及答案动能定理习题及答案动能定理是物理学中一个重要的定理,它描述了物体的动能与其所受的力之间的关系。
在本文中,我将为大家提供一些关于动能定理的习题及其答案,帮助大家更好地理解和应用这一定理。
1. 问题:一个质量为2kg的物体以10m/s的速度沿直线运动,它所受的恒力为5N。
根据动能定理,求物体在2s内所做的功。
解答:根据动能定理,物体所做的功等于它的动能的增量。
物体的动能的增量可以通过物体的初动能和末动能之差来计算。
物体的初动能为1/2 × 2kg × (10m/s)² = 100J,末动能为1/2 × 2kg × (10m/s)² + 5N × 10m × cos180° × 2s = 90J。
因此,物体在2s内所做的功为100J - 90J = 10J。
2. 问题:一个质量为0.5kg的物体以8m/s的速度沿直线运动,它所受的恒力为2N。
根据动能定理,求物体在3s内所做的功。
解答:根据动能定理,物体所做的功等于它的动能的增量。
物体的初动能为1/2 × 0.5kg × (8m/s)² = 16J,末动能为1/2 × 0.5kg × (8m/s)² + 2N × 8m ×cos180° × 3s = 0J。
因此,物体在3s内所做的功为16J - 0J = 16J。
3. 问题:一个质量为1kg的物体以5m/s的速度沿直线运动,它所受的恒力为10N。
根据动能定理,求物体在4s内所做的功。
解答:根据动能定理,物体所做的功等于它的动能的增量。
物体的初动能为1/2 × 1kg × (5m/s)² = 12.5J,末动能为1/2 × 1kg × (5m/s)² + 10N × 5m ×cos180° × 4s = -20J。
理论力学动能定理习题答案
理论力学动能定理习题答案理论力学动能定理习题答案在理论力学中,动能定理是一个重要的定理,它描述了物体的动能与其质量和速度之间的关系。
在本文中,我将为您提供一些关于动能定理的习题答案,帮助您更好地理解和应用这个定理。
习题一:一个质量为2kg的物体以5m/s的速度沿x轴正方向运动,求其动能。
解答:根据动能定理,动能等于物体的质量乘以速度的平方的一半。
所以,动能=1/2 * 2kg * (5m/s)^2 = 25J。
习题二:一个质量为0.5kg的物体以10m/s的速度沿y轴正方向运动,求其动能。
解答:同样地,根据动能定理,动能等于物体的质量乘以速度的平方的一半。
所以,动能=1/2 * 0.5kg * (10m/s)^2 = 25J。
习题三:一个质量为1kg的物体以3m/s的速度沿斜坡上升,斜坡的倾角为30°,求物体在上升过程中的动能。
解答:在这个问题中,我们需要考虑物体的速度分解成斜坡的方向和垂直于斜坡的方向。
根据三角函数的知识,物体在斜坡的方向的速度为3m/s * cos(30°),垂直于斜坡的方向的速度为3m/s * sin(30°)。
由于动能定理只考虑物体的速度,而不考虑速度的方向,所以我们只需要计算物体在斜坡方向的速度的动能。
所以,动能=1/2 * 1kg * (3m/s * cos(30°))^2 =9J。
习题四:一个质量为2kg的物体以10m/s的速度沿斜坡下降,斜坡的倾角为45°,求物体在下降过程中的动能。
解答:同样地,我们需要考虑物体的速度分解成斜坡的方向和垂直于斜坡的方向。
根据三角函数的知识,物体在斜坡的方向的速度为10m/s * cos(45°),垂直于斜坡的方向的速度为10m/s * sin(45°)。
由于动能定理只考虑物体的速度,所以我们只需要计算物体在斜坡方向的速度的动能。
所以,动能=1/2 * 2kg * (10m/s * cos(45°))^2 = 100J。
第十二章 动能定理
③ 作用在纯滚轮上的摩擦力的功 接触点为瞬心,滑动摩擦力 作用点没动,此时滑动摩擦 力也不做功。
W F d rp 0
如果不是纯滚动,有相对滑 动,则摩擦力作负功。
13
§13 - 2 质点和质点系的动能 1 质点的动能
T
2 2
1 2
mv
2
动能是恒正的标量,
单位:
是瞬时量。
2
kg m / s kg m / s m N m J
( mi ri )
2
所以,刚体定轴转动的动能为:
Jz
T
1 2
J z
2
15
(3) 平面运动刚体的动能
设刚体作平面运动,如图。
C
由定轴转动刚体动能的公式
T
1 2
1
J p
2
rc p
2 C
由平行轴定理,有: 所以:
2
J p JC m r
1 2
2 C 2
T J C m r
m2g
2
d T [] 2vB d vB
Wi m3 g d s
2
vB
ds
m3g
d vB ds 两边同除d t,得: []v m3 g B dt dt m3 所以: a g B []
29
例 3
已知:两相同均质杆, m, l , 水平面光滑。初始静 止,高为h。设杆在铅垂 面内落下。 求:铰链D与地面接触时 的速度。
1
FDy
vo
F
m1g
FDx m2g m3g
2
vB
FN
受力如图。 求加速度可用动能定理的微分形式。
计算一般位置的动能
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动能定理
(1)
对式(1)求导
曲柄OA,定轴转动微分方程
12–26图12-46所示的三棱柱A沿三棱柱B的光滑斜面滑动,A和B的质量各为m1与m2,三棱柱B的斜面与水平面成 角。如开始时物体系静止,不计摩擦。试求运动时三棱柱B的加速度。
图12-46
动量守恒
,开始静止,
有
(1)
对时间求导
(2)
图12-30
动能定理
12–9图12-31所示链条传运机,链条与水平线的夹角为 ,在链轮B上作用一力偶矩为M的力偶,传运机从静止开始运动。已知被提升重物A的质量为m1,链轮B、C的半径均为r,质量均为m2,且可看成均质圆柱。试求传运机链条的速度,以其位移s表示。不计链条的质量。
图12-31
动能定理
12–10如图12-32所示,质量为m1的直杆AB可以自由地在固定铅垂套管中移动,杆的下端搁在质量为m2、倾角为 的光滑的楔块C上,楔块又放在光滑的水平面上。由于杆的压力,楔块向水平向右方向运动,因而杆下降,试求两物体的加速度。
图12-27
12–6椭圆规尺在水平面内由曲柄带动,设曲柄和椭圆规尺都是均质细杆,其质量分别为m1和2m1,且OC=AC=BC=l,如图12-28所示。滑块A和B的质量都等于m2。如作用在曲柄上的力偶矩为M,不计摩擦,试求曲柄的角加速度。
图12-28
动能定理
12–7曲柄导杆机构在水平面内,曲柄OA上作用有一力偶矩为M的常力偶,如图12-29所示。若初始瞬时系统处于静止,且∠AOB= ,试问当曲柄转过一圈后,获得多大的角速度?设曲柄质量为m1,长为r且为均质细杆;导杆质量为m2;导杆与滑道间的摩擦力可认为等于常值F,不计滑块A的质量。
12–28均质杆AB的质量为m=4kg,其两端悬挂在两条平行绳上,杆处在水平位置,如图12-48所示。设其中一绳突然断了,试求此瞬时另一绳的张力F。
图12-48
刚体平面运动微分方程
(1)
(2)
联立式(1)、(2)求得
12–29均质细杆OA可绕水平轴O转动,另一端有一均质圆盘,圆盘可绕A在铅直面内自由旋转,如图12-49所示。已知杆OA长为l,质量为m1;圆盘半径为R,质量为m2。不计摩擦,初始瞬时杆OA水平,杆和圆盘静止。试求杆与水平线成 角的瞬时,杆的角速度和角加速度。
图12-44
动能定理
定轴转动微分方程
或
质心运动定理
12–25图12-45所示为放在水平面内的曲柄滑道机构。曲柄OA长为l,质量为m1,视为的匀质直杆。丁字形滑道连杆BCD的质量为m2,对称于x轴。在曲柄上施加有一力偶,其力偶矩为M。设开始时 0=0°, =0,试求当曲柄与x轴夹角为 时,曲柄的角速度、角加速度及滑块A对槽面的压力。摩擦和滑块质量均不计。
图12-35
(1)
动能定理
ห้องสมุดไป่ตู้(2)
动能定理
12–14在图12-36所示的系统中,物块M和滑轮A、B的质量均为m,且滑轮可视为均质圆盘,弹簧的刚度系数为k,不计轴承摩擦,绳与轮之间无滑动。当物块M离地面的距离为h时,系统处于平衡。现在给物块M以向下的初速度v0,使它恰能到达地面,试求物块M的初速度v0。
图12-34
动能定理
12–13如图12-35所示,均质直杆AB重100N,长AB=200mm,两端分别用铰链与滑块A、B连接,滑块A与一刚度系数为k=2N/mm的弹簧相连,杆与水平线的夹角为 ,当 =0o时弹簧为原长。摩擦与滑块A、B的质量均不计。试求:(1)杆自 =0°处无初速地释放时,弹簧的最大伸长量。(2)杆在 =60°处无初速地释放时,在 =30°时杆的角速度。
动能定理
对时间求导,注意
初瞬时( ),vA=0
故
12–12如图12-34所示,绳索的一端E固定,绕过动滑轮D与定滑轮C后,另一端与重物B连接。已知重物A和B的质量均为m1;滑轮C和D的质量均为m2,且均为均质圆盘,重物B与水平面间的动摩擦因数为 。如重物A开始时向下的速度为v0,试求重物A下落多大距离时,其速度将增加一倍?
图12-36
动能定理
12–15两均质直杆,长均为l,质量均为m,在B处用铰链连接,并可在图12-37所示的铅垂平面内运动,AB杆上作用有一力偶矩为M的常力偶。如在图示位置从静止释放,试求当A端碰到支座O时,A端的速度vA。
图12-37
杆AB任意 时
当 时
动能定理
12–16质点在变力 的作用下沿空间曲线运动,其矢径 ,试求力F的功率。
图12-40
动能定理
(1)
由(1)得
滑块B
12–21两个相同的滑轮,半径为R,质量为m,用绳缠绕连接如图12-41所示。两滑轮可视为均质圆盘。如系统由静止开始运动,试求滑轮质心C下落距离h时的速度及AB段绳子的拉力。
图12-41
滑轮O
滑轮C
因
故
动能定理
12–22如图12-42所示的均质细杆AB,长为l,质量为m,放在铅直面内,杆与水平面成角 ,杆的一端A靠在光滑的铅直墙上,另一端B放在光滑的水平地面上,然后杆由静止状态倒下。试求:(1)杆在任意位置时的角速度 和角加速度 ;(2)杆脱离墙时与水平面所成的夹角 。
习题
12–1一刚度系数为k的弹簧,放在倾角为 的斜面上。弹簧的上端固定,下端与质量为m的物块A相连,图12-23所示为其平衡位置。如使重物A从平衡位置向下沿斜面移动了距离s,不计摩擦力,试求作用于重物A上所有力的功的总和。
图12-23
12–2如图12-24所示,在半径为r的卷筒上,作用一力偶矩M=a +b 2,其中 为转角,a和b为常数。卷筒上的绳索拉动水平面上的重物B。设重物B的质量为m,它与水平面之间的滑动摩擦因数为 。不计绳索质量。当卷筒转过两圈时,试求作用于系统上所有力的功的总和。
图12-29
动能定理
12–8半径为R质量为m1的均质圆盘A放在水平面上,如图12-30所示。绳子的一端系在圆盘中心A,另一端绕过均质滑轮C后挂有重物B。已知滑轮C的半径为r,质量为m2;重物B质量为m3。绳子不可伸长,不计质量。圆盘作纯滚动,不计滚动摩擦。系统从静止开始运动,试求重物B下落的距离为h时,圆盘中心的速度和加速度。
图12-32
动能定理
12–11如图12-33所示,均质细杆长为l,质量为m1,上端B靠在光滑的墙下,下端A用铰链与圆柱的中心相连。圆柱质量为m2,半径为R,放在粗糙的地面上,自图示位置由静止开始滚动而不滑动。如杆与水平线的夹角 =45°,不计滚动摩擦,试求A点在初瞬时的加速度。
图12-33
分析任意位置
图12-49
圆盘任意位置
圆盘平动
动能定理
(1)
式(1)对时间求导
12–30图12-50所示三棱柱体ABC的质量为m1,放在光滑的水平面上,可以无摩擦地滑动。质量为m2的均质圆柱体O由静止沿斜面AB向下滚动而不滑动。如斜面的倾角为 ,试求三棱柱体的加速度。
图12-50
与习题12-26类似
动量守恒
,开始静止,
12–19均质直杆AB的质量m=1.5kg,长度l=0.9m,在图12-39所示水平位置时从静止释放,试求当杆AB经过铅垂位置时的角速度及支座A的反力。
图12-39
动能定理
定轴转动微分方程
质心运动定理
12–20如图12-40所示,已知均质圆柱A的半径为0.2m,质量为10kg,滑块B的质量为5kg,它与斜面间动摩擦因数 ,圆柱A只作纯滚动,系统由静止开始运动。试求A、B沿斜面向下运动10m时滑块B的速度和加速度,以及AB杆所受的力。不计AB杆的质量。
图12-43
(瞬时平动 , )
动能定理
绳索OA运动到铅垂位置时, ,质心加速度沿铅垂方向。
以C点为基点,分析B点
以C点为基点,分析A点
向y方向
由平面运动方程
(1)
(2)
由(1)+(2)得
由(1)得
12–24如图12-44所示,均质杆OA重150N,可绕垂直于图面的光滑水平轴O转动。杆的A端连有刚度系数为k=0.5N/mm的弹簧。在图示位置时,弹簧的变形是100mm,杆的角速度 。试求杆转过90°时的角速度和角加速度以及轴O的反力。
图12-42
动能定理
动能定理
(1)
由式(1)对时间求导,注意 (设 与 同向,为逆时针)
质心运动定理
得
12–23如图12-43所示,均质杆AB质量为m,长2l,一端用长l的绳索OA拉住,另一端B放置在光滑地面上可沿地面滑动。开始时系统处于静止状态,绳索OA位于水平位置,O、B点在同一铅垂线上。试求当绳索OA运动到铅垂位置时,B点的速度 和绳索的拉力 以及地面的反力 。
图12-24
12–3均质杆OA长l,质量为m,绕着球形铰链O的铅垂轴以匀角速度 转动,如图12-25所示。如杆与铅垂轴的夹角为 ,试求杆的动能。
图12-25
12–4质量为m1的滑块A沿水平面以速度 移动,质量为m2的物块B沿滑块A以相对速度u滑下,如图12-26所示。试求系统的动能。
图12-26
12–5如图12-27所示,滑块A质量为m1,在滑道内滑动,其上铰接一均质直杆AB,杆AB长为l,质量为m2。当AB杆与铅垂线的夹角为 时,滑块A的速度为 ,杆AB的角速度为 。试求在该瞬时系统的动能。
有
(1)
对时间求导
(2)
动能定理
对时间求导
将上式除以 ,得
将式(1)、(2)代入上式,得
动能定理
对时间求导
将式(1)、(2)代入上式,得
12–27物A质量为m1,沿楔状物D的斜面下降,同时借绕过定滑轮C的绳使质量为m2的物体B上升,如图12-47所示。斜面与水平成 角,滑轮和绳的质量及一切摩擦均略去不计。试求楔状物D作用于地面凸出部分E的水平压力。
图12-47